Brought to you by:

A publishing partnership

The following article is Open access

A New Infrared Photometric Study of Intrinsic and Extrinsic S-type Stars

, , and

Published 2019 June 18 © 2019. The American Astronomical Society.
, , Citation P. S. Chen et al 2019 AJ 158 22 DOI 10.3847/1538-3881/ab2334

Download Article PDF
DownloadArticle ePub

You need an eReader or compatible software to experience the benefits of the ePub3 file format.

1538-3881/158/1/22

Abstract

We collect all known intrinsic and extrinsic S-type stars to discuss their infrared properties and find their difference in the infrared using photometric data from the Two Micron All Sky Survey, Wide Field Infrared Survey Explorer, and Infrared Astronomical Satellite missions. Then we look for the diagnosis to extract intrinsic S-type stars from the large unclassified sample. We found that, statistically, intrinsic S-type stars have larger infrared excesses than extrinsic S-type stars in the wavelength region of 1–60 μm due to thicker dusty circumstellar envelopes. We also found that only intrinsic S-type stars occupy the reddest color areas in all of the two-color diagrams we presented. Finally, 172 new intrinsic S-type stars are presented in this paper. This makes the number of known intrinsic S-type stars almost double. In addition, some intrinsic and extrinsic S-type stars have power-law distributions in some two-color diagrams with the wavelength longer than 5 μm. The possible reason for this is also discussed.

Export citation and abstract BibTeX RIS

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

S-type stars have been traditionally considered for a long time as intermediate red giants between M-type stars and carbon stars as in the evolution sequence M–S–C at the asymptotic giant branch (AGB) phase. The spectra of S-type stars are characterized by the absorption bands of ZrO and LaO molecules in the photosphere. However, About 30 yr ago this idea has been changed that some nonvariable S-type stars without the element of Technetium (Tc) may be in the binary system (Jorissen & Mayor 1988, 1992) at the red giant branch (RGB) or the thermally pulsing asymptotic giant branch (TP-AGB) phases (Busso et al. 1992). In fact, Iben & Renzini (1983) hinted the existence of such S-type stars. Now we know that there are actually two categories of S-type stars. They are as follows.

  • (1)  
    Intrinsic S-type stars that follow the M–S–C evolution sequence and show Tc lines in their optical spectra. They are also called Tc-rich S-type stars or S-type stars with Tc.
  • (2)  
    Extrinsic S-type stars are in a binary system with a white dwarf (WD) and have enhanced s-process elements at the stellar surface as the result of mass transfer from a former AGB star (now the WD) to a less evolved companion (now the S-type star), but without Tc lines in their optical spectra. They are also called Tc-deficient S-type stars or S-type stars without Tc.

In the intrinsic S-type star the third dredge-up process (the signature of s-process elements) is presently at work while in the extrinsic S-type star s-process elements are transferred to a less evolved companion in a binary system. Among elements present in the atmospheres of intrinsic S-type stars there is the element Tc with a half lifetime of about 2 ∗ 105 yr, while in the extrinsic S-type star this element has already decayed. Therefore the presence of Tc is well discriminating the intrinsic S-type star from the extrinsic S-type star (Iben & Renzini 1983; Kipper 1991; Johnson et al. 1993).

Several methods can be used to distinguish between extrinsic S-type stars and intrinsic S-type stars; a direct way is to detect Tc lines (Jorissen 2004). However, this is generally difficult since these lines are very weak and lie in a spectral region crowded with many other lines. Fortunately, some indirect methods have been suggested such as: (1) for extrinsic S-type stars the WD companion in a binary system can be directly detected in the UV region if it is warm enough. This has been done by Johnson et al. (1990, 1993). However, up to now only a small amount of S-type stars have UV observations from the International Ultraviolet Explorer. (2) Variations of the periodic radial velocity can be observed for extrinsic S-type stars in a binary system (Jorissen & Mayor 1988, 1992). However, it is limited by their long orbital periods. (3) The high-excitation emission line of He i (10830 Å) has been detected in the spectra of extrinsic S-type stars, while in the spectra of intrinsic S-type stars this line is lacking (Brown et al. 1990). However, this line almost reaches the cutoff wavelength of the response curve in the current CCD. (4) The different infrared colors of the two categories of S-type stars can serve as another important criterion (Chen & Kwok 1993; Groenewegen 1993; Jorissen et al. 1993). Johnson (1992) well summarized these methods to distinguish between intrinsic S-type stars and extrinsic S-type stars.

