Topic Highlight Open Access
Copyright ©2014 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Gastroenterol. Apr 21, 2014; 20(15): 4288-4299
Published online Apr 21, 2014. doi: 10.3748/wjg.v20.i15.4288
MicroRNAs in colorectal cancer as markers and targets: Recent advances
Jing-Jia Ye, Jiang Cao, Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
Author contributions: Ye JJ and Cao J contributed to this paper.
Supported by National Natural Science Foundation of China, No. 30271450, No. 30471955, No. 30672365 and No. 81172516
Correspondence to: Jiang Cao, PhD, Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jie-fang Road, Hangzhou 310009, Zhejiang Province, China. caoj@zju.edu.cn
Telephone: +86-571-87315202 Fax: +86-571-87315201
Received: September 27, 2013
Revised: January 2, 2014
Accepted: January 19, 2014
Published online: April 21, 2014

Abstract

MicroRNAs are evolutionarily conserved small non-coding RNA molecules encoded by eukaryotic genomic DNA, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational repression or degradation of target mRNAs. They represent one of the major types of epigenetic modification and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Many efforts have been made to discover the characteristic microRNA expression profiles, to understand the roles of aberrantly expressed microRNAs and underlying mechanisms in different cancers. With the application of DNA microarray, real-time quantitative polymerase chain reaction and other molecular biology techniques, increasing evidence has been accumulated which reveal that aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review is intended to provide the most recent advances in microRNA studies in one of the most common cancers, colorectal cancer, especially the identification of those specifically altered microRNAs in colorectal cancer, validation for their relevance to clinical pathological parameters of patients, functional analyses and potential applications of these microRNAs.

Key Words: MicroRNA, Epigenetic modification, Colorectal cancer, Marker, Therapy

Core tip: MicroRNAs represent one of the important epigenetic modifications for gene expression and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review focuses on recent advances in identification, validation and functional analyses for such microRNAs in colorectal cancer, and potential applications of these altered microRNAs.



INTRODUCTION

Colorectal cancer is one of the most common malignancies worldwide, with 1233700 new cases and 608700 deaths estimated in 2008[1]. Prevention, early diagnosis and treatment can greatly reduce the incidence and mortality. All these depend on the achievements in a comprehensive understanding of every aspect of colorectal cancer at molecular and cellular levels. More and more evidence shows that epigenetic modifications, such as hyper- or hypo-methylation at specific sites in DNAs or proteins, acetylation or de-acetylation of nucleosome histones and conditionally specifically expressed non-coding RNAs like microRNAs, are involved in the carcinogenesis of many types of cancer including colorectal cancer[2-4], and some of the epigenetic modifications can serve as markers for diagnosis, treatment efficacy monitoring and prognosis, or be developed into targets for therapeutic interventions.

MicroRNAs are evolutionarily conserved small non-coding RNA molecules that are encoded by eukaryotic genomic DNA. Located in the spacer regions between protein-coding genes or in the introns of protein-encoding genes, microRNA coding sequences have their own promoters or utilizes the same promoters as protein-coding genes, and are transcribed as primary microRNAs (pri-microRNAs) in the same manner as the messenger RNAs of the protein-coding genes do. Pri-microRNAs are processed into microRNA precursors (pre-microRNAs) in the nucleus and transported to the cytoplasm and further processed into mature microRNAs, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational suppression of imperfectly matched mRNAs or degradation of perfectly matched mRNAs[5]. Both strands of a pre-microRNA may be processed into two mature microRNAs, with similar efficiencies which are discriminated by -5p and -3p, or with one dominantly processed and the recessive one star-labeled (*), which function differently against different target genes. This post-transcriptional regulation of expression of multiple genes represents one of the major types of epigenetic modification and exhibits important impacts in all aspects of cellular activities, under both physiological and pathological conditions. Many of the known microRNAs appear in clusters on a single polycistronic transcript[6], which may modulate the expression of genes whose products work together to fulfill the same task.

It is now well documented that microRNAs play important roles in the pathogenesis of many human diseases including cancer. Aberrant expression of microRNAs has been observed in cancers of various tissues such as lung, breast, liver, colon and rectum, and prostate. Up-regulation of certain specific microRNAs may suppress genes responsible for growth/proliferation inhibition, down-regulation of other specific microRNAs may augment genes responsible for growth/proliferation promotion, and either may result in the development and progression of cancer. The specifically altered microRNA expression patterns may serve as diagnostic/prognostic markers, and correction of these aberrant microRNAs may reverse the malignant phenotypes of cancer cells and therefore provide means for cancer treatment[7-9].

Numerous investigations on screening for altered expression of microRNAs in various types of cancer have been conducted during the past decade, with more and more functional validations in recent years. The aberrantly expressed microRNAs exert their functions by modulating oncogenic or tumor-suppressive genes and play important roles in the development and progression of cancers, therefore exhibit their potentials as “oncogenic” or “tumor-suppressive” microRNAs. Some of the alterations are common among different cancers, while others are type-specific. MicroRNAs function in a multi-target manner that one microRNA may modulate the expression of multiple genes, and one target gene may also be modulated by multiple microRNAs. While the microRNA-modulated gene expression is one kind of epigenetic modification, the expression of microRNA itself is modulated by other epigenetic modifications such as hyper- or hypo-methylation. This review focuses on the most recent advances in studies on some extensively investigated microRNAs in colorectal cancer, especially with regards to the potentials as bio-markers or therapeutic targets.

ONCOGENIC MICRORNAS AS POTENTIAL MARKERS AND TARGETS IN COLORECTAL CANCER
MiR-21

MiR-21 is one of the most extensively investigated oncogenic microRNAs whose expression is frequently up-regulated in colorectal cancer. The identified target genes regulated by miR-21 include programmed cell death 4, RhoB and transforming growth factor beta receptor 2 (TGFBR2). MiR-21 regulates cell proliferation, invasion and apoptosis, and induces stemness. Through its pro-metastatic effect, ectopic stromal miR-21 expression associates with increased epithelial invasiveness. The expression level of miR-21 correlates with clinical stage, and increases with advanced disease, decreased recurrence-free cancer-specific survival and shorter overall survival (OS). There is higher stool level of miR-21 in patients with colorectal cancer but not polyps. Plasma/serum miR-21 can be served as a potential diagnostic and prognostic marker. The post-therapeutic miR-21 level in colorectal cancer is lower and can predict the pathological tumor response to chemotherapy. Down-regulation of miR-21 reduces cell proliferation, migration and invasion, induces apoptosis and inhibits cell cycle progression, up-regulates Spry2 and phosphatase and tensin homologue deleted on chromosome 10 and enhances the cytotoxic effects of 5-fluorouracil and metformin, and also leads to differentiation of chemoresistant cells, therefore inhibition of miR-21 may serve as a novel therapeutic approach[10-30].

MiR-155

Up-regulation of oncogenic miR-155 in colorectal cancer cells promotes cell proliferation, migration and invasion, increases chemoresistance and correlates with poor prognosis. Claudin-1, a member of integral membrane proteins that constitute tight junctions, is the identified target gene modulated by miR-155[30-33]. Low expression of claudin-1 is associated with lymphatic involvement, histological differentiation, extent of poorly differentiated component, reduced disease-free and overall survival of colorectal cancer patients[34].

