Skip to main content
Log in

Pupillary correlates of preparatory control in the Stroop task

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

In three experiments, individual differences in preparatory control in the Stroop task were examined. Participants performed variants of the Stroop task while pupillary responses were examined during the preparatory interval. Variation in working memory capacity was also examined. High Stroop performers tended to demonstrate larger preparatory pupillary responses than low Stroop performers. In Experiment 2, when participants were given pre-cues indicating the congruency of the upcoming trial (MATCHING vs. CONFLICTING), high Stroop performers had larger preparatory pupillary responses for incongruent trials compared to congruent trials, whereas low Stroop performers demonstrated similar preparatory pupillary responses on both incongruent and congruent trials. These results suggest that variation in Stroop performance is partially due to individual differences in the ability to ramp up and regulate the intensity of attention allocated to preparatory control processes. Additionally, there was limited evidence that preparatory control processes partially account for the relation between working memory capacity and performance on the Stroop. Overall, these results provide evidence that individual differences in Stroop performance are partialy due to variation in preparatory control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We also examined accuracy on incongruent trials as a measure of Stroop performance in each experiment. In Experiment 1a none of the correlations were significant (all r’s < .07, p’s > .39). In Experiment 1b incongruent trial accuracy was correlated with the Stroop effect (r = -.18, p = .045). None of the other correlations were significant (all other r’s < .13, p’s > .15). In Experiment 2 the only correlation that was close to significant was with the preparatory pupil response on incongruent trials (r = .17, p = .053). None of the other correlations were significant (all other r’s < .11, p’s > .21)

  2. Preparatory pupillary responses on cued congruent trials only significantly correlated with preparatory pupillary responses on incongruent trials (r = .64, p < .001; all other r’s < .16, p’s > .08).

References

  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.

    Article  PubMed  Google Scholar 

  • Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of Psychophysiology (pp. 142–162). Cambridge University Press.

    Google Scholar 

  • Bianco, V., Berchicci, M., Mussini, E., Perri, R. L., Quinzi, F., & Di Russo, F. (2021). Electrophysiological Evidence of Anticipatory Cognitive Control in the Stroop Task. Brain sciences, 11(6), 783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouret, S., & Richmond, B. J. (2015). Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. The Journal of Neuroscience, 35, 4005–4014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76–106). Oxford University Press.

    Google Scholar 

  • Brown, G. G., Kindermann, S. S., Siegle, G. J., Granholm, E., Wong, E. C., & Buxton, R. B. (1999). Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of International Neuropsychological Society, 5, 308–319.

    Article  Google Scholar 

  • Bugg, J. M., & Smallwood, A. (2016). The next trial will be conflicting! The effects of explicit congruency pre-cues on cognitive control. Psychological Research, 80, 16–33.

    Article  PubMed  Google Scholar 

  • Chatham, C. H., Frank, M. J., & Munakata, Y. (2009). Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the National Academy of Sciences, 106, 5529–5533.

    Article  Google Scholar 

  • Chiew, K. S., & Braver, T. S. (2013). Temporal Dynamics of Motivation-cognitive Control Interactions Revealed by High-resolution Pupillometry. Frontiers in Psychology, 4, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuderski, A., & Jastrzębski, J. (2018). Much ado about Oh! Insight problem solving is strongly related to memory capacity and reasoning ability. Journal of Experimental Psychology: General, 147, 257–281.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.

    Article  PubMed  Google Scholar 

  • De Pisapia, N., & Braver, T. S. (2006). A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing: An International Journal, 69(10–12), 1322–1326.

    Article  Google Scholar 

  • Duncan, J. (1995). Attention, intelligence, and the frontal lobes. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 721–733). MIT Press.

    Google Scholar 

  • Ellis, D. M., Robison, M. K., & Brewer, G. A. (2021). The Cognitive Underpinnings of Multiply-Constrained Problem Solving. Journal of Intelligence, 9(1), 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. In B. Ross (Ed.), The psychology of learning and motivation (Vol. 44, pp. 145–199). Elsevier.

    Google Scholar 

  • Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101–135.

    Article  PubMed  Google Scholar 

  • Gajewski, P. D., Falkenstein, M., Thönes, S., & Wascher, E. (2020). Stroop task performance across the lifespan: High cognitive reserve in older age is associated with enhanced proactive and reactive interference control. NeuroImage, 207, 116430.

    Article  PubMed  Google Scholar 

  • Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10, 252–269.

