\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On finite-time hyperbolicity

Abstract Related Papers Cited by
  • A solution of a nonautonomous ordinary differential equation is finite-time hyperbolic, i.e. hyperbolic on a compact interval of time, if the linearisation along that solution exhibits a strong exponential dichotomy. As a finite-time variant and strengthening of classical asymptotic facts, it is shown that finite-time hyperbolicity guarantees the existence of stable and unstable manifolds of the appropriate dimensions. Eigenvalues and -vectors are often unsuitable for detecting hyperbolicity. A (dynamic) partition of the extended phase space is used to circumvent this difficulty. It is proved that any solution staying clear of the elliptic and degenerate parts of the partition is finite-time hyperbolic. This extends and unifies earlier partial results.
    Mathematics Subject Classification: Primary: 34A30, 37B55, 37D05; Secondary: 34D09, 37D10, 37N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Berger, T. S. Doan and S. Siegmund, Nonautonomous finite-time dynamics, Discrete Continuous Dynam. Systems - B, 9 (2008), 463-492.

    [2]

    A. Berger, T. S. Doan and S. Siegmund, A remark on finite-time hyperbolicity, PAMM Proc. Appl. Math. Mech., 8 (2008), 10917-10918.doi: doi:10.1002/pamm.200810917.

    [3]

    A. Berger, T. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time, J. Differential Equations, 246 (2009), 1098-1118.doi: doi:10.1016/j.jde.2008.06.036.

    [4]

    M. Berger and B. Gostiaux, "Differential Geometry: Manifolds, Curves, and Surfaces," Springer, 1988.

    [5]

    A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Mathematics 629, Springer, 1978.

    [6]

    L. H. Duc and S. Siegmund, Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 641-674.doi: doi:10.1142/S0218127408020562.

    [7]

    G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos, 10 (2000), 99-108.doi: doi:10.1063/1.166479.

    [8]

    G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows, Physica D, 149 (2001), 248-277.doi: doi:10.1016/S0167-2789(00)00199-8.

    [9]

    G. Haller, Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence, Physics of Fluids, 13 (2001), 3365-3385.doi: doi:10.1063/1.1403336.

    [10]

    G. Haller, An objective definition of a vortex, J. Fluid Mech., 525 (2005), 1-26.doi: doi:10.1017/S0022112004002526.

    [11]

    G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence, Physica D, 147 (2000), 352-370.doi: doi:10.1016/S0167-2789(00)00142-1.

    [12]

    M. C. Irwin, "Smooth Dynamical Systems," World Scientific, 2001.doi: doi:10.1142/9789812810120.

    [13]

    T. Kato, "Perturbation Theory for Linear Operators," Springer, 1980.

    [14]

    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' Cambridge University Press, 1995.

    [15]

    K. Palmer, "Shadowing in Dynamical Systems. Theory and Applications," Kluwer, 2000.

    [16]

    R. M. Samelson and S. Wiggins, "Lagrangian Transport in Geophysical Jets and Waves. The Dynamical Systems Approach,'' Springer, 2006.

    [17]

    S. C. Shadden, F. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212 (2005), 271-304.doi: doi:10.1016/j.physd.2005.10.007.

    [18]

    F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems," Springer, 1990.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(46) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return