MiR-31

With rat sarcoma viral oncogene homolog (RAS) p21 Guanosine-5’-triphosphatase (GTPase) activating protein 1 (RASA1) gene as the target gene, miR-31 overexpression activates oncogene RAS by repressing RASA1, and elevated expression of miR-31[35-38] is associated with aggressive mucinous phenotype. For metastatic colorectal cancer patients with wild-type kirsten rat sarcoma viral oncogene homolog/v-raf murine sarcoma viral oncogene homolog B (KRAS/BRAF) who received anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) treatment, significant miR-31* up-regulation appeared in progressive disease vs disease control, and can be used to predict the benefits of anti-EGFR mAb treatment.

MiR-92a

The overexpression of miR-92a[14,26,39-43] correlates with tumor metastasis and poor prognosis. Higher miR-92a level in stool in patients with colorectal cancer and polyps can be detected. BCL-2-interacting mediator of Cell Death (BIM) is the target gene of miR-92a. As the down-regulation of BIM gene by over-expressed miR-92a in colon cancer cells may lead to the evasion of apoptosis, anti-miR-92a strategy effectively induces apoptosis of colorectal cancer cells, which suggests a potential new therapeutic approach.

MiR-17

Elevated in colon cancer, miR-17[18,42-45] expression is associated with poor survival and is an independent prognostic marker. By targeting tumor suppressor gene Rho family GTPase 3 (RND3), miR-17 promotes proliferation, growth and cell cycle progression. Moreover, elevated oncofoetal miR-17-5p expression resulted in shorter overall survival rates by repressing its target gene retinoblastoma-like protein 2 (P130), but caused a better response to adjuvant chemotherapy.

MiR-106a and miR-106b

MiR-106a[46,47] is highly expressed in metastatic colorectal cancer cells and regulates migration and invasion. Tumor suppressor Rb1 is one of the target genes of miR-106a, and the regulatory role for Rb1 may happen in sporadic colorectal cancer. Similar to miR-21, miR-106a also inhibits the expression of TGFBR2, leading to increased colorectal cancercell migration and invasion.

Interestingly, miR-106b[42] is upregulated in cancer stromal tissues compared with normal stroma, and the stromal miR-106b expression level is associated with clinicopathologic factors, suggesting the possibility that miRNAs in cancer stroma are crucially involved in cancer progression, a similar phenomenon observed for stromal miR-21[10].

MiR-135a and miR-135b

Oncogenic miR-135a[24,48] promotes the growth and invasion of colorectal cancer cells in vitro by repressing its target gene metastasis suppressor 1. The level of miR-135b[17,20,49] is also elevated in colorectal cancer, which correlates with clinical stage, liver metastasis, and both disease-free survival (DFS) and cancer-specific survival of patients, and inhibition of miR-135b leads to decreased viability of colorectal cancer cells in vitro.

TUMOR SUPPRESSIVE MICRORNAS AS POTENTIAL MARKERS AND TARGETS IN COLORECTAL CANCER
Let-7

The let-7 family is one of the most ancient and conserved microRNAs, which functions as a well-recognized tumor suppressor targeting oncogenic KRAS and whose expression is deregulated in many types of cancer including colorectal cancer[50,51].

Recent studies on let-7 family members showed that: let-7a expression is elevated in metastatic colorectal cancer with KRAS mutation compared to normal mucosa or non-metastatic disease[24], and the high level of let-7a in KRAS-mutated colorectal cancer may rescue anti-EGFR therapy effects[52]; decreased expression of let-7b at tumor invasion front is an adverse prognostic marker for recurrence and OS of colorectal cancer patients[53]; let-7c is a metastasis suppressor in colorectal cancer by targeting matrix metalloproteinase 11 and pre-B-cell leukemia homeobox 3[54]; and let-7e is overexpressed in responders to neoadjuvant chemoradiotherapy[55].

Another current research focus is the correlation between a functional polymorphism in let-7 complementary site within the 3’ untranslated region (3’-UTR) of KRAS (rs61764370) and the risk for development of colorectal cancer, pathological and clinical parameters, clinical outcome, progression-free survival (PFS) or OS in metastatic colorectal cancer patients[52,56-58].

All these novel findings for the Let-7 family member microRNAs provide us further predictive/prognostic markers in the management of colorectal cancer patients.

MiR-143

MiR-143[28,37,53,59-65] targets hexokinase 2 (HK2) gene and metastasis-associated in colon cancer-1 gene, and inhibit invasion/migration of colorectal cancer cells. Loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells. The complementary strand miR-143* is down-regulated in colon cancer cells and forced expression significantly abrogated invasive potential.

MiR-143 is often down-regulated in colorectal cancer, especially at liver invasion front, and the reduced expression correlates with aggressive mucinous phenotype. MiR-143 also inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin. The post-therapeutic level of miR-143 increases and can be used for predicting response to treatment and prognosis. Down-regulation of fecal miR-143 is a potentional marker for colorectal cancer, and the miR-143 level in blood and tissue can be used as a new diagnostic marker and therapeutic target as well.

MiR-145

MiR-145[14,28,53,60,64,66-68] exerts its tumor suppressive function by modulating several target genes: it can block the activation of AKT and ERK1/2 pathways and the expression of HIF-1 and vascular endothelial growth factor via directly targeting neuroblastoma RAS viral oncogene homolog and insulin receptor substrate 1, down-regulate phosphorylated-extracellular signal-regulated kinase 1 level and lead to inhibition of tumor growth by targeting p21 protein-activated kinase 4.

MiR-145 is down-regulated in plasma and cancer tissues and liver invasion front of colorectal cancer patients. Down-regulation of fecal miR-145 is proposed as a potential marker for colorectal cancer. Decreased expression of miR-145 occurs before the mutation of APC gene and is involved in the initiation step of colorectal cancer. Similar to miR-143, the post-therapeutic level of miR-145 increases, predicting the response to treatment and prognosis. Overexpression of miR-145 inhibits cell proliferation, migration and invasion due to its proapoptotic and antiproliferative role, showing its potential in miRNA-replacement therapy of colorectal cancer.

MiR-148a and 148b

Tumor suppressive miR-148a[69-71] promotes apoptosis via repressing anti-apoptotic Bcl-2 expression. Hypermethylation leads to down-regulation of miR-148a in advanced CRC. Low miR-148a expression is associated with significantly shorter DFS, a worse therapeutic response, and poor OS. The miR-148a level can serve as a disease progression follow-up marker, and has prognostic/predictive value in chemotherapy as well.

MiR-148b[72] also acts as a tumor suppressor in colorectal cancer by targeting the choecystokinin-2 receptor which functions depending on the gastrin in colorectal cancer, and suppresses the growth of cancer cells. The expression of miR-148b is significantly down-regulated in human colorectal cancer tissues and correlates with tumor size, and is important in the cancer transformation process. Forced expression of miR-148b in colorectal cancer cells inhibits cell proliferation in vitro and suppresses tumorigenicity in vivo. miR-148b can be further evaluated as a biomarker and therapeutic tool against colorectal cancer.

MiR-215

As a tumor suppressor candidate, miR-215[20,73-75] level is decreased in cancer tissues of colorectal cancer patients, especially those relapsed patients. The expression level of miR-215 is an independent predictive marker for relapse and associated with poor OS. However, overexpressed miR-215 can be observed in non-responders to neoadjuvant chemoradiotherapy, and the high miR-215 level confers chemoresistance due to cell cycle arrest and reduced proliferation by targeted inhibition of thymidylate synthase, dihydrofolate reductase and denticleless protein homolog, genes that play essential roles in DNA synthesis, cell cycle progression, proliferation, and differentiation.

OTHER COLORECTAL CANCER-ASSOCIATED MICRORNAS

In addition to the above microRNAs, there are other microRNAs that have been identified to be involved in the development/progression of colorectal cancer. A collection of the most recently investigated/concluded colorectal cancer-associated microRNAs are listed in Tables 1 and 2 for reference.