    Article  Google Scholar 

  • Goldinger, S. D., & Papesh, M. H. (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21, 90–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hershman, R., & Henik, A. (2019). Dissociation between Reaction Time and Pupil Dilation in the Stroop Task. Journal of Experimental Psychology: Learning, Memory, and Cognition., 45(10), 1899–1909.

    PubMed  Google Scholar 

  • Hershman, R., & Henik, A. (2020). Pupillometric contributions to deciphering Stroop conflicts. Memory & Cognition., 48(2), 325–333.

    Article  Google Scholar 

  • Hockey, G. R. J. (2013). Psychology of fatigue: Work, Effort, and Control. Cambridge University Press.

    Book  Google Scholar 

  • Hood, A. V. B., & Hutchison, K. A. (2021). Providing goal reminders eliminates the relationship between working memory capacity and Stroop errors. Attention, Perception, & Psychophysics, 83, 85–96.

    Article  Google Scholar 

  • Hood, A. V. B., Charbonneau, B., & Hutchison, K. A. (2022). Once established, goal reminders provide long-lasting and cumulative benefits for lower working memory capacity individuals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48, 1738–1753.

    PubMed  Google Scholar 

  • Hutchison, K. A. (2011). The interactive effects of listwide control, item based control, and working memory capacity on Stroop performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 851–860.

    PubMed  Google Scholar 

  • Hutchison, K. A., Bugg, J. M., Lim, Y. B., & Olsen, M. R. (2016). Congruency precues moderate item-specific proportion congruency effects. Attention, Perception, & Psychophysics, 78, 1087–1103.

    Article  Google Scholar 

  • Hutchison, K. A., Moffitt, C. C., Hart, K., Hood, A. V. B., Watson, J. M., & Marchak, F. M. (2020). Measuring task set preparation versus mind wandering using pupillometry. Journal of Experimental Psychology: Learning, Memory, & Cognition, 46, 280–295.

    Google Scholar 

  • Irons, J. L., Jeon, M., & Leber, A. B. (2017). Pre-stimulus pupil dilation and the preparatory control of attention. PLoS ONE, 12(12), e0188787.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennings, J. R., & van der Molen, M. W. (2005). Preparation for speeded action as a psychophysiological concept. Psychological Bulletin, 131, 434–459.

    Article  PubMed  Google Scholar 

  • Jewsbury, P. A., Bowden, S. C., & Strauss, M. E. (2016). Integrating the switching, inhibition, and updating model of executive function with the Cattell—Horn—Carroll model. Journal of Experimental Psychology: General, 145(2), 220–245.

    Article  PubMed  Google Scholar 

  • Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationship between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89, 221–234.

    Article  PubMed  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1993). The intensity dimension of thought: Pupillometric indices of sentence processing. Canadian Journal of Experimental Psychology, 47, 310–339.

    Article  PubMed  Google Scholar 

  • Kahneman, D. (1973). Attention and effort. Prentice Hall.

    Google Scholar 

  • Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47–70.

    Article  PubMed  Google Scholar 

  • Kane, M. J., Meier, M. E., Smeekens, B. A., Gross, G. M., Chun, C. A., Silvia, P. J., & Kwapil, T. R. (2016). Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy. Journal of Experimental Psychology: General, 145, 1017–1048.

    Article  PubMed  Google Scholar 

  • Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary Stroop effects. Cognitive Processing, 12, 13–21.

    Article  PubMed  Google Scholar 

  • Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A Window to the Preconscious? Perspectives on Psychological Science, 7, 18–27.

    Article  PubMed  Google Scholar 

  • Langner, R., Kellermann, T., Eickhoff, S. B., Boers, F., Chatterjee, A., Willmes, K., & Sturm, W. (2012). Staying responsive to the world: Modality-specific and -nonspecific contributions to speeded auditory, tactile, and visual stimulus detection. Human Brain Mapping, 33, 398–418.

    Article  PubMed  Google Scholar 

  • Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139, 870–900.

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be misled: Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory & Cognition, 7, 166–174.

    Article  Google Scholar 

  • Logan, G. D., & Zbrodoff, N. J. (1998). Stroop-type interference: Congruity effects in color naming with typewritten responses. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 978–992.

    Google Scholar 

  • Long, D. L., & Prat, C. S. (2002). Working memory and Stroop interference: An individual differences investigation. Memory & Cognition, 30, 294–301.

    Article  Google Scholar 

  • MacDonald, A. W., III., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.

