Skip to main content

Abstract

Ruminants play a key role in human food production by converting fiber-rich plant resources that humans cannot (or choose not to) consume into high-quality food that humans can eat. However, this conversion causes unavoidable losses of nitrogen (N) in feces and urine from ruminants that may become an environmental burden, in particular nitrate (NO3 -) leaching, ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. The aim of this paper is to identify the maximal theoretical N efficiency at the animal level, and the challenges and opportunities to achieve this maximal N efficiency. This is done via striving for the lowest possible N excretion in urine and feces, and for purposes here, with a focus on dairy cattle. Inevitable N losses in dairy cattle include losses associated with urinary excretion of urea synthesized from ammonia produced in the rumen; undigested microbial protein excreted in feces; microbial nucleic acids synthesized in the rumen and excreted mainly in urine; fecal and urinary excretion resulting from endogenous secretions; and urinary excretion related to maintenance and milk protein synthesis. The theoretical upper limit of N use efficiency in a dairy cow producing 40 kg fat and protein corrected milk/d is 0.43. Higher efficiencies may be achieved, but these require major inputs of human edible resources. The present analysis demonstrates there is little or no scope to reduce N losses related to microbial nucleic acid synthesis, recycling of N to the rumen, intestinal digestion of microbial protein, and animal maintenance requirements. Strategies to reduce N losses and improve N efficiency should focus on an optimal supply of rumen degradable N and optimal efficiency of utilization of absorbed amino acids for milk protein synthesis. To improve N efficiency, integration between protein and energy metabolism is essential, and energy and protein should be considered together rather than as two distinct entities. A major challenge in strategies to optimize high-fiber diets for high milk N efficiency will be to avoid increases in enteric methane production associated with these dietary strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AFRC, 1992. Technical committee on responses to nutrients, report no. 9. Nutritive requirements of ruminant animals: Protein. Nutr. Abstr. Rev., Series B 62, 787–835.

    Google Scholar 

  • Bach, A., S. Calsamiglia and M. D. Stern, 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88, E9-E21.

    Article  PubMed  Google Scholar 

  • Bannink, A., M.W. van Schijndel and J. Dijkstra, 2011. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Anim. Feed Sci. Technol. 166–167, 603–618.

    Article  Google Scholar 

  • Bates, D.B., J.A. Gillet, S.A. Bargo and W.G. Bergen, 1985. The effect of specific growth rate and stage of growth on nucleic acid-protein values of pure cultures and mixed ruminal bacteria. J. Anim. Sci. 61, 713–724.

    CAS  Google Scholar 

  • Brooks, M.A., R.M. Harvey, N.F. Johnson and M.S. Kerley, 2012. Rumen degradable protein supply affects microbial efficiency in continuous culture and growth in steers. J. Anim. Sci. 90, 4985–4994.

    Article  PubMed  CAS  Google Scholar 

  • Calsamiglia, S., A. Ferret, C.K. Reynolds, N.B. Kristensen and A.M. van Vuuren, 2010. Strategies for optimizing nitrogen use by ruminants. Animal 4, 1184–1196.

    Article  PubMed  CAS  Google Scholar 

  • Cant, J.P., 2005. Integration of data in feed evaluation systems. In: Dijkstra, J., J.M. Forbes and J. France (editors), Quantitative aspects of ruminant digestion and metabolism, 2nd edition. CABI Publishing, Wallingford, UK: 707–726.

    Chapter  Google Scholar 

  • Dijkstra, J., E. Kebreab, J.A.N. Mills, W.F. Pellikaan, S. López, A. Bannink and J. France, 2007. From nutrient requirement to animal response: predicting the profile of nutrients available for absorption in dairy cattle. Animal 1, 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra, J., H.D. St.C. Neal, D.E. Beever and J. France, 1992. Simulation of nutrient digestion, absorption and outflow in the rumen: model description. J. Nutr. 122, 2239–2256.

    PubMed  CAS  Google Scholar 

  • Dijkstra, J., J. France, J.L. Ellis, A.B. Strathe, E. Kebreab and A. Bannink, 2013a. Production efficiency of ruminants: feed, nitrogen and methane. In: Kebreab, E. (editor), Sustainable animal agriculture. CAB International, Wallingford, UK, in press.