The unstable element Tc was first identified for some M, S, and carbon stars by Merrill (1952). Little-Marenin & Little (1979) first made the spectral observation of 90 late-type stars (including 10 S-type and MS-type stars) and concluded that the stars with Tc are in Population I, while the stars without Tc are in Population II. Iben & Renzini (1983) discussed the status of the element Tc in the AGB phase and hinted at the existence of extrinsic S-type stars in the binary system. Then Little et al. (1987) made the spectral observation for about 280 late-type stars (including 24 S-type and MS-type stars) to identify some intrinsic S-type stars and extrinsic S-type stars. They pointed out that single S-type stars all have Tc and that extrinsic S-type stars should be in the binary system. Smith & Lambert (1988) gave high-resolution spectra for 40 MS-type and S-type stars to search for the presence of Tc. They suggested that intrinsic S-type stars are currently thermally pulsing AGB stars undergoing third dredge-up while extrinsic S-type stars represent the coolest members of the barium star class. Brown et al. (1990) made observations of the radial velocity and the He i (10830 Å) triplet for some MS-type and S-type stars. They suggested that the He i features and radial-velocity variations in extrinsic MS-type and S-type stars are both caused by the presence of WD companions. Groenewegen (1993) studied the discrimination between intrinsic S-type stars and extrinsic S-type stars using their infrared properties from the visual and Infrared Astronomical Satellite (IRAS) observations. Groenewegen found that intrinsic S-type stars have larger infrared excesses from circumstellar envelopes while extrinsic S-type stars are consistent with stellar blackbodies with no or very little infrared excesses. Groenewegen also suggested that extrinsic S-type stars might be 50%–75% of S-type stars in an optically complete sample. Jorissen et al. (1993) investigated the infrared properties for some S-type stars using the Caltech Infrared Catalog (IRC) and the IRAS data. They pointed out that the frequency of intrinsic S-type stars may be less than 50%. Chen & Kwok (1993) studied the circumstellar properties for about 150 S-type stars using the IRAS low-resolution spectra (LRS). They found that the silicate emission feature only appeared for intrinsic S-type stars. Chen et al. (1998) found that an S-type star whose energy distribution can be fitted by a double blackbody curve is likely to be an intrinsic S-type star, whereas candidates of extrinsic S-type stars can be found from sources whose energy distribution can be fitted by a single blackbody curve. Wang & Chen (2002) made the JHK observations for a number of S-type stars. Together with the IRAS photometric and the LRS data they found that about 100 stars are very like extrinsic S-type stars. Lebzelter & Hron (2003) confirmed that only a small fraction of the semiregular variables show Tc lines. However, they also found a significant number of Miras without Tc. Yang et al. (2006) searched the new candidates of intrinsic and extrinsic S-type stars using the Two Micron All Sky Survey (2MASS), IRAS, and Midcourse Space Experiment (MSX) data. Finally they found about 150 candidates of extrinsic S-type stars and 250 candidates of intrinsic S-type stars. Recently infrared properties of about 600 S-type and related stars have been investigated by Guandalini & Busso (2008) using 2MASS, IRAS, Infrared Space Observatory (ISO), and MSX data. They identified about 40 extrinsic S-type stars and about 120 intrinsic S-type stars.

In this paper we attempt to collect all known intrinsic S-type stars and extrinsic S-type stars, and investigate the difference of their infrared properties using 2MASS, Wide Field Infrared Survey Explorer (WISE), and IRAS data. Then the diagnosis to distinguish both kinds of S-type stars is discussed.

It is noted that the WISE data are used first time for the study of these S-type stars in this paper. The WISE mission has completed an all-sky survey in the mid-infrared (Wright et al. 2010). WISE performed observations in four bands, W1 (3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm), and WISE all-sky data were released in 2012 March 14. This survey extended the 2MASS All Sky Survey into the mid-infrared and connected it with far-infrared observations by IRAS.

2. Sample Selection and Data Processing

We have collected almost all of the known intrinsic S-type stars and extrinsic S-type stars from the literature (the candidates are not included) to study their infrared color properties using 2MASS, WISE, and IRAS data. Finally 151 certain extrinsic S-type stars and 190 certain intrinsic S-type stars are found. The infrared data for extrinsic S-type stars and intrinsic S-type stars are listed in Tables 1 and 2, respectively. In Tables 1 and 2 the contents are: (1) the star number in this paper; (2) the number in the General Catalog of Galactic S-Stars (GCGSS, simply CSS in this paper) from Stepheson (1984) and Stephenson (1990, simply CSS2); (3) the star name; (4) the star position in the epoch of 2000; (5) the 2MASS JHK magnitudes, where if the empty is showing in the observational error position, it means the upper limit value, which is not used for the data analysis below); (6) the WISE magnitudes in four bands, where if the empty is showing in the observational error position, it means the upper limit value, which is not used for the data analysis below; (7) the Galactic extinction coefficient Av derived in this paper; and (8) the identified IRAS Point Source Catalog/Faint Source Catalog counterpart. In addition, in the note of Table 1 the reference of the source origin is indicated for both Tables 1 and 2. Note that in the context only small parts of Tables 1 and 2 are shown. The full versions of Tables 1 and 2 can be found in the supplemental material as the online data.

Table 1.  Infrared Observation of Known Extrinsic S-type Stars

No. CSS Name R.A.(2000) Decl.(2000) J Je H He K Ke W1 W1e W2 W2e W3 W3e W4 W4e Av IRAS References
001 3 HD 310 000736.59 −621854.3 4.212 0.270 3.246 0.198 3.023 0.282 3.188 0.109 2.566 0.045 2.997 0.011 2.868 0.016 0.09 00051-6235 2
002 10 IRAS 00300+6342 003256.00 +635908.2 6.372 0.021 5.201 0.047 4.774 0.017 4.531 0.088 4.329 0.048 4.532 0.015 4.328 0.023 3.09 00300+6342 13
003 16 OS Cas 005038.46 +601307.3 5.815 0.026 4.799 0.024 4.244 0.036 4.029 0.109 3.785 0.055 3.874 0.015 3.399 0.022 2.00 00476+5956 13
004 22 CR Psc 010512.34 +191150.0 3.671 0.260 2.757 0.212 2.482 0.514 2.884 0.130 2.329 0.090 2.032 0.006 2.089 0.012 0.18 F01025+1855 1
005 26 DT Psc 011404.91 +283146.5 2.734 0.298 1.858 0.218 1.637 0.260 2.901 0.038 1.854 0.013 1.350 0.004 1.348 0.018 0.18 01113+2815 5
006 39 HD 9810 013114.28 −785738.9 5.171 0.037 4.287 0.204 4.054 0.240 3.935 0.119 3.671 0.054 3.941 0.015 3.812 0.021 0.18 01309-7913 2
007 45 BD+21 255 015419.70 +215320.6 5.286 0.027 4.483 0.192 4.290 0.308 4.110 0.106 3.739 0.055 4.019 0.015 3.917 0.020 0.18 01515+2138 8
008 47 IRAS 02048+6208 020831.00 +622244.5 6.664 0.027 5.581 0.034 5.217 0.020 5.012 0.070 5.002 0.032 4.993 0.015 4.842 0.029 3.81 02048+6208 13
009 64 IRAS 02424+5955 024623.20 +600820.2 7.802 0.024 6.607 0.020 6.161 0.029 5.893 0.052 6.045 0.023 5.757 0.015 5.285 0.035 5.72 02424+5955 13
010 78 TYC 3325-367-1 033950.79 +510630.5 4.931 0.037 3.888 0.236 3.318 0.296 3.303 0.145 2.892 0.057 3.240 0.011 3.082 0.017 1.45 03361+5056 10