Table 1 Colorectal cancer-associated microRNAs with identified targets.
MiR (family)Role/potentialIdentified targetsRef.
9ONE-cadherin[36,81,82]
16TSCOX-2, cyclin D1, survivin, CDK6[84-86]
17ONRND3, P130[18,42-45]
21ONPDCD4, RhoB, TGFBR2[10-30]
22TSp21[90-93]
31ONRASA1[14,17,35-38]
33aTSPim-1[67]
34 familyTSAxin2[33,70,101-103]
92aONBIM[14,26,39,40-43]
95ONNexin 1[106]
139TSRAP1B, IGFR-1[37,121,122]
143TSHK2, MACC1[28,37,53,59-65]
145 familyTSPAK4, NRAS, IRS1[14,28,53,60,64,66-68]
148 familyTSBcl-2, CCK-2 receptor[69-72]
155ONClaudin-1[30-33]
215TSDTL[20,55,73-75]
320aTSNeuropilin 1, β-catenin[147,148]
339-5pTSPRL-1[151]
342TSDNMT1[152]
365TSCyclin D1, Bcl-2[155]
373TSRAB22A[157]
499-5pONFOXO4, PDCD4[162]
506ONPPARα[164]
1915TSBcl-2[170]
Let-7 familyTSMMP11, PBX3[24,38,52-57]
Table 2 Colorectal cancer-associated microRNAs without identified target.
MiR (family)Role/potentialRef.
1TS[76-78]
7TS[79,80]
10bMarker, +, chemo[83]
15aTS[84]
18aON[87,88]
19 familyMarker, +, chemo[18,53,89]
23aON[94,95]
27bTS[96]
29 familyMarker, +[55,87,97,98]
30a-5pTS[99]
32ON[100]
93TS[79,104,105]
96Marker, +[17]
101TS[14,107,108]
103/107ON[109]
106 familyON[14,42,46,47]
122ON[110]
124TS[111-113]
125 familyTS[114]
126Marker, +[115]
127-3pMarker, +[40]
129TS[116]
130a/301a/454ON[117]
133 familyMarker, -[78,118]
135 familyON[17,20,24,48,49]
137TS[112,119,120]
140Marker, +[38,123]
141Circ, Marker, +[124]
144Marker, -[125,126]
146aSNP[127,128]
149Marker, -[129]
150Marker, -[130]
181aON[131]
182Marker, +[36,132]
185Marker, +[118]
186, 216b, 337-3pTS[133]
190bMarker, +, chemo[55]
192Marker, -[74]
193a-3p, 338-5pCirc, Marker, +[94]
194Marker[53,74]
19, 512, 801, 246Marker, +[123]
196a2SNP[134-138]
199a-5pTS[139]
206Marker, +[24]
211ON[140]
212TS[141]
218TS[142]
221*, 224TS[143]
222TS[144]
223TS[145]
297TS[146]
328TS[149]
330TS[150]
340TS[112]
345TS[153]
362-3pTS[154]
367SNP[156]
372Marker, +[21]
375, 422aTS[20]
378Marker, -[20,40]
409-3pCirl, Marker, +[79]
424*TS[65]
429ON[158]
450 family, 99a*Marker, -, chemo[55]
451TS[159]
486-3pMarker, +[40]
493, 493*TS[160]
497TS[161]
502TS[163]
574-5pON[165]
592Marker, +[38]
601Marker, +[166]
608SNP[167]
625-3pMarker, +, chemo[168]
627TS[169]
638Marker, -[53]
760Marker, +[133, 66]
1224-5pMarker, -[38]
1275Marker, -[53]
CONCLUSION

As discussed above, a number of alterations of microRNAs play important roles in the development and progression of colorectal cancer, and even alterations of the microRNA processing machinery components are of prognostic values[171,172]. The expression of microRNAs is regulated not only by other epigenetic modifications such as hyper- or hypomethylation, but also by other interacting molecules, i.e., LIN28 and let-7[173], and in a clustered manner. Moreover, the polymorphisms of either microRNAs or targeted genes have a significant impact on colorectal cancer risk[174,175], even in population-based studies[176-178], and the responses to chemotherapy and prognosis[179,180] as well.

We can expect that the altered expression of microRNAs detection will serve as effective biomarkers for screening, diagnosis, monitoring therapy and prognosis of colorectal cancer in the future, as they can be detected from various kinds of samples including cell-free plasma/serum[181-184], circulating tumor cells[185], mucosal wash fluid[186], feces[187,188] and formalin-fixed paraffin-embedded tissues[189].

Based on the achievements in this field, we can also expect that novel therapeutics be developed to re-normalize the altered microRNAs in colorectal cancer[190], not only by directly restoring down-regulated microRNAs or knocking down the up-regulated microRNAs, but also by epigenetic therapy[191].

Footnotes

P- Reviewers: Lakatos PL, Wig JD S- Editor: Gou SX L- Editor: Wang TQ E- Editor: Wu HL