    Google Scholar 

  • Dijkstra, J., O. Oenema and A. Bannink, 2011. Dietary strategies to reducing N excretion from cattle: implications for methane emissions. Curr. Opin. Environm. Sust. 3, 414–422.

    Article  Google Scholar 

  • Dijkstra, J., O. Oenema, J.W. van Groenigen, J.W. Spek, A.M. van Vuuren and A. Bannink, 2013b. Diet effects on urine composition of cattle and N2O emissions. Animal, in press.

    Google Scholar 

  • Ellis, J.L., J. Dijkstra, J. France, A.J. Parsons, G.R. Edwards, S. Rasmussen, E. Kebreab and A. Bannink, 2012. Effect of high-sugar grasses on methane emissions simulated using a dynamic model. J. Dairy Sci. 95, 272–285.

    Article  PubMed  CAS  Google Scholar 

  • FAO, 2011. World Livestock 2011 – Livestock in Food Security. FAO, Rome.

    Google Scholar 

  • Hanigan, M.D., 2005. Quantitative aspects of ruminant splanchnic metabolism as related to predicting animal performance. Anim. Sci. 80, 23–32.

    Article  CAS  Google Scholar 

  • Kebreab, E., A.B. Strathe, J. Dijkstra, J.A.N. Mills, C.K. Reynolds, L.A. Crompton, T. Yan and J. France, 2010. Energy and protein interactions and their effect on nitrogen excretion in dairy cows. In: Crovetto, G.M. (ed.), 3rd EAAP international symposium on energy and protein metabolism and nutrition. Wageningen Academic Publishers, Netherlands: 417–425.

    Google Scholar 

  • Lapierre, H., C.E. Galindo, S. Lemosquet, I. Ortigues-Marty, L. Doepel and D.R. Ouellet, 2010. Protein supply, glucose kinetics and milk yield in dairy cows. In: Crovetto, G.M. (editor), 3rd EAAP international symposium on energy and protein metabolism and nutrition. Wageningen Academic Publishers, Netherlands: 275–285.

    Google Scholar 

  • Lapierre, H., D. Pacheco, R. Berthiaume, D.R. Ouellet, C.G. Schwab, P. Dubreuil, G. Holtrop and G.E. Lobley, 2006. What is the true supply of amino acids for a dairy cow? J. Dairy Sci. 89, E1-E14.

    Article  PubMed  Google Scholar 

  • Larsen, M., T.G. Madsen, M.R. Weisbjerg, T. Hvelplund and J. Madsen, 2001. Small intestinal digestibility of microbial and endogenous amino acids in dairy cows. J. Anim. Physiol. Anim. Nutr. 85, 9–21.

    Article  CAS  Google Scholar 

  • Lobley, G.E., D.M. Bremmer and G. Zuur, 2000. Effects of diet quality on urea fates in sheep as assessed by refined, non-invasive [15N15N] urea kinetics. Br. J. Nutr. 84, 459–468.

    PubMed  CAS  Google Scholar 

  • Moraes, L.E., J.E. Wilen, P.H. Robinson and J.G. Fadel, 2012. A linear programming model to optimize diets in environmental policy scenarios. J. Dairy Sci. 95, 1267–1282

    Article  PubMed  CAS  Google Scholar 

  • National Research Council, 2001. Nutrient requirements of dairy cattle, 7th revised ed. National Academy Press, Washington DC, USA.

    Google Scholar 

  • Pirt, S.J., 1965. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. London Ser. B 163:224–231.

    Article  CAS  Google Scholar 

  • Reynal, S.M. and G.A. Broderick, 2005. Effect of dietary level of rumen-degraded protein on production and nitrogen metabolism in lactating dairy cows. J. Dairy Sci. 88, 4045–4064.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, C.K., 2001. Economics of visceral energy metabolism in ruminants: Toll keeping or internal revenue service? J. Anim. Sci. 80, E74-E84.

    Google Scholar 

  • Reynolds, C.K., L.A. Crompton and J.A.N. Mills, 2011. Improving the efficiency of energy utilisation in cattle. Anim. Prod. Sci. 51, 6–12.