References. (1) Groenewegen (1993); (2) Van Eck et al. (2000); (3) Little-Marenin & Little (1979); (4) Little et al. (1987); (5) Smith & Lambert (1988); (6) Brown et al. (1990); (7) Johnson (1992); (8) Jorissen et al. (1993); (9) Jorissen et al. (1998); (10) Wang & Chen (2002); (11) Uttenthaler et al. (2007); (12) Vanture et al. (2007); and (13) Guandalini & Busso (2008).

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

Table 2.  Infrared Observation of Known Intrinsic S-type Stars

No. CSS Name R.A.(2000) Decl.(2000) J Je H He K Ke W1 W1e W2 W2e W3 W3e W4 W4e Av IRAS Note
001 1346 W Cet 000207.53 −144033.0 3.332 0.244 2.397 0.218 2.047 0.266 2.567 0.053 1.699 0.195 1.503 0.014 0.935 0.010 0.09 23595-1457 4
002 8 T Cet 002146.27 −200326.3 0.496 0.194 −0.482 0.224 −0.808 0.276 2.100 0.322 0.685 0.264 −1.677 0.240 −2.252 0.001 0.09 00192-2020 1
003 9 R And 002401.74 +383436.9 2.024 0.278 0.765 0.170 0.122 0.226 1.767 1.160 0.008 −1.985 0.254 −2.843 0.001 0.27 00213+3817 3
004 12 U Cas 004621.12 +481438.7 4.329 0.258 3.392 0.238 2.878 0.306 2.689 0.165 1.889 0.020 1.804 0.010 1.550 0.010 0.45 00435+4758 3
005 13 V661 Cas 004654.58 +635605.9 5.581 0.018 4.289 0.021 3.622 0.292 3.310 0.181 2.980 0.100 3.050 0.016 2.660 0.019 2.09 00439+6339 13
006 20 V365 Cas 010053.15 +563645.1 2.379 0.190 1.408 0.150 1.013 0.216 2.433 0.118 1.816 0.027 0.753 0.008 0.302 0.007 0.54 00578+5620 13
007 29 V899 Cas 012204.40 +665014.0 4.823 0.228 3.400 0.194 2.716 0.274 2.608 0.234 2.159 0.082 2.130 0.010 1.744 0.015 1.09 01186+6634 13
008 40 V911 Cas 013946.83 +594229.4 5.732 0.026 4.798 0.038 4.386 0.302 3.874 0.104 3.494 0.060 3.447 0.013 3.080 0.020 2.09 01364+5927 13
009 49 W And 021733.26 +441818.2 1.591 0.248 0.505 0.198 0.130 0.184 0.895 0.986 0.006 −1.029 0.090 −1.667 0.006 0.27 02143+4404 4
010 57 BI And 022554.40 +380726.4 3.498 0.268 2.433 0.192 1.917 0.244 2.899 0.023 2.403 0.090 1.605 0.008 1.214 0.008 0.36 02228+3753 13

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

The cross-identifications between S-type stars and 2MASS/WISE counterparts are made from Cutri et al. (2012) using the radius of 2''. The cross-identifications of IRAS counterparts are made according to the positional error ellipse of the source, because it has a 95% confidence level (Beichman et al. 1988). We try to extract observational data from the AKARI and Hershel missions, but only very few counterparts are found. Therefore, for statistical purposes those data are not used in this paper.

For the data from 2MASS and WISE, the Galactic extinction correction is needed. We use the Galactic extinction law of Schlegel et al. (1998) for 2MASS data and Yuan et al. (2013) for WISE data, respectively. The Galactic extinction is corrected according to the relation from van Herk (1965),

Equation (1)

where b is the Galactic latitude and d is the distance in parsecs.

We also know another relation,

Equation (2)

where MK and AK are the absolute magnitude and the Galactic interstellar extinction coefficient in the K band, respectively. In addition, from Schlegel et al. (1998) we know

Equation (3)

Furthermore, Feast et al. (1982) pointed out that MK = −8.0 can be adopted for carbon stars, S-type stars, and related stars, thus iterations for d and AK (Av) are made to derive the final AK (Av).

Note that the 2MASS and WISE data used below are all corrected for the Galactic extinction according to the method here.

3. 2MASS, WISE, and IRAS Two-color Diagrams for Intrinsic S-type Stars and Extrinsic S-type Stars

In order to reveal the infrared properties of intrinsic S-type stars and extrinsic S-type stars, several two-color diagrams using the 2MASS, WISE, and IRAS photometry data from Tables 1 and 2 are constructed. It is noted that in some previous papers the 2MASS JHK data are often combined with IRAS data, and even the visual data and MSX data, to construct the two-color diagrams and obtain the results. However, many S-type stars are Mira-type variables or semiregular variables. In order to avoid the errors due to observational data used in different time, we use only the data of one mission in each of the two-color diagrams for the analysis in this paper.