References
1.  Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23762]  [Cited by in F6Publishing: 25160]  [Article Influence: 1935.4]  [Reference Citation Analysis (3)]
2.  Goel A, Boland CR. Epigenetics of colorectal cancer. Gastroenterology. 2012;143:1442-1460.e1.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 167]  [Cited by in F6Publishing: 175]  [Article Influence: 14.6]  [Reference Citation Analysis (0)]
3.  Li BQ, Yu H, Wang Z, Ding GH, Liu L. MicroRNA mediated network and DNA methylation in colorectal cancer. Protein Pept Lett. 2013;20:352-363.  [PubMed]  [DOI]  [Cited in This Article: ]
4.  Khare S, Verma M. Epigenetics of colon cancer. Methods Mol Biol. 2012;863:177-185.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 48]  [Cited by in F6Publishing: 51]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
5.  O’Hara SP, Mott JL, Splinter PL, Gores GJ, LaRusso NF. MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology. 2009;136:17-25.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 74]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
6.  Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004;339:327-335.  [PubMed]  [DOI]  [Cited in This Article: ]
7.  Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33:1126-1133.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 411]  [Cited by in F6Publishing: 448]  [Article Influence: 37.3]  [Reference Citation Analysis (0)]
8.  Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6:590-610.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
9.  Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143-159.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1121]  [Cited by in F6Publishing: 1209]  [Article Influence: 100.8]  [Reference Citation Analysis (0)]
10.  Bullock MD, Pickard KM, Nielsen BS, Sayan AE, Jenei V, Mellone M, Mitter R, Primrose JN, Thomas GJ, Packham GK. Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death Dis. 2013;4:e684.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 83]  [Cited by in F6Publishing: 94]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
11.  Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849-859.  [PubMed]  [DOI]  [Cited in This Article: ]
12.  Yu Y, Sarkar FH, Majumdar AP. Down-regulation of miR-21 Induces Differentiation of Chemoresistant Colon Cancer Cells and Enhances Susceptibility to Therapeutic Regimens. Transl Oncol. 2013;6:180-186.  [PubMed]  [DOI]  [Cited in This Article: ]
13.  Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013;42:219-228.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 133]  [Cited by in F6Publishing: 146]  [Article Influence: 12.2]  [Reference Citation Analysis (0)]
14.  Schee K, Boye K, Abrahamsen TW, Fodstad Ø, Flatmark K. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer. 2012;12:505.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 113]  [Cited by in F6Publishing: 132]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
15.  Kjaer-Frifeldt S, Hansen TF, Nielsen BS, Joergensen S, Lindebjerg J, Soerensen FB, dePont Christensen R, Jakobsen A. The prognostic importance of miR-21 in stage II colon cancer: a population-based study. Br J Cancer. 2012;107:1169-1174.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 77]  [Article Influence: 7.0]  [Reference Citation Analysis (0)]
16.  Kanaan Z, Rai SN, Eichenberger MR, Roberts H, Keskey B, Pan J, Galandiuk S. Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 2012;256:544-551.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 195]  [Cited by in F6Publishing: 220]  [Article Influence: 18.3]  [Reference Citation Analysis (0)]
17.  Xu XM, Qian JC, Deng ZL, Cai Z, Tang T, Wang P, Zhang KH, Cai JP. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett. 2012;4:339-345.  [PubMed]  [DOI]  [Cited in This Article: ]
18.  Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z, Ye H, Chen S, Wang J. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer. 2012;107:352-359.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 87]  [Cited by in F6Publishing: 92]  [Article Influence: 7.7]  [Reference Citation Analysis (0)]
19.  Wang B, Zhang Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol. 2012;138:1659-1666.  [PubMed]  [DOI]  [Cited in This Article: ]
20.  Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, Radova L, Fabian P, Slaba K, Kiss I. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med. 2012;16:2655-2666.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 108]  [Cited by in F6Publishing: 117]  [Article Influence: 11.7]  [Reference Citation Analysis (0)]
21.  Yamashita S, Yamamoto H, Mimori K, Nishida N, Takahashi H, Haraguchi N, Tanaka F, Shibata K, Sekimoto M, Ishii H. MicroRNA-372 is associated with poor prognosis in colorectal cancer. Oncology. 2012;82:205-212.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 42]  [Cited by in F6Publishing: 47]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
22.  Liu K, Li G, Fan C, Zhou X, Wu B, Li J. Increased expression of microRNA-21and its association with chemotherapeutic response in human colorectal cancer. J Int Med Res. 2011;39:2288-2295.  [PubMed]  [DOI]  [Cited in This Article: ]
23.  Horiuchi A, Iinuma H, Akahane T, Shimada R, Watanabe T. Prognostic significance of PDCD4 expression and association with microRNA-21 in each Dukes’ stage of colorectal cancer patients. Oncol Rep. 2012;27:1384-1392.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 11]  [Article Influence: 0.9]  [Reference Citation Analysis (0)]
24.  Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M, Hanson JE, Addison CL, Asmis TR, Jonker DJ, Maroun J. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis. 2012;29:123-132.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 83]  [Cited by in F6Publishing: 77]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
25.  Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, Majumdar AP. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis. 2012;33:68-76.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 196]  [Cited by in F6Publishing: 215]  [Article Influence: 16.5]  [Reference Citation Analysis (0)]
26.  Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, Wong YN, Chan FK, Yu J, Sung JJ. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012;61:739-745.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 189]  [Cited by in F6Publishing: 208]  [Article Influence: 17.3]  [Reference Citation Analysis (0)]
27.  Liu M, Tang Q, Qiu M, Lang N, Li M, Zheng Y, Bi F. miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett. 2011;585:2998-3005.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 86]  [Cited by in F6Publishing: 92]  [Article Influence: 7.1]  [Reference Citation Analysis (0)]
28.  Drebber U, Lay M, Wedemeyer I, Vallböhmer D, Bollschweiler E, Brabender J, Mönig SP, Hölscher AH, Dienes HP, Odenthal M. Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int J Oncol. 2011;39:409-415.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 62]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
29.  Chang KH, Miller N, Kheirelseid EA, Ingoldsby H, Hennessy E, Curran CE, Curran S, Smith MJ, Regan M, McAnena OJ. MicroRNA-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol. 2011;37:597-603.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 50]  [Cited by in F6Publishing: 59]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
30.  Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 2010;79:313-320.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 172]  [Cited by in F6Publishing: 191]  [Article Influence: 14.7]  [Reference Citation Analysis (0)]
31.  Zhang GJ, Xiao HX, Tian HP, Liu ZL, Xia SS, Zhou T. Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression. Int J Mol Med. 2013;31:1375-1380.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 72]  [Cited by in F6Publishing: 85]  [Article Influence: 7.7]  [Reference Citation Analysis (0)]
32.  Pu J, Bai D, Yang X, Lu X, Xu L, Lu J. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun. 2012;428:210-215.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 39]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
33.  Wang M, Zhang P, Li Y, Liu G, Zhou B, Zhan L, Zhou Z, Sun X. The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Med Oncol. 2012;29:3113-3118.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 47]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
34.  Shibutani M, Noda E, Maeda K, Nagahara H, Ohtani H, Hirakawa K. Low expression of claudin-1 and presence of poorly-differentiated tumor clusters correlate with poor prognosis in colorectal cancer. Anticancer Res. 2013;33:3301-3306.  [PubMed]  [DOI]  [Cited in This Article: ]
35.  Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J, Zhang J. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem. 2013;288:9508-9518.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 124]  [Cited by in F6Publishing: 145]  [Article Influence: 13.2]  [Reference Citation Analysis (0)]
36.  Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, Danielsen SA, Lind GE, Nesbakken A, Kallioniemi O, Lothe RA. MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 2012;14:868-879.  [PubMed]  [DOI]  [Cited in This Article: ]
