Skip to main content

Advertisement

Log in

Chemical constituents from the sclerotia of Inonotus obliquus

  • Short Communication
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Six triterpenoids, two sterols, and two phenolic constituents were isolated from the methanol extract of sclerotia of Inonotus obliquus (Hymenochaetaceae). Their chemical structures were identified as lanosterol (1), 3β-hydroxylanosta-8,24-dien-21-al (3), inotodiol (5), trametenolic acid (6), lanosta-8,25-dien-3,22,24-triol (7), β-sitosterol (2), ergosterolperoxide (4), betulin (8), 2,5-dihydroxy-benzaldehyde (9), and 3,4-dihydroxybenzalacetone (10) on the basis of spectroscopic methods and comparison with the literature. Among these compounds, 9 was isolated for the first time from this mushroom. To the best of our knowledge, the present study marks the first chemical investigation of I. obliquus from Alaska. Among the isolated compounds, compounds 1, 3, 4, 5, 6, 8, 9, and 10 were evaluated for in vitro cytotoxic activity against A 549 (human alveolar basal epithelial carcinoma cells), L1210 (mouse lymphocytic leukemia cells), COLO 205 (colorectal adenocarcinoma cells), MCF-7 (breast cancer cells), and HL-60 (human leukemia) cancer cell lines. 3β-Hydroxylanosta-8,24-dien-21-al (3) and tramentenolic acid (6) exhibited modest cytotoxic effects against L1210 cells with IC50s of 62.5 and 34.4 μM, and betulin (8) showed weak cytotoxic effects against A549 and HL-60 with IC50s of 81.2 and 87.5 μM, respectively. In addition, 3,4-dihydroxybenzalacetone (10) exhibited the strongest cytotoxic activities against A549 and HL-60 cells with IC50 values of 23.6 and 21.7 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Charles JP (1983) In The Aldrich Library of NMR spectra, (2nd ed.), p. 117D, Aldrich Chemical Company, Inc., Milwaukee, WI, USA.

    Google Scholar 

  • Chung MJ, Chung CK, Jeong Y, and Ham S (2010) Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing sarcoma-180 cells. Nutr Res Pract 4, 177–182.

    Article  Google Scholar 

  • De Reinach-Hirtzbach F and Ourisson G (1972) Structure of inotodiol (obliquol), tetracyclic triterpene. Tetrahedron 28, 2259–2266.

    Article  Google Scholar 

  • Ellis MB and Ellis PJ (1990) In An Identification Handbook, p. 329. Chapman and Hall, London, UK.

    Google Scholar 

  • Goad LJ (1991) Phytosterols. In Methods in Plant Biochemistry, Bryant J, pp. 369–434. Academic Press, London, UK.

    Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, and Pegler DN (1995) In Ainsworth and Bisby’s Dictionary of the Fungi, Kirk PM, Cannon PF, David JC, and Stalpers JA (8th ed.), p. 616, CAB International, University Press, Cambridge, UK.

    Google Scholar 

  • Huang J, Tang X, Ikejima T, Sun X, Wang X, Xi R, and Wu L (2008) A new triterpenoid from Panax ginseng exhibits cytotoxicity through p53 and the caspase signaling pathway in the HepG2 cell line. Arch Pharm Res 31, 323–329.

    Article  CAS  Google Scholar 

  • Huang NL (2002) Inonotus obliquus. Edible Fungi of China 21, 7–8.

    CAS  Google Scholar 

  • Jin WB, Lermer L, Chilton J, Klingeman H, and Towers GH (1999) Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51, 891–898.

    Article  Google Scholar 

  • Kahlos K and Hiltunen R (1983) Identification of some lanostane type triterpenes from Inonotus obliquus. Acta Pharm Fenn 92, 220–224.

    Google Scholar 

  • Kahlos K, Hiltunen R, and Schantz MV (1984) 3β-Hydroxylanosta-8, 24-dien-21-al, a new triterpene from Inonotus obliquus. Planta Med 50, 197–198.

    Article  CAS  Google Scholar 

  • Kahlos K, Kangas L, and Hiltunen R (1987) Antitumor activity of some compounds and fractions from an n-hexane extract of Inonotus obliquus. Acta Pharm Fenn 96, 33–40.

    CAS  Google Scholar 

  • Kempska K, Ludwiczak RS, and Wrzeciono U (1962) Investigation of chemical components of Inonotus obliquus. VI. 3β-Hydroxylanosta-8,24-dien-21-oic acid. Roczniki Chem 36, 1453–1457.

    CAS  Google Scholar 

  • Kim HG, Yoon DH, Kim CH, Shrestha B, Chang WC, Lim SY, Lee WH, Han SG, Lee JO, Lim MH, Kim GY, Choi S, Song WO, Sung JM, Hwang KC, and Kim TW (2007) Ethanol extract of Inonotus obliquus inhibits lipopolysaccharideinduced inflammation in RAW 264.7 Macrophage Cells. J Med Food 10, 80–89.