Although, as showing in Section 1 of this paper, some authors already used 2MASS and IRAS data to discuss infrared properties of intrinsic S-type stars and extrinsic S-type stars, but samples in this paper are larger to get more convincing results.

In addition, in order to show infrared properties clearly, the blackbody distributions and the power-law distributions are also presented in these two-color diagrams using the method from Chen et al. (2016).

3.1. 2MASS Two-color Diagram

Taking 2MASS data from Tables 1 and 2, the (JH) versus (HK) diagram can be shown in Figure 1 for known intrinsic S-type stars and extrinsic S-type stars. From Figure 1 we find that: (1) almost all sources are located around or in the upper left of the blackbody line, indicative of the thermal radiations from the stellar photosphere and/or dust in circumstellar envelopes; and (2) statistically, intrinsic S-type stars have much larger infrared excess than extrinsic S-type stars. In the region of HK > 0.6 and JH > 1.2 no extrinsic S-type stars appear.

Figure 1.

Figure 1. 2MASS two-color diagram, the (JH) vs. (HK) diagram, for known intrinsic S-type stars and extrinsic S-type stars in this paper. The blackbody (BB) and the power-law (PL) distributions are also shown.

Standard image High-resolution image

3.2. WISE Two-color Diagrams

Taking WISE data from Tables 1 and 2 the one of WISE two-color diagram, the (W2–W3) versus (W1–W2) diagram can be plotted in Figure 2 for known intrinsic S-type stars and extrinsic S-type stars. From Figure 2 it is seen that: (1) the majority of both types of sources are located around or in the bottom right region of the blackbody line, indicative of dust thermal radiations from circumstellar envelopes; (2) the most of extrinsic S-type stars are distributed in the region around W2–W3 = 0 indicating no infrared excess in this color; (3) it is unexpected that some sources are located in the left region of the power-law line with the high temperate; (4) statistically, intrinsic S-type stars have much larger infrared excesses than extrinsic S-type stars; and (5) in the region of W2–W3 > 1.0 all sources are intrinsic S-type stars.

Figure 2.

Figure 2. WISE two-color diagram, the (W2–W3) vs. (W1–W2) diagram, for known intrinsic S-type stars and extrinsic S-type stars in this paper. The blackbody (BB) and the power-law (PL) distributions are also shown.

Standard image High-resolution image

Another WISE two-color diagram, the (W3–W4) versus (W2–W3) diagram can be plotted in Figure 3 for known intrinsic S-type stars and extrinsic S-type stars. It can be seen from Figure 3 that: (1) it is unexpected that over half of the sources are located around the power-law line; (2) statistically, intrinsic S-type stars have much larger infrared excesses than extrinsic S-type stars either in the W2–W3 color or the W3–W4 color; and (3) again, in the region of W2–W3 > 1.0 all of the sources are intrinsic S-type stars.

Figure 3.

Figure 3. WISE two-color diagram, the (W3–W4) vs. (W2–W3) diagram, for known intrinsic S-type stars and extrinsic S-type stars in this paper. The blackbody (BB) and the power-law (PL) distributions are also shown.

Standard image High-resolution image

3.3. IRAS Two-color Diagram

From Table 1 it can be seen that 138 (out of 151) extrinsic S-type stars have IRAS counterparts. However, only 16 sources have good quality data in all 12, 25, and 60 μm bands. From Table 2 it is found that 183 (out of 190) intrinsic S-type stars have IRAS counterparts. Fortunately, 78 of them have good quality data in all 12, 25, and 60 μm bands. Taking IRAS data for these two groups of stars and using the equations (Beichman et al. 1988)

Equation (4)

Equation (5)

the IRAS two-color diagram, the ([25]–[60]) versus ([12]–[25]) diagram, can be plotted in Figure 4. Here in Equations (3) and (4) the units of IRAS fluxes in 12, 25, and 60 μm are jansky. It can be seen that: (1) it is also unexpected that about half of both kinds of sources are distributed along with the power-law line; (2) statistically, intrinsic S-type stars have much larger infrared excess than extrinsic S-type stars either in the [12]–[25] color and the [25]–[60] color, and extrinsic S-type stars are mainly distributed in a narrow region around [12]–[25] = 0.1 showing no infrared excess in this color; and (3) in the regions of [12]–[25] > 0.35 and [25]–[60] > 0.8 all of the sources are intrinsic S-type stars.

Figure 4.

Figure 4. IRAS two-color diagram, ([25]–[60]) vs. ([12]–[25]), for known intrinsic S-type stars and extrinsic S-type stars in this paper. The blackbody (BB) and the power-law (PL) distributions are also shown.

Standard image High-resolution image

In summary, statistically, in the 1–60 μm wavelength region intrinsic S-type stars in the AGB phase have much larger infrared excesses than extrinsic S-type stars in the RGB/TP-AGB phase due to thick dust circumstellar envelopes for formers, as expected. Another important result is that in the reddest color areas from all of the two-color diagrams above only intrinsic S-type stars can be found. In addition, in the wavelength longer than 5 μm some intrinsic S-stars and extrinsic S-stars have power-law distributions.

3.4. Discussion on the Power-law Distribution

It is seen from Figures 24 that some intrinsic and extrinsic S-stars have power-law distributions in the wavelength longer than 5 μm.