    Article  Google Scholar 

  • Reynolds, C.K. and N.B. Kristensen, 2008. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 86, E293-E305.

    Article  PubMed  CAS  Google Scholar 

  • Rius, A.G., M.L. McGilliard, C.A. Umberger and M.D. Hanigan, 2010. Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cow. J. Dairy Sci. 93, 2034–2043.

    Article  PubMed  CAS  Google Scholar 

  • Røjen, B.A., S.B. Poulsen, P.K. Theil and N.B. Kristensen, 2011b. Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter-B and aquaporins in ruminal papillae from lactating Holstein cows. J. Dairy Sci. 94, 2587–2591.

    Article  PubMed  Google Scholar 

  • Røjen, B.A., P.K. Theil and N.B. Kristensen, 2011a. Effects of nitrogen supply on inter-organ fluxes of urea-N and renal urea-N kinetics in lactating Holstein cows. J. Dairy Sci. 94, 2532–2544.

    Article  PubMed  Google Scholar 

  • Russell, J.B. and C.J. Sniffen, 1984. Effect of carbon-4 and carbon-5 volatile fatty acids on growth of mixed rumen bacteria in vitro. J. Dairy Sci. 67, 987–994.

    Article  PubMed  CAS  Google Scholar 

  • Satter, L.D. and L.L. Slyter, 1974. Effect of ammonia concentration on rumen microbial protein production in-vitro. Br. J. Nutr. 32, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales and C. De Haan, 2006. Livestock’s Long Shadow: Environmental Issues and Options. FAO, Rome.

    Google Scholar 

  • Storm, E.R., D.S. Brown and E.R. Ørskov, 1983. The nutritive value of rumen micro-organisms in ruminants. 3. The digestion of microbial amino and nucleic acids in, and losses of endogenous nitrogen from, the small intestine of sheep. Brit. J. Nutr. 50, 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Tamminga, S., 1992. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 75, 345–357.

    Article  Google Scholar 

  • Van Duinkerken, G., M.C. Blok, A. Bannink, J.W. Cone, J. Dijkstra, A.M. van Vuuren and S. Tamminga, 2011. Update of the Dutch protein evaluation system for ruminants: the DVE/OEB2010 system. J. Agric. Sci., Camb. 149, 351–367.

    Google Scholar 

  • Van Knegsel, A.T.M., H. van den Brand, J. Dijkstra, W.M. van Straalen, M.J.W. Heetkamp, S. Tamminga and B. Kemp, 2007. Dietary energy source in dairy cows in early lactation: energy partitioning and milk composition. J. Dairy Sci. 90, 1467–1476.

    Article  PubMed  Google Scholar 

  • Van Vuuren, A.M. and J.A.C. Meijs, 1987. Effects of herbage composition and supplement feeding on the excretion of nitrogen in dung and urine by grazing dairy cows. In: Van der Meer, H.G., R.J. Unwin, T. A. van Dijk and G.C. Ennik (eds.), Animal manure on grassland and fodder crops. Fertilizer or waste? Martinus Nijhoff Publishers, Dordrecht, the Netherlands: 17–25.

    Chapter  Google Scholar 

  • Vérité, R. and J.L. Peyraud, 1989. Protein: the PDI system. In: Jarrige, R. (ed.), Ruminant nutrition: recommended allowances and feed tables. John Libbey Eurotext, Paris: 33–47.

    Google Scholar 

  • Virtanen, A.I., 1966. Milk production of cows on protein-free feed. Science 153, 1603–1614.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Partially funded by the Commission of the European Communities (Rednex project FP7-KBBE-2007-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dijkstra .

Editor information

James W. Oltjen Ermias Kebreab Hélène Lapierre

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Dijkstra, J. et al. (2013). Challenges in ruminant nutrition: towards minimal nitrogen losses in cattle. In: Oltjen, J.W., Kebreab, E., Lapierre, H. (eds) Energy and protein metabolism and nutrition in sustainable animal production. Energy and protein metabolism and nutrition in sustainable animal production, vol 134. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-781-3_3

Download citation

Publish with us

Policies and ethics