37.  Chang KH, Miller N, Kheirelseid EA, Lemetre C, Ball GR, Smith MJ, Regan M, McAnena OJ, Kerin MJ. MicroRNA signature analysis in colorectal cancer: identification of expression profiles in stage II tumors associated with aggressive disease. Int J Colorectal Dis. 2011;26:1415-1422.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 74]  [Cited by in F6Publishing: 87]  [Article Influence: 6.7]  [Reference Citation Analysis (0)]
38.  Mosakhani N, Lahti L, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, Osterlund P, Knuutila S, Sarhadi VK. MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet. 2012;205:545-551.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 59]  [Cited by in F6Publishing: 64]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
39.  Sengupta D, Bandyopadhyay S. Topological patterns in microRNA-gene regulatory network: studies in colorectal and breast cancer. Mol Biosyst. 2013;9:1360-1371.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23]  [Cited by in F6Publishing: 26]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
40.  Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, Osterlund P, Knuutila S. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer. 2012;51:1-9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 84]  [Cited by in F6Publishing: 92]  [Article Influence: 7.1]  [Reference Citation Analysis (0)]
41.  Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T, Ueda S, Takanashi M, Kuroda M. miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci. 2011;102:2264-2271.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 158]  [Cited by in F6Publishing: 179]  [Article Influence: 13.8]  [Reference Citation Analysis (0)]
42.  Nishida N, Nagahara M, Sato T, Mimori K, Sudo T, Tanaka F, Shibata K, Ishii H, Sugihara K, Doki Y. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clin Cancer Res. 2012;18:3054-3070.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 120]  [Cited by in F6Publishing: 130]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
43.  Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T, Zhu J, Huang SJ, Wan YL. Prognostic values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol. 2012;106:232-237.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 60]  [Cited by in F6Publishing: 72]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
44.  Slaby O, Sachlova M, Brezkova V, Hezova R, Kovarikova A, Bischofová S, Sevcikova S, Bienertova-Vasku J, Vasku A, Svoboda M. Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer. 2013;65:247-254.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 39]  [Cited by in F6Publishing: 34]  [Article Influence: 3.1]  [Reference Citation Analysis (0)]
45.  Ma Y, Zhang P, Wang F, Zhang H, Yang Y, Shi C, Xia Y, Peng J, Liu W, Yang Z. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat Commun. 2012;3:1291.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 90]  [Cited by in F6Publishing: 109]  [Article Influence: 9.9]  [Reference Citation Analysis (0)]
46.  Catela Ivkovic T, Aralica G, Cacev T, Loncar B, Kapitanovic S. miR-106a overexpression and pRB downregulation in sporadic colorectal cancer. Exp Mol Pathol. 2013;94:148-154.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 26]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
47.  Feng B, Dong TT, Wang LL, Zhou HM, Zhao HC, Dong F, Zheng MH. Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One. 2012;7:e43452.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 61]  [Cited by in F6Publishing: 69]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
48.  Zhou W, Li X, Liu F, Xiao Z, He M, Shen S, Liu S. MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochim Biophys Sin (Shanghai). 2012;44:838-846.  [PubMed]  [DOI]  [Cited in This Article: ]
49.  Gaedcke J, Grade M, Camps J, Søkilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Møller S. The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18:4919-4930.  [PubMed]  [DOI]  [Cited in This Article: ]
50.  Jérôme T, Laurie P, Louis B, Pierre C. Enjoy the Silence: The Story of let-7 MicroRNA and Cancer. Curr Genomics. 2007;8:229-233.  [PubMed]  [DOI]  [Cited in This Article: ]
51.  Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012;22:474-482.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 264]  [Cited by in F6Publishing: 289]  [Article Influence: 24.1]  [Reference Citation Analysis (0)]
52.  Ruzzo A, Graziano F, Vincenzi B, Canestrari E, Perrone G, Galluccio N, Catalano V, Loupakis F, Rabitti C, Santini D. High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory metastatic disease. Oncologist. 2012;17:823-829.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 56]  [Cited by in F6Publishing: 62]  [Article Influence: 5.2]  [Reference Citation Analysis (0)]
53.  Kahlert C, Klupp F, Brand K, Lasitschka F, Diederichs S, Kirchberg J, Rahbari N, Dutta S, Bork U, Fritzmann J. Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases. Cancer Sci. 2011;102:1799-1807.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 56]  [Cited by in F6Publishing: 65]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
54.  Han HB, Gu J, Zuo HJ, Chen ZG, Zhao W, Li M, Ji DB, Lu YY, Zhang ZQ. Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol. 2012;226:544-555.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 96]  [Cited by in F6Publishing: 116]  [Article Influence: 8.9]  [Reference Citation Analysis (0)]
55.  Svoboda M, Sana J, Fabian P, Kocakova I, Gombosova J, Nekvindova J, Radova L, Vyzula R, Slaby O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol. 2012;7:195.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 92]  [Cited by in F6Publishing: 102]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
56.  Schweiger MR, Hussong M, Röhr C, Lehrach H. Genomics and epigenomics of colorectal cancer. Wiley Interdiscip Rev Syst Biol Med. 2013;5:205-219.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 25]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
57.  Kjersem JB, Ikdahl T, Guren T, Skovlund E, Sorbye H, Hamfjord J, Pfeiffer P, Glimelius B, Kersten C, Solvang H. Let-7 miRNA-binding site polymorphism in the KRAS 3’UTR; colorectal cancer screening population prevalence and influence on clinical outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin +/- cetuximab. BMC Cancer. 2012;12:534.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 41]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
58.  Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, van den Brandt PA, Bosman FT, Weidhaas JB, van Engeland M. A let-7 microRNA SNP in the KRAS 3’UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17:7723-7731.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 77]  [Cited by in F6Publishing: 86]  [Article Influence: 6.6]  [Reference Citation Analysis (0)]
59.  Qian X, Yu J, Yin Y, He J, Wang L, Li Q, Zhang LQ, Li CY, Shi ZM, Xu Q. MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle. 2013;12:1385-1394.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 114]  [Cited by in F6Publishing: 129]  [Article Influence: 11.7]  [Reference Citation Analysis (0)]
60.  Kamatani A, Nakagawa Y, Akao Y, Maruyama N, Nagasaka M, Shibata T, Tahara T, Hirata I. Downregulation of anti-oncomirs miR-143/145 cluster occurs before APC gene aberration in the development of colorectal tumors. Med Mol Morphol. 2013;46:166-171.  [PubMed]  [DOI]  [Cited in This Article: ]
61.  Gregersen LH, Jacobsen A, Frankel LB, Wen J, Krogh A, Lund AH. MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer. 2012;12:232.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 104]  [Cited by in F6Publishing: 112]  [Article Influence: 9.3]  [Reference Citation Analysis (0)]
62.  Pichler M, Winter E, Stotz M, Eberhard K, Samonigg H, Lax S, Hoefler G. Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer. 2012;106:1826-1832.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 70]  [Cited by in F6Publishing: 76]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
63.  Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q, Ma F, Jiang B. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer. 2012;11:23.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 84]  [Cited by in F6Publishing: 102]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
64.  Li JM, Zhao RH, Li ST, Xie CX, Jiang HH, Ding WJ, Du P, Chen W, Yang M, Cui L. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33:24-29.  [PubMed]  [DOI]  [Cited in This Article: ]
65.  Chen DT, Hernandez JM, Shibata D, McCarthy SM, Humphries LA, Clark W, Elahi A, Gruidl M, Coppola D, Yeatman T. Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma. J Gastrointest Surg. 2012;16:905-912; discussion 912-913.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 37]  [Cited by in F6Publishing: 45]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
66.  Wang Z, Zhang X, Yang Z, Du H, Wu Z, Gong J, Yan J, Zheng Q. MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells. Biochem Biophys Res Commun. 2012;427:444-449.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 51]  [Cited by in F6Publishing: 58]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
67.  Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71:5214-5224.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 286]  [Cited by in F6Publishing: 304]  [Article Influence: 23.4]  [Reference Citation Analysis (0)]