S-type stars often exhibit substantial mass loss through the dust-driven or pulsation-driven wind in the surrounding envelopes with gas and dust. The dust absorbs the stellar radiation and reradiate in the infrared (see, e.g., Hony et al. 2009). Therefore the possible reasons for power-law distributions for some S-type stars are as follows.

  • (1)  
    One possibility is that it is caused by the disk-like structure of their dusty envelopes. The two typical S-type stars, π1 Gruis and RS Cnc, are proved to have the disk-like dusty envelopes with bipolar outflows (Hirano et al. 2005; Cruzalebes & Sacuto 2006 and Libert et al. 2010). Perhaps those S-type stars with power-law distributions in this paper have envelope structures similar to π1 Gruis and RS Cnc.
  • (2)  
    Another possibility is that it is probably caused by the free–free/bound–free emissions in the stellar wind. Perhaps, besides the neutral gas, these stars may also have the ionized gases in their circumstellar envelopes to produce such emissions. Shetye et al. (2019) indeed detected the ionized material in some S-type stars.

4. Diagnosis for Finding Intrinsic S-type Stars

In order to further discuss classifications of S-type stars not listed in Tables 1 and 2, the 2MASS, WISE, and IRAS counterparts for all stars in CSS (Stepheson 1984) and CSS2 (Stepheson 1990) are cross-identified, and the Galactic extinctions are obtained for all 2MASS/WISE counterparts here according to the method in Section 2.

Figures 14 are together replotted in Figure 5. We can see that if we set out a line of Y = −1.50X + 1.90 in the 2MASS diagram of Figure 5, in the upper right region of this line only intrinsic S-type stars are found. Thus we can consider that for unclassified S-type stars this line can be used to extract intrinsic S-type stars. All unclassified S-type stars listed in CSS (Stepheson 1984) and CSS2 (Stepheson 1990) are tested in the 2MASS JHK diagram. Finally, 122 sources in these catalogs are identified as new intrinsic S-type stars, which are listed in Table 3. The contents in Table 3 are: (1) the number in CSS or CSS2; (2) the JHK magnitudes; (3) the derived Galactic extinction coefficient Av; and (4) the de-reddening colors of HK and JH.

Figure 5.

Figure 5. Figures 14 are replotted. In each panel a line is drawn to indicate the area where only known intrinsic S-type stars are distributed.

Standard image High-resolution image

Table 3.  122 New Intrinsic S Stars Found in This Paper According to the JHK Diagram