    Article  PubMed  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.

    Article  PubMed  Google Scholar 

  • McVay, J. C., & Kane, M. J. (2012). Why does working memory capacity predict variation in reading comprehension? On the influence of mind wandering and executive attention. Journal of Experimental Psychology: General, 141, 302–320.

    Article  PubMed  Google Scholar 

  • Meier, M. E., & Kane, M. J. (2013). Working memory capacity and Stroop interference: Global versus local indices of executive control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 748–759.

    PubMed  Google Scholar 

  • Meier, M. E., Smeekens, B. A., Silvia, P. J., Kwapil, T. R., & Kane, M. J. (2018). Working memory capacity and the antisaccade task: A microanalytic-macroanalytic investigation of individual differences in goal activation and maintenance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 68–84.

    PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex functioning. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wagner, T. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Morey, C. C., Elliott, E. M., Wiggers, J., Eaves, S. D., Shelton, J. T., & Mall, J. T. (2012). Goal-neglect links Stroop interference with working memory capacity. Acta Psychologica, 141, 250–260.

    Article  PubMed  Google Scholar 

  • Poe, G. R., Foote, S., Eschenko, O., Johansen, J. P., Bouret, S., Aston-Jones, G., Harley, C. W., Manahan-Vaughan, D., Weinshenker, D., Valentino, R., Berridge, C., Chandler, D. J., Waterhouse, B., & Sara, S. J. (2020). Locus coeruleus: a new look at the blue spot. Nature reviews. Neuroscience, 21(11), 644–659.

    Article  PubMed  PubMed Central  Google Scholar 

  • Redick, T. S., Shipstead, Z., Meier, M. E., Montroy, J. J., Hicks, K. L., Unsworth, N., Kane, M. J., Hambrick, D. Z., & Engle, R. W. (2016). Cognitive predictors of a common multitasking ability: Contributions from working memory, attention control, and fluid intelligence. Journal of Experimental Psychology: General, 145, 1473–1492.

    Article  PubMed  Google Scholar 

  • Rey-Mermet, A., Gade, M., Souza, A. S., von Bastian, C. C., & Oberauer, K. (2019). Is executive control related to working memory capacity and fluid intelligence? Journal of Experimental Psychology: General, 148, 1335–1372.

    Article  PubMed  Google Scholar 

  • Roberts, R. J., & Pennington, B. F. (1996). An integrative framework for examining prefrontal cognitive processes. Developmental Neuropsychology, 12(1), 105–126.

    Article  Google Scholar 

  • Sadaghiani, S., & D’Esposito, M. (2015). Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex, 25, 2763–73.

    Article  PubMed  Google Scholar 

  • Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron, 76, 130–141.

    Article  PubMed  Google Scholar 

  • Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Reviews of Neuroscience, 40, 99–124.

    Article  Google Scholar 

  • Shipstead, Z., Lindsey, D. R. B., Marshall, R. L., & Engle, R. W. (2014). The mechanisms of working memory capacity: Primary memory, secondary memory, and attention control. Journal of Memory and Language, 72, 116–141.

    Article  Google Scholar 

  • Steinborn, M. B., Langner, R., & Huestegge, L. (2017). Mobilizing cognition for speeded action: try-harder instructions promote motivated readiness in the constant-foreperiod paradigm. Psychological research, 81(6), 1135–1151.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662.

    Article  Google Scholar 

  • Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14, S76–S84.

    Article  PubMed  Google Scholar 

  • Unsworth, N., & McMillan, B. D. (2014). Similarities and differences between mind-wandering and external distraction: A latent variable analysis of lapses of attention and their relation to cognitive abilities. Acta Psychologica, 150, 14–25.

    Article  PubMed  Google Scholar 

  • Unsworth, N., & McMillan, B. D. (2014). Fluctuations in pre-trial attentional state and their influence on goal neglect. Consciousness and Cognition, 26, 90–96.

    Article  PubMed  Google Scholar 

  • Unsworth, N., & McMillan, B. D. (2017). Attentional disengagements in educational contexts: A diary investigation of everyday mind-wandering and distraction. Cognitive Research: Principles and Implications, 2, 32.

    PubMed  Google Scholar 

  • Unsworth, N., & Miller, A. L. (2021). Individual differences in the intensity and consistency of attention. Current Directions in Psychological Science, 30, 391–400.