    Article  CAS  Google Scholar 

  • Kim YO, Park HW, Kim JH, Lee JY, Moon SH, and Shin CS (2006) Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci 79, 72–80.

    Article  CAS  Google Scholar 

  • Lee IK, Kim YS, Jang YW, Jung JY, and Yun BS (2007) New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorg Med Chem Lett 17, 6678–6681.

    Article  CAS  Google Scholar 

  • Maret S (1991) Fungi in khanty folk medicine. J Ethnopharmacol 31, 175–179.

    Article  Google Scholar 

  • Nakajima Y, Nishida H, Matsugo S, and Konishi T (2009) Cancer cell cytotoxicity of extracts and some phenolic compounds from Chaga (Inonotus obliquus (persoon) Pilat). J Med Food 12, 501–507.

    Article  CAS  Google Scholar 

  • Nakajima Y, Sato Y, and Konishi T (2007) Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chem Pharm Bull 55, 1222–1226.

    Article  CAS  Google Scholar 

  • Nakata T, Yamada T, Taji S, Ohishi H, Wada S, Tokuda H, Sakuma K, and Tanaka R (2007) Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg Med Chem 15, 257–264.

    Article  CAS  Google Scholar 

  • Nomura M, Takahashi T, Uesugi A, Tanaka R, and Kobayashi S (2008) Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res 28, 2691–2696.

    CAS  Google Scholar 

  • Park JR, Park JS, Jo EH, Hwang JW, Kim SJ, Ra JC, Aruoma OI, Lee YS, and Kang KS (2006) Reversal of the TPAinduced inhibition of gap junctional intercellular communication by Chaga mushroom (Inonotus obliquus) extracts: Effects on MAP kinases. BioFactors 27, 147–155.

    Article  CAS  Google Scholar 

  • Park YM, Won JH, Kim YH, Choi JW, Park HJ, and Lee KT (2005) In vivo and in vitro anti-inflammatory and antinociceptive effects of the methanol extract of Inonotus obliquus. J Ethnopharmacol 101, 120–128.

    Article  Google Scholar 

  • Patra A, Chaudhuri SK, and Panda SK (1988) Betulin-3-caffeate from Quercus suber. 13C-NMR spectra of some lupenes. J Nat Prod 51, 217–220.

    Article  CAS  Google Scholar 

  • Rzymowska J (1998) The effect of aqueous extracts from Inonotus obliquus on the mitotic index and enzyme activities. Boll Chim Farm 137, 13–15.

    CAS  Google Scholar 

  • Shin Y, Tamai Y, and Terazawa M (2000) Chemical constituents of Inonotus obliquus I. A new triterpene, 3-hydroxy-8,24-dien-lanosta- 21,23-lactone from sclerotium. Eurasian J For Res 1, 43–50.

    CAS  Google Scholar 

  • Song Y, Hui J, Kou W, Xin R, Jia F, Wang N, Hu F, Zhang H, and Liu H (2008) Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides. Curr Microbiol 57, 454–462.

    Article  CAS  Google Scholar 

  • Surowiak P, Drag M, Materna V, Dietel M, and Lage H (2009) Betulinic acid exhibits stronger cytotoxic activity on the normal melanocyte NHEM-neo cell line than on drugresistant and drug-sensitive MeWo melanoma cell lines. Mol Med Rep 2, 543–548.

    CAS  Google Scholar 

  • Takei T, Yoshida M, Ohnishi-Kameyama M, and Kobori M (2005) Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci Biotechnol Biochem 69, 212–215.

    Article  CAS  Google Scholar 

  • Trofimova NN, Gromova AS, Lutsky YI, Semenov AA, Avilov SA, Kalinovsky AI, Li D, and Owen NL (1998) New triterpenoid glycosides from Thalictrum minus L. 10. Structure of thalicosides G1 and G2. Russ Chem Bul 47, 1396–1398.

    Google Scholar 

  • Tseng T, Tseng N, and Lee Y (2001) Cytotoxicity effects of diand tri-hydroxybenz aldehydes as a chemopreventive potential agent on tumor cells. Toxicology 161, 179–187.

    Article  CAS  Google Scholar 

  • Van Le TK, Hung TM, Thuong PT, Ngoc TM, Kim JC, Jang HS, Cai XF, Oh SR, Min BS, Woo MH, Choi JS, Lee HK, and Bae K (2009) Oleanane-type triterpenoids from Aceriphyllum rossii and their cytotoxic activity. J Nat Prod 72, 1419–1423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hee Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.J., Park, J., Min, B.S. et al. Chemical constituents from the sclerotia of Inonotus obliquus . J. Korean Soc. Appl. Biol. Chem. 54, 287–294 (2011). https://doi.org/10.3839/jksabc.2011.045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2011.045

Key words

Navigation