CSS J H K Av (HK) (JH)
1 7.470 5.926 5.059 1.18 0.792 1.427
6 4.864 3.596 2.968 0.51 0.596 1.218
28 3.625 1.965 1.091 0.52 0.840 1.607
30 5.909 4.383 3.544 2.21 0.699 1.306
52 5.058 4.162 3.358 0.29 0.785 0.867
54 8.250 6.986 6.170 1.21 0.739 1.143
221 5.001 3.934 3.235 0.71 0.653 0.995
326 4.553 3.456 2.754 0.95 0.641 1.002
520 5.767 4.652 3.909 1.07 0.675 1.008
539 6.183 4.752 3.931 2.81 0.643 1.152
548 6.214 4.648 3.862 2.04 0.657 1.363
569 6.413 4.492 3.695 2.18 0.659 1.705
608 7.408 5.876 5.013 3.98 0.612 1.137
648 6.346 4.745 3.854 2.40 0.739 1.362
738 6.306 4.908 4.056 2.77 0.677 1.123
742 5.707 4.373 3.562 2.17 0.674 1.118
776 6.870 5.299 4.509 2.84 0.610 1.289
779 7.180 5.481 4.686 3.26 0.589 1.375
782 6.528 5.010 4.072 2.11 0.805 1.310
799 5.751 4.370 3.588 2.13 0.647 1.169
817 4.781 3.302 2.714 1.42 0.498 1.337
828 6.726 5.236 4.508 3.26 0.522 1.166
847 5.851 4.231 3.495 2.27 0.592 1.395
852 6.665 5.138 4.394 3.13 0.546 1.216
862 6.651 5.235 4.499 2.29 0.591 1.189
871 6.190 4.542 3.892 2.77 0.475 1.373
886 6.579 4.011 2.071 0.91 1.882 2.477
888 6.134 4.909 4.046 2.33 0.715 0.993
890 6.513 4.786 4.010 2.71 0.604 1.457
891 7.089 5.258 4.365 3.34 0.682 1.499
897 5.501 3.572 2.768 1.68 0.697 1.762
917 5.953 4.661 3.825 2.18 0.698 1.076
923 4.183 2.838 2.302 0.51 0.504 1.295
924 5.306 3.676 3.083 1.86 0.475 1.445
925 6.387 4.845 4.128 2.89 0.534 1.255
934 6.060 4.587 3.911 2.81 0.499 1.195
944 4.843 3.135 2.367 1.30 0.685 1.578
946 6.297 4.712 3.706 2.57 0.843 1.330
951 6.036 4.155 3.414 2.29 0.596 1.654
952 5.568 3.520 2.534 1.59 0.885 1.890
957 5.364 3.660 2.822 1.77 0.726 1.528
970 5.722 4.238 3.646 1.01 0.527 1.383
973 5.693 3.772 3.071 1.99 0.575 1.723
1001 5.066 3.638 2.938 1.60 0.598 1.268
1005 7.651 6.191 5.483 0.76 0.659 1.384
1011 6.056 4.646 3.861 1.15 0.712 1.295
1018 7.137 5.477 4.436 2.78 0.865 1.384
1032 6.503 5.076 4.024 2.69 0.882 1.160
1037 7.276 5.806 4.988 1.44 0.726 1.326
1055 5.750 4.003 3.169 2.04 0.705 1.544
1061 6.397 4.890 4.201 2.53 0.529 1.255
1064 5.672 4.007 3.340 1.71 0.558 1.494
1066 6.675 4.894 3.639 2.50 1.096 1.532
1109 5.776 4.224 3.511 2.28 0.569 1.326
1112 5.722 4.726 3.930 1.03 0.730 0.893
1115 1.534 0.238 −0.556 0.32 0.773 1.263
1143 6.201 4.857 4.170 0.94 0.627 1.250
1145 4.779 3.276 2.596 1.50 0.584 1.353
1155 7.718 5.920 5.131 4.46 0.507 1.356
1156 7.465 5.986 5.221 3.41 0.549 1.140
1174 5.320 4.052 3.297 2.10 0.622 1.060
1185 5.349 3.918 3.098 1.91 0.699 1.241
1200 5.261 4.089 3.367 0.35 0.699 1.136
1232 4.062 2.980 2.275 1.21 0.629 0.963
1243 4.343 3.109 2.297 1.15 0.739 1.119
1268 7.306 5.750 4.562 0.19 1.175 1.537
1276 5.113 4.090 3.304 0.94 0.726 0.929
1286 5.128 3.907 2.929 1.12 0.906 1.109
1314 3.852 2.602 1.958 1.10 0.574 1.140
1323 5.378 3.816 3.092 1.93 0.601 1.370
1337 6.200 4.942 4.096 1.98 0.721 1.061
1342 5.330 4.201 3.335 2.02 0.738 0.928
1347 4.589 3.337 2.792 0.56 0.509 1.196
CSS2 01 8.430 7.040 6.396 0.16 0.633 1.373
CSS2 02 7.799 6.102 5.196 0.16 0.895 1.680
CSS2 03 8.207 6.911 6.292 0.16 0.608 1.279
CSS2 06 7.610 6.306 5.745 0.17 0.550 1.286
CSS2 07 7.508 6.167 5.680 0.17 0.476 1.323
CSS2 08 8.113 6.555 5.743 0.17 0.801 1.540
CSS2 09 6.365 4.852 4.200 0.17 0.641 1.495
CSS2 10 7.704 6.391 5.832 0.18 0.547 1.295
CSS2 11 8.020 6.428 5.567 0.21 0.848 1.572
CSS2 15 7.145 5.762 5.147 0.26 0.598 1.356
CSS2 16 7.401 6.000 5.378 0.26 0.605 1.374
CSS2 17 7.901 6.510 5.902 0.32 0.587 1.358
CSS2 18 7.857 6.470 5.892 0.53 0.544 1.333
CSS2 22 8.386 6.350 5.149 0.68 1.158 1.968
CSS2 23 8.056 6.570 5.943 0.65 0.585 1.421
CSS2 24 5.838 4.632 3.844 0.73 0.741 1.133
CSS2 25 3.567 2.254 1.583 0.62 0.631 1.250
CSS2 28 6.788 5.047 4.038 2.75 0.835 1.468
CSS2 29 8.796 7.049 6.134 5.20 0.586 1.231
CSS2 30 7.783 6.213 5.217 2.26 0.853 1.345
CSS2 32 6.486 4.934 3.989 1.51 0.849 1.401
CSS2 33 7.456 5.827 5.042 1.35 0.699 1.494
CSS2 34 8.012 6.387 5.521 1.22 0.788 1.503
CSS2 35 7.894 6.044 5.152 1.07 0.824 1.743
CSS2 37 7.326 5.745 4.993 0.98 0.690 1.483
CSS2 38 7.372 5.985 5.348 0.93 0.578 1.294
CSS2 39 7.269 5.528 4.697 0.93 0.772 1.648
CSS2 40 8.644 7.132 6.296 0.80 0.785 1.431
CSS2 41 6.045 4.605 3.933 0.85 0.618 1.355
CSS2 43 7.255 5.832 4.970 0.75 0.814 1.348
CSS2 44 7.501 6.069 5.381 0.72 0.642 1.360
CSS2 48 7.672 6.201 5.566 0.57 0.598 1.414
CSS2 50 7.088 5.775 5.120 0.53 0.621 1.259
CSS2 52 8.135 6.332 5.490 0.49 0.811 1.754
CSS2 53 6.866 5.212 4.397 0.44 0.786 1.609
CSS2 55 6.902 5.295 4.517 0.40 0.752 1.566
CSS2 56 7.234 5.716 4.985 0.40 0.705 1.477
CSS2 57 7.458 5.822 5.050 0.41 0.745 1.594
CSS2 58 7.597 5.612 4.580 0.37 1.008 1.948
CSS2 59 7.662 5.800 4.986 0.35 0.791 1.826
CSS2 61 7.687 6.097 5.352 0.33 0.723 1.556
CSS2 62 7.085 5.481 4.690 0.32 0.770 1.571
CSS2 63 6.886 5.524 4.846 0.32 0.657 1.329
CSS2 64 7.898 6.541 5.911 0.30 0.610 1.326
CSS2 67 6.880 5.590 5.073 0.25 0.500 1.264
CSS2 68 7.193 5.830 5.225 0.25 0.588 1.337
CSS2 72 7.699 6.320 5.766 0.20 0.540 1.358
CSS2 73 8.286 6.787 5.944 0.17 0.832 1.481
CSS2 74 9.152 7.507 6.810 0.17 0.686 1.627

A machine-readable version of the table is available.