    Article  Google Scholar 

  • Unsworth, N., & Robison, M. K. (2017). A Locus Coeruleus-Norepinephrine account of individual differences in working memory capacity and attention control. Psychonomic Bulletin & Review, 24, 1282–1311.

    Article  Google Scholar 

  • Unsworth, N., & Robison, M. K. (2017). The importance of arousal for variation in working memory capacity and attention control: A latent variable pupillometry study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 1962–1987.

    PubMed  Google Scholar 

  • Unsworth, N., & Robison, M. K. (2020). Working memory capacity and sustained attention: A cognitive-energetic framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46, 77–103.

    PubMed  Google Scholar 

  • Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: Attention, Memory, or Both? A direct test of the dual-component model. Journal of Memory and Language, 62, 392–406.

    Article  Google Scholar 

  • Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498–505.

    Article  PubMed  Google Scholar 

  • Unsworth, N., Redick, T. S., Heitz, R. P., Broadway, J., & Engle, R. W. (2009). Complex working memory span tasks and higher-order cognition: A latent variable analysis of the relationship between processing and storage. Memory, 17, 635–654.

    Article  PubMed  Google Scholar 

  • Unsworth, N., Redick, T. S., Spillers, G. J., & Brewer, G. A. (2012). Variation in working memory capacity and cognitive control: Goal maintenance and micro-adjustments of control. Quarterly Journal of Experimental Psychology, 65, 326–355.

    Article  Google Scholar 

  • Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Unsworth, N., Robison, M. K., & Miller, A. L. (2018). Pupillary correlates of fluctuations in sustained attention. Journal of Cognitive Neuroscience, 30, 1241–1253.

    Article  PubMed  Google Scholar 

  • Unsworth, N., Miller, A. L., & Robison, M. K. (2020). Individual differences in lapses of sustained attention: Oculometric indicators of intrinsic alertness. Journal of Experimental Psychology: Human Perception and Performance, 46, 569–592.

    PubMed  Google Scholar 

  • Unsworth, N., Miller, A. L., & Robison, M. K. (2021). Are individual differences in attention control related to working memory capacity? A latent variable mega-analysis. Journal of Experimental Psychology: General, 150, 1332–1357.

    Article  Google Scholar 

  • Unsworth, N., Miller, A. L., & Aghel, S. (2022). Effort mobilization and lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 22, 42–56.

    Article  Google Scholar 

  • Unsworth, N., Miller, A. L., & Robison, M. K. (2022). The influence of working memory capacity and lapses of attention for variation in error monitoring. Cognitive, Affective, & Behavioral Neuroscience, 22, 450–466.

    Article  Google Scholar 

  • Unsworth, N., Miller, A. L., & Robison, M. K. (2023). Oculometric indicators of individual differences in preparatory control during the antisaccade task. Journal of Experimental Psychology: Human Perception and Performance, 49(2), 159–176.

  • van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience, 14(2), 561–577.

    Article  Google Scholar 

  • van Zomeren, A. H., & Brouwer, W. H. (1994). Clinical neuropsychology of attention. Oxford Press.

    Google Scholar 

  • Varazzani, C., San-Galli, A., Dilardeau, S., & Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. Journal of Neuroscience, 35, 7866–7877.

    Article  PubMed  Google Scholar 

  • Wang, C., Brien, D. C., & Munoz, D. P. (2015). Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. European Journal of Neuroscience, 41, 1102–1110.

    Article  PubMed  Google Scholar 

  • West, R., & Alain, C. (2000). Evidence for the transient nature of a neural system supporting goal-directed action. Cerebral Cortex, 10, 748–752.

    Article  PubMed  Google Scholar 

  • Wittmann, W. W. (1988). Multivariate reliability theory. Principles of symmetry and successful validation strategies. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (pp. 505–560). Plenum.

    Chapter  Google Scholar 

  • Woodrow, H. (1914). The measurement of attention. Psychological Monographs, 17, 1–158.

    Article  Google Scholar 

Download references

Open Practices Statement

As a step to ensure the replicability and transparency of the present study, all data will be made available on the Open Science Framework. The experiments were not preregistered.

Funding

This research was supported by Office of Naval Research grant N00014-22-1-2083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nash Unsworth.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 203 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unsworth, N., Miller, A.L. Pupillary correlates of preparatory control in the Stroop task. Atten Percept Psychophys 85, 2277–2295 (2023). https://doi.org/10.3758/s13414-023-02751-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-023-02751-z

Keywords

Navigation