68.  Yin Y, Yan ZP, Lu NN, Xu Q, He J, Qian X, Yu J, Guan X, Jiang BH, Liu LZ. Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta. 2013;1829:239-247.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 7]  [Reference Citation Analysis (0)]
69.  Takahashi M, Cuatrecasas M, Balaguer F, Hur K, Toiyama Y, Castells A, Boland CR, Goel A. The clinical significance of MiR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS One. 2012;7:e46684.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 119]  [Cited by in F6Publishing: 133]  [Article Influence: 11.1]  [Reference Citation Analysis (0)]
70.  Kalimutho M, Di Cecilia S, Del Vecchio Blanco G, Roviello F, Sileri P, Cretella M, Formosa A, Corso G, Marrelli D, Pallone F. Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer. 2011;104:1770-1778.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 76]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
71.  Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, Lai M. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011;18:1702-1710.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 154]  [Cited by in F6Publishing: 168]  [Article Influence: 12.9]  [Reference Citation Analysis (0)]
72.  Song Y, Xu Y, Wang Z, Chen Y, Yue Z, Gao P, Xing C, Xu H. MicroRNA-148b suppresses cell growth by targeting cholecystokinin-2 receptor in colorectal cancer. Int J Cancer. 2012;131:1042-1051.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 74]  [Article Influence: 5.7]  [Reference Citation Analysis (0)]
73.  Li S, Gao J, Gu J, Yuan J, Hua D, Shen L. MicroRNA-215 inhibits relapse of colorectal cancer patients following radical surgery. Med Oncol. 2013;30:549.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 31]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
74.  Chiang Y, Song Y, Wang Z, Liu Z, Gao P, Liang J, Zhu J, Xing C, Xu H. microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer. Exp Ther Med. 2012;3:560-566.  [PubMed]  [DOI]  [Cited in This Article: ]
75.  Karaayvaz M, Pal T, Song B, Zhang C, Georgakopoulos P, Mehmood S, Burke S, Shroyer K, Ju J. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer. 2011;10:340-347.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 96]  [Cited by in F6Publishing: 113]  [Article Influence: 8.7]  [Reference Citation Analysis (0)]
76.  Reid JF, Sokolova V, Zoni E, Lampis A, Pizzamiglio S, Bertan C, Zanutto S, Perrone F, Camerini T, Gallino G. miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol Cancer Res. 2012;10:504-515.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 94]  [Cited by in F6Publishing: 106]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
77.  Migliore C, Martin V, Leoni VP, Restivo A, Atzori L, Petrelli A, Isella C, Zorcolo L, Sarotto I, Casula G. MiR-1 downregulation cooperates with MACC1 in promoting MET overexpression in human colon cancer. Clin Cancer Res. 2012;18:737-747.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 90]  [Cited by in F6Publishing: 96]  [Article Influence: 7.4]  [Reference Citation Analysis (0)]
78.  Chen WS, Leung CM, Pan HW, Hu LY, Li SC, Ho MR, Tsai KW. Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncol Rep. 2012;28:1069-1076.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 57]  [Cited by in F6Publishing: 59]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
79.  Wang S, Xiang J, Li Z, Lu S, Hu J, Gao X, Yu L, Wang L, Wang J, Wu Y. A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer. 2013;May 2; Epub ahead of print.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 112]  [Cited by in F6Publishing: 118]  [Article Influence: 13.1]  [Reference Citation Analysis (0)]
80.  Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, Wang H, Chen J, Ng SS, Chen M. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene. 2013;32:5078-5088.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 140]  [Cited by in F6Publishing: 159]  [Article Influence: 13.3]  [Reference Citation Analysis (0)]
81.  Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 2012;18:6416-6425.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 70]  [Cited by in F6Publishing: 83]  [Article Influence: 6.9]  [Reference Citation Analysis (0)]
82.  Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng S, Ge W. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol. 2012;29:1037-1043.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 76]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
83.  Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K, Yamamoto H, Ishii H, Doki Y, Mori M. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol. 2012;19:3065-3071.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 124]  [Cited by in F6Publishing: 135]  [Article Influence: 11.3]  [Reference Citation Analysis (0)]
84.  Dai L, Wang W, Zhang S, Jiang Q, Wang R, Dai L, Cheng L, Yang Y, Wei YQ, Deng HX. Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo. Cell Biol Int. 2012;36:765-770.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 28]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
85.  Ma Q, Wang X, Li Z, Li B, Ma F, Peng L, Zhang Y, Xu A, Jiang B. microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep. 2013;29:1652-1658.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 59]  [Cited by in F6Publishing: 66]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
86.  Young LE, Moore AE, Sokol L, Meisner-Kober N, Dixon DA. The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res. 2012;10:167-180.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 151]  [Cited by in F6Publishing: 157]  [Article Influence: 12.1]  [Reference Citation Analysis (0)]
87.  Brunet Vega A, Pericay C, Moya I, Ferrer A, Dotor E, Pisa A, Casalots À, Serra-Aracil X, Oliva JC, Ruiz A. microRNA expression profile in stage III colorectal cancer: circulating miR-18a and miR-29a as promising biomarkers. Oncol Rep. 2013;30:320-326.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 114]  [Cited by in F6Publishing: 125]  [Article Influence: 11.4]  [Reference Citation Analysis (0)]
88.  Wu CW, Dong YJ, Liang QY, He XQ, Ng SS, Chan FK, Sung JJ, Yu J. MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS One. 2013;8:e57036.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 75]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
89.  Kurokawa K, Tanahashi T, Iima T, Yamamoto Y, Akaike Y, Nishida K, Masuda K, Kuwano Y, Murakami Y, Fukushima M. Role of miR-19b and its target mRNAs in 5-fluorouracil resistance in colon cancer cells. J Gastroenterol. 2012;47:883-895.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 71]  [Cited by in F6Publishing: 80]  [Article Influence: 6.7]  [Reference Citation Analysis (0)]
90.  Zhang G, Xia S, Tian H, Liu Z, Zhou T. Clinical significance of miR-22 expression in patients with colorectal cancer. Med Oncol. 2012;29:3108-3112.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 49]  [Cited by in F6Publishing: 47]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
91.  Yamakuchi M, Yagi S, Ito T, Lowenstein CJ. MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One. 2011;6:e20291.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 99]  [Cited by in F6Publishing: 104]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
92.  Li J, Zhang Y, Zhao J, Kong F, Chen Y. Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol Cell Biochem. 2011;357:31-38.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 64]  [Cited by in F6Publishing: 73]  [Article Influence: 5.6]  [Reference Citation Analysis (0)]
93.  Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, Okabe A, Schetter AJ, Bowman ED, Midorikawa Y. Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res. 2011;71:4628-4639.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 88]  [Cited by in F6Publishing: 93]  [Article Influence: 7.2]  [Reference Citation Analysis (0)]
94.  Yong FL, Law CW, Wang CW. Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC Cancer. 2013;13:280.  [PubMed]  [DOI]  [Cited in This Article: ]
95.  Jahid S, Sun J, Edwards RA, Dizon D, Panarelli NC, Milsom JW, Sikandar SS, Gümüs ZH, Lipkin SM. miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov. 2012;2:540-553.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 109]  [Cited by in F6Publishing: 115]  [Article Influence: 9.6]  [Reference Citation Analysis (0)]
96.  Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, Chen Z, Qiu F, Xu J, Huang J. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One. 2013;8:e60687.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 134]  [Cited by in F6Publishing: 138]  [Article Influence: 12.5]  [Reference Citation Analysis (0)]
97.  Weissmann-Brenner A, Kushnir M, Lithwick Yanai G, Aharonov R, Gibori H, Purim O, Kundel Y, Morgenstern S, Halperin M, Niv Y. Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int J Oncol. 2012;40:2097-2103.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 43]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
98.  Wang LG, Gu J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 2012;36:e61-e67.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 142]  [Cited by in F6Publishing: 159]  [Article Influence: 12.2]  [Reference Citation Analysis (0)]