Download table as:  DataTypeset images: 1 2

In the WISE first and second diagrams it is clear that in the region with the W2–W3 color >1.0 only intrinsic S-type stars are found. Thus this is another diagnosis to extract intrinsic S-type stars from the unclassified samples in the CSS and CSS2. Finally, 35 sources in these catalogs are found as new intrinsic S-type stars that are listed in Table 4. The contents of Table 4 are: (1) the number in CSS or CSS2; (2) the magnitudes in W2 and W3; (3) the Av derived; and (4) the de-reddening color of W2–W3. In the table note the symbol "∗" indicates the source already listed in Table 3. It is seen that 35 sources are found to be new intrinsic S-type stars and 25 sources are already listed in Table 3.

Table 4.  35 New Intrinsic S Stars Found in This Paper According to the W2–W3 Color

CSS W2 W3 Av (W2–W3) Note
28 1.116 −2.084 0.52 3.171
54 3.435 1.738 1.21 1.631
170 6.447 5.194 0.77 1.211  
196 4.320 3.120 0.60 1.167  
341 1.874 0.434 1.71 1.347  
716 2.569 0.950 2.60 1.478
776 3.458 1.835 2.84 1.469
782 2.231 0.944 2.11 1.173
788 1.676 0.067 0.72 1.570  
816 1.305 −0.665 0.35 1.951  
886 0.784 −2.826 0.91 3.560
897 1.513 −0.488 1.68 1.910
924 2.127 0.971 1.86 1.055
944 1.782 −1.250 1.30 2.961
1037 3.878 2.739 1.44 1.061
1055 1.917 −0.279 2.04 2.085
1066 1.967 −0.919 2.50 2.751
1095 5.221 3.734 0.61 1.454  
1112 1.589 0.142 1.03 1.391
1115 0.886 −2.582 0.32 3.450
1146 1.468 −1.072 0.42 2.517  
1177 5.709 4.579 1.89 1.027  
1185 1.666 0.156 1.91 1.406
1243 1.541 0.148 1.15 1.330
1259 2.815 0.951 2.13 1.748  
1268 2.623 1.412 0.19 1.200
1314 1.686 −0.925 1.10 2.551
1337 1.824 0.405 1.98 1.312
1345 1.486 −0.437 0.80 1.879  
1347 1.669 −0.289 0.56 1.927
CSS2 11 3.600 2.564 0.20 1.025
CSS2 24 3.053 1.775 0.73 1.238
CSS2 25 1.458 −1.527 0.62 2.951
CSS2 26 5.574 4.466 1.54 1.024  
CSS2 41 1.934 −0.377 0.85 2.270

Note. The source with the symbol "∗" appears in Table 3.

A machine-readable version of the table is available.

Download table as:  DataTypeset image

If we draw a line of Y = −3X + 1.4 in the IRAS diagram of Figure 5, it can be seen that only intrinsic S-type stars are located in the right region of this line. Thus we can consider that for unclassified S-type stars this line can be used to extract intrinsic S-type stars. All unclassified S-type stars listed in CSS (Stepheson 1984) and CSS2 (Stepheson 1990) are tested in this diagram. Finally, 57 sources in these catalogs are identified as new intrinsic S-type stars, which are listed in Table 5. The contents in Table 5 are: (1) the number in CSS or CSS2; (2) the IRAS name; (3) the fluxes in 12, 25, and 60 μm in Jy; and (4) the [12]–[25] and [25]–[60] colors. In the table notes the symbol "∗" indicates the source already listed in Table 3 and the symbol "#" indicates the source already listed in Table 4. It can be seen that 57 sources are found to be new intrinsic S-type stars, and among them 28 sources are already listed in Tables 3 and 12 sources are already listed in Table 4.

Table 5.  57 New Intrinsic S Stars Found in This Paper According to the IRAS Diagram