99.  Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zöllner H, Munding J, Klein-Scory S, Reinacher-Schick A, Schwarte-Waldhoff I, Schmiegel W, Hahn SA. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis. 2012;33:732-739.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 124]  [Cited by in F6Publishing: 136]  [Article Influence: 11.3]  [Reference Citation Analysis (0)]
100.  Wu W, Yang J, Feng X, Wang H, Ye S, Yang P, Tan W, Wei G, Zhou Y. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol Cancer. 2013;12:30.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 113]  [Cited by in F6Publishing: 139]  [Article Influence: 12.6]  [Reference Citation Analysis (0)]
101.  Kim NH, Cha YH, Kang SE, Lee Y, Lee I, Cha SY, Ryu JK, Na JM, Park C, Yoon HG. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle. 2013;12:1578-1587.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 83]  [Cited by in F6Publishing: 87]  [Article Influence: 7.9]  [Reference Citation Analysis (0)]
102.  Roy S, Levi E, Majumdar AP, Sarkar FH. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012;5:58.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 112]  [Cited by in F6Publishing: 124]  [Article Influence: 10.3]  [Reference Citation Analysis (0)]
103.  Nugent M, Miller N, Kerin MJ. Circulating miR-34a levels are reduced in colorectal cancer. J Surg Oncol. 2012;106:947-952.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 60]  [Cited by in F6Publishing: 67]  [Article Influence: 5.6]  [Reference Citation Analysis (0)]
104.  Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, Chou WW, Wang JY, Juo SH. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis. 2012;33:1522-1530.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 69]  [Cited by in F6Publishing: 76]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
105.  Yu XF, Zou J, Bao ZJ, Dong J. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol. 2011;17:4711-4717.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 97]  [Cited by in F6Publishing: 96]  [Article Influence: 7.4]  [Reference Citation Analysis (0)]
106.  Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, Sheng W, He X, Du X. MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res. 2011;71:2582-2589.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 106]  [Cited by in F6Publishing: 114]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
107.  Strillacci A, Valerii MC, Sansone P, Caggiano C, Sgromo A, Vittori L, Fiorentino M, Poggioli G, Rizzello F, Campieri M. Loss of miR-101 expression promotes Wnt/β-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol. 2013;229:379-389.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 88]  [Cited by in F6Publishing: 92]  [Article Influence: 7.7]  [Reference Citation Analysis (0)]
108.  Chandramouli A, Onyeagucha BC, Mercado-Pimentel ME, Stankova L, Shahin NA, LaFleur BJ, Heimark RL, Bhattacharyya AK, Nelson MA. MicroRNA-101 (miR-101) post-transcriptionally regulates the expression of EP4 receptor in colon cancers. Cancer Biol Ther. 2012;13:175-183.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 43]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
109.  Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, Wang WC, Lin FM, Chen Z, Huang HD. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 2012;72:3631-3641.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 218]  [Cited by in F6Publishing: 237]  [Article Influence: 19.8]  [Reference Citation Analysis (0)]
110.  Di Lena M, Travaglio E, Altomare DF. New strategies for colorectal cancer screening. World J Gastroenterol. 2013;19:1855-1860.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 34]  [Cited by in F6Publishing: 33]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
111.  Liu K, Zhao H, Yao H, Lei S, Lei Z, Li T, Qi H. MicroRNA-124 regulates the proliferation of colorectal cancer cells by targeting iASPP. Biomed Res Int. 2013;2013:867537.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 39]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
112.  Sun Y, Zhao X, Zhou Y, Hu Y. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 2012;28:1346-1352.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 126]  [Cited by in F6Publishing: 125]  [Article Influence: 10.4]  [Reference Citation Analysis (0)]
113.  Wang MJ, Li Y, Wang R, Wang C, Yu YY, Yang L, Zhang Y, Zhou B, Zhou ZG, Sun XF. Downregulation of microRNA-124 is an independent prognostic factor in patients with colorectal cancer. Int J Colorectal Dis. 2013;28:183-189.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 46]  [Cited by in F6Publishing: 51]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
114.  Chen J, Chen Y, Chen Z. MiR-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer. Cancer Invest. 2013;31:17-23.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 49]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
115.  Hansen TF, Andersen CL, Nielsen BS, Spindler KL, Sørensen FB, Lindebjerg J, Brandslund I, Jakobsen A. Elevated microRNA-126 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in colorectal cancer. Oncol Lett. 2011;2:1101-1106.  [PubMed]  [DOI]  [Cited in This Article: ]
116.  Karaayvaz M, Zhai H, Ju J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 2013;4:e659.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 143]  [Cited by in F6Publishing: 153]  [Article Influence: 13.9]  [Reference Citation Analysis (0)]
117.  Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y, Han W. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS One. 2013;8:e55532.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 71]  [Cited by in F6Publishing: 77]  [Article Influence: 7.0]  [Reference Citation Analysis (0)]
118.  Akçakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, Lindforss U, Olivecrona H, Lui WO. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311-318.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 75]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
119.  Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, Ren C, Zhang DS, Wang ZQ, Wang FH. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 2013;34:803-811.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 74]  [Cited by in F6Publishing: 83]  [Article Influence: 6.9]  [Reference Citation Analysis (0)]
120.  Liang L, Li X, Zhang X, Lv Z, He G, Zhao W, Ren X, Li Y, Bian X, Liao W. MicroRNA-137, an HMGA1 target, suppresses colorectal cancer cell invasion and metastasis in mice by directly targeting FMNL2. Gastroenterology. 2013;144:624-635.e4.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 107]  [Cited by in F6Publishing: 114]  [Article Influence: 10.4]  [Reference Citation Analysis (0)]
121.  Guo H, Hu X, Ge S, Qian G, Zhang J. Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol. 2012;44:1465-1472.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 59]  [Cited by in F6Publishing: 55]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
122.  Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, Lu Y, Li Q, Liu J. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol. 2012;84:320-330.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 114]  [Cited by in F6Publishing: 120]  [Article Influence: 10.0]  [Reference Citation Analysis (0)]
123.  Piepoli A, Tavano F, Copetti M, Mazza T, Palumbo O, Panza A, di Mola FF, Pazienza V, Mazzoccoli G, Biscaglia G. Mirna expression profiles identify drivers in colorectal and pancreatic cancers. PLoS One. 2012;7:e33663.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 110]  [Cited by in F6Publishing: 121]  [Article Influence: 10.1]  [Reference Citation Analysis (0)]
124.  Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011;6:e17745.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 303]  [Cited by in F6Publishing: 326]  [Article Influence: 25.1]  [Reference Citation Analysis (0)]
125.  Iwaya T, Yokobori T, Nishida N, Kogo R, Sudo T, Tanaka F, Shibata K, Sawada G, Takahashi Y, Ishibashi M. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis. 2012;33:2391-2397.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 128]  [Cited by in F6Publishing: 144]  [Article Influence: 12.0]  [Reference Citation Analysis (0)]
126.  Liu Q, Halvey PJ, Shyr Y, Slebos RJ, Liebler DC, Zhang B. Integrative omics analysis reveals the importance and scope of translational repression in microRNA-mediated regulation. Mol Cell Proteomics. 2013;12:1900-1911.  [PubMed]  [DOI]  [Cited in This Article: ]
127.  Ma L, Zhu L, Gu D, Chu H, Tong N, Chen J, Zhang Z, Wang M. A genetic variant in miR-146a modifies colorectal cancer susceptibility in a Chinese population. Arch Toxicol. 2013;87:825-833.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 49]  [Cited by in F6Publishing: 44]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
128.  Min KT, Kim JW, Jeon YJ, Jang MJ, Chong SY, Oh D, Kim NK. Association of the miR-146aC& gt; G, 149C& gt; T, 196a2C& gt; T, and 499A& gt; G polymorphisms with colorectal cancer in the Korean population. Mol Carcinog. 2012;51 Suppl 1:E65-E73.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 77]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
129.  Wang F, Ma YL, Zhang P, Shen TY, Shi CZ, Yang YZ, Moyer MP, Zhang HZ, Chen HQ, Liang Y. SP1 mediates the link between methylation of the tumour suppressor miR-149 and outcome in colorectal cancer. J Pathol. 2013;229:12-24.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 93]  [Cited by in F6Publishing: 99]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
130.  Ma Y, Zhang P, Wang F, Zhang H, Yang J, Peng J, Liu W, Qin H. miR-150 as a potential biomarker associated with prognosis and therapeutic outcome in colorectal cancer. Gut. 2012;61:1447-1453.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 130]  [Cited by in F6Publishing: 151]  [Article Influence: 12.6]  [Reference Citation Analysis (0)]
131.  Nishimura J, Handa R, Yamamoto H, Tanaka F, Shibata K, Mimori K, Takemasa I, Mizushima T, Ikeda M, Sekimoto M. microRNA-181a is associated with poor prognosis of colorectal cancer. Oncol Rep. 2012;28:2221-2226.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 48]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
132.  Liu H, Du L, Wen Z, Yang Y, Li J, Wang L, Zhang X, Liu Y, Dong Z, Li W. Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value. Int J Colorectal Dis. 2013;28:697-703.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 51]  [Cited by in F6Publishing: 57]  [Article Influence: 5.2]  [Reference Citation Analysis (0)]
133.  Kim SY, Lee YH, Bae YS. MiR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting α subunit of protein kinase CKII in human colorectal cancer cells. Biochem Biophys Res Commun. 2012;429:173-179.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 84]  [Cited by in F6Publishing: 89]  [Article Influence: 7.4]  [Reference Citation Analysis (0)]
134.  Wang F, Sun GP, Zou YF, Fan LL, Song B. Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and gastrointestinal cancer risk. Mol Biol Rep. 2013;40:109-116.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 20]  [Cited by in F6Publishing: 22]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
135.  Jang MJ, Kim JW, Min KT, Jeon YJ, Oh D, Kim NK. Prognostic significance of microRNA gene polymorphisms in patients with surgically resected colorectal cancer. Exp Ther Med. 2011;2:1127-1132.  [PubMed]  [DOI]  [Cited in This Article: ]
136.  Zhang H, Su YL, Yu H, Qian BY. Meta-Analysis of the Association between Mir-196a-2 Polymorphism and Cancer Susceptibility. Cancer Biol Med. 2012;9:63-72.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 18]  [Reference Citation Analysis (0)]
137.  Zhu L, Chu H, Gu D, Ma L, Shi D, Zhong D, Tong N, Zhang Z, Wang M. A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. DNA Cell Biol. 2012;31:350-354.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 54]  [Article Influence: 4.2]  [Reference Citation Analysis (0)]
138.  Zhan JF, Chen LH, Chen ZX, Yuan YW, Xie GZ, Sun AM, Liu Y. A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population. Arch Med Res. 2011;42:144-148.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 59]  [Cited by in F6Publishing: 68]  [Article Influence: 5.2]  [Reference Citation Analysis (0)]
139.  Kong Y, Bai PS, Sun H, Nan KJ, Chen NZ, Qi XG. The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer. Int J Biochem Cell Biol. 2012;44:2321-2332.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 35]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
140.  Cai C, Ashktorab H, Pang X, Zhao Y, Sha W, Liu Y, Gu X. MicroRNA-211 expression promotes colorectal cancer cell growth in vitro and in vivo by targeting tumor suppressor CHD5. PLoS One. 2012;7:e29750.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 78]  [Cited by in F6Publishing: 90]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
141.  Meng X, Wu J, Pan C, Wang H, Ying X, Zhou Y, Yu H, Zuo Y, Pan Z, Liu RY. Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology. 2013;145:426-436.e1-e6.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 98]  [Cited by in F6Publishing: 97]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
142.  He X, Dong Y, Wu CW, Zhao Z, Ng SS, Chan FK, Sung JJ, Yu J. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med. 2012;18:1491-1498.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 103]  [Cited by in F6Publishing: 126]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
143.  Yuan K, Xie K, Fox J, Zeng H, Gao H, Huang C, Wu M. Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice. Gastroenterology. 2013;145:853-864.e9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 75]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
144.  Xu K, Liang X, Shen K, Sun L, Cui D, Zhao Y, Tian J, Ni L, Liu J. MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17. Exp Cell Res. 2012;318:2168-2177.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 54]  [Cited by in F6Publishing: 47]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
145.  Wu L, Li H, Jia CY, Cheng W, Yu M, Peng M, Zhu Y, Zhao Q, Dong YW, Shao K. MicroRNA-223 regulates FOXO1 expression and cell proliferation. FEBS Lett. 2012;586:1038-1043.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 101]  [Cited by in F6Publishing: 111]  [Article Influence: 9.3]  [Reference Citation Analysis (0)]
146.  Xu K, Liang X, Shen K, Cui D, Zheng Y, Xu J, Fan Z, Qiu Y, Li Q, Ni L. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem J. 2012;446:291-300.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 61]  [Cited by in F6Publishing: 66]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
147.  Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, Yan B, Bian YQ, Zhao J, Wang WZ. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin. Biochem Biophys Res Commun. 2012;420:787-792.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 112]  [Cited by in F6Publishing: 122]  [Article Influence: 10.2]  [Reference Citation Analysis (0)]
148.  Zhang Y, He X, Liu Y, Ye Y, Zhang H, He P, Zhang Q, Dong L, Liu Y, Dong J. microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep. 2012;27:685-694.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 64]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
149.  Xu XT, Xu Q, Tong JL, Zhu MM, Nie F, Chen X, Xiao SD, Ran ZH. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer. 2012;106:1320-1330.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 93]  [Cited by in F6Publishing: 100]  [Article Influence: 8.3]  [Reference Citation Analysis (0)]
150.  Li Y, Zhu X, Xu W, Wang D, Yan J. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem Biophys Res Commun. 2013;431:560-565.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 58]  [Cited by in F6Publishing: 53]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
151.  Zhou C, Liu G, Wang L, Lu Y, Yuan L, Zheng L, Chen F, Peng F, Li X. MiR-339-5p regulates the growth, colony formation and metastasis of colorectal cancer cells by targeting PRL-1. PLoS One. 2013;8:e63142.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 51]  [Cited by in F6Publishing: 59]  [Article Influence: 5.4]  [Reference Citation Analysis (0)]
152.  Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R, Pan Z, Kang T, Huang W. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis. 2011;32:1033-1042.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 139]  [Cited by in F6Publishing: 149]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
153.  Tang JT, Wang JL, Du W, Hong J, Zhao SL, Wang YC, Xiong H, Chen HM, Fang JY. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis. 2011;32:1207-1215.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 83]  [Cited by in F6Publishing: 92]  [Article Influence: 7.1]  [Reference Citation Analysis (0)]
154.  Christensen LL, Tobiasen H, Holm A, Schepeler T, Ostenfeld MS, Thorsen K, Rasmussen MH, Birkenkamp-Demtroeder K, Sieber OM, Gibbs P. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer. Int J Cancer. 2013;133:67-78.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 73]  [Cited by in F6Publishing: 83]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
155.  Nie J, Liu L, Zheng W, Chen L, Wu X, Xu Y, Du X, Han W. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis. 2012;33:220-225.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 139]  [Cited by in F6Publishing: 149]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
156.  Chae YS, Kim JG, Kang BW, Lee SJ, Lee YJ, Park JS, Choi GS, Lee WK, Jeon HS. Functional polymorphism in the MicroRNA-367 binding site as a prognostic factor for colonic cancer. Anticancer Res. 2013;33:513-519.  [PubMed]  [DOI]  [Cited in This Article: ]
157.  Tanaka T, Arai M, Wu S, Kanda T, Miyauchi H, Imazeki F, Matsubara H, Yokosuka O. Epigenetic silencing of microRNA-373 plays an important role in regulating cell proliferation in colon cancer. Oncol Rep. 2011;26:1329-1335.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 34]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
158.  Li J, Du L, Yang Y, Wang C, Liu H, Wang L, Zhang X, Li W, Zheng G, Dong Z. MiR-429 is an independent prognostic factor in colorectal cancer and exerts its anti-apoptotic function by targeting SOX2. Cancer Lett. 2013;329:84-90.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 94]  [Cited by in F6Publishing: 105]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
159.  Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M, Lopez I, Javier Sola J, Alonso MM