CSS IRAS F12 F25 F60 [12]–[25] [25]–[60] Note
6 00135+4644 1.58e+01 6.25e+00 1.36e+00 0.553 0.224
14 00445+3224 3.61e+01 1.85e+01 3.74e+00 0.834 0.144  
28 01159+7220 3.42e+02 1.95e+02 2.68e+01 0.950 −0.275 ∗#
70 03028+6516 9.77e–01 4.72e–01 1.63e+00 0.770 3.231  
82 03452+5301 7.72e+00 3.31e+00 2.07e+00 0.641 1.371  
109 04430-2356 1.34e+01 5.89e+00 1.16e+00 0.668 0.116  
149 05374+3153 4.35e+01 2.29e+01 5.12e+00 0.863 0.254  
235 06340-1949 2.44e+00 1.12e+00 2.12e–01 0.715 0.072  
246 06402+3804 3.89e+00 1.50e+00 2.74e–01 0.525 0.034  
316 07092+0735 1.18e+01 5.52e+00 9.81e–01 0.735 0.004  
326 07149+0111 2.68e+01 1.16e+01 2.00e+00 0.651 −0.028
341 07197-1451 1.95e+01 1.03e+01 1.86e+00 0.867 0.021 #
436 07545-4400 1.51e+01 6.86e+00 1.50e+00 0.703 0.229  
524 08308-1748 5.89e+00 1.85e+00 1.11e+00 0.303 1.331  
525 08291-6645 2.97e+00 1.57e+00 3.01e–01 0.868 0.086  
539 08389-4145 2.11e+00 6.85e–01 1.22e+00 0.339 2.511
614 09338-5349 1.16e+01 5.92e+00 1.90e+00 0.830 0.646  
626 09411-1820 9.71e+00 4.02e+00 7.38e–01 0.603 0.039  
652 10015-4634 5.95e+00 1.94e+00 7.38e–01 0.343 0.831  
738 11169-6111 2.31e+01 4.20e+00 3.74e+01 −0.291 4.251
776 11556-6308 6.88e+00 4.97e+00 1.18e+01 1.211 2.821 ∗#
799 12337-6124 9.07e+00 4.25e+00 2.80e+00 0.737 1.430
800 12354-5851 5.42e+00 1.75e+00 9.34e–01 0.333 1.201  
816 13136-4426 5.48e+01 2.05e+01 4.13e+00 0.492 0.140 #
821 13240-5742 1.31e+01 6.06e+00 1.67e+00 0.723 0.481  
845 14121-5155 1.78e+00 4.28e–01 4.86e–01 0.013 2.021  
872 15030-4116 2.18e+01 8.94e+00 2.10e+00 0.592 0.307  
886 15194-5115 1.32e+03 5.65e+02 1.45e+02 0.639 0.403 ∗#
891 15280-5555 2.51e+00 1.28e+00 2.89e+01 0.829 5.261
897 15347-5555 6.78e+01 5.37e+01 1.81e+01 1.310 0.699 ∗#
923 16209-2808 7.91e+00 4.04e+00 1.33e+00 0.831 0.674
944 16490-4618 9.99e+01 8.10e+01 2.43e+01 1.331 0.573 ∗#
952 16598-4117 1.22e+02 7.88e+01 2.30e+01 1.090 0.543
954 17001-3651 1.61e+02 6.70e+01 1.88e+01 0.608 0.500  
976 17188-1433 9.82e+00 3.28e+00 9.52e–01 0.369 0.537
1001 17478-2957 2.01e+01 7.93e+00 4.59e+00 0.550 1.290
1007 17521-2907 1.59e+01 8.26e+00 2.59e+00 0.849 0.621  
1011 17562-1133 8.30e+00 3.23e+00 9.92e–01 0.535 0.598
1093 18575-0139 1.61e+01 5.61e+00 1.72e+00 0.415 0.596  
1096 18586-1249 5.23e+01 1.94e+01 4.15e+00 0.483 0.206  
1109 19098+1049 3.35e+00 1.20e+00 2.32e+00 0.445 2.601
1112 19111+2555 4.21e+01 2.02e+01 5.41e+00 0.763 0.450 ∗#
1115 19126-0708 1.58e+03 6.70e+02 1.12e+02 0.629 −0.062 ∗#
1159 19451+0827 7.66e+00 3.42e+00 8.21e–01 0.684 0.331
1180 19572+5157 1.59e+00 4.88e–01 6.54e–01 0.278 2.201  
1189 20044+2417 1.86e+01 8.23e+00 3.84e+00 0.675 1.050  
1196 20120-4433 3.82e+01 2.50e+01 1.01e+01 1.101 0.896  
1207 20185+6505 3.24e+00 1.29e+00 3.12e–01 0.560 0.339  
1339 23380+7009 8.40e+00 2.90e+00 7.90e–01 0.405 0.468
1342 23489+6235 8.25e+00 3.11e+00 5.91e–01 0.501 0.077
1345 23554+5612 5.09e+01 2.84e+01 8.69e+00 0.927 0.594 #
1347 00001+4826 4.89e+01 2.41e+01 4.06e+00 0.792 −0.053 ∗#
CSS2 25 18076-1034 1.77e+02 1.10e+02 1.81e+01 1.041 −0.079 ∗#
CSS2 39 19323+1917 2.15e+00 1.37e+00 7.75e+00 1.071 3.761
CSS2 41 19371+2855 5.04e+01 3.91e+01 6.01e+00 1.281 −0.153
CSS2 44 19444+3132 1.45e+00 4.74e–01 6.73e–01 0.346 2.260
CSS2 72 22208+6354 4.50e–01 2.17e–01 2.12e+00 0.768 4.350

Note. The source with the symbol "∗" appears in Table 3. The source with the symbol "#" appears in Table 4.

A machine-readable version of the table is available.

Download table as:  DataTypeset image

It is seen from Tables 35 that 172 sources in total are newly identified intrinsic S-type stars in this paper. It can be seen that the number of previously known intrinsic S-type stars is 190 from Table 2, and the number of new intrinsic S-type stars found in this paper is 172. It means that the number of known intrinsic S-type stars is almost double after this paper.

5. Summary

We have collected 151 certain extrinsic S-type stars and 190 certain intrinsic S-type stars to study their infrared properties using several two-color diagrams from 2MASS, WISE, and IRAS data in this paper.

The results in this paper reveal that, statistically, intrinsic S-type stars have larger infrared excesses than extrinsic S-type stars in the wavelength region of 1–60 μm due to more thick dust circumstellar envelopes. It is found that in all two-color diagrams, only intrinsic S-type stars occupy the reddest color areas. This result can be used as a diagnostic to extract intrinsic S-type stars. Finally, 172 new intrinsic S-type stars are presented. This makes the number of known intrinsic S-type stars almost double.

In addition, some intrinsic and extrinsic S stars have power-law distributions in the two-color diagrams in the wavelength longer than 5 μm. The possible reasons for this are also discussed.

We are grateful to the referee for the suggestive comments. This work is supported by grants from the NNSFC (Nos. 11873086, 11373067, and 11303086). This work has made the use of data products from the 2MASS All Sky Survey, the WISE All Sky Survey, the IRAS PSC/FSC database, and the CDS VizieR/Simbad database.

Please wait… references are loading.
10.3847/1538-3881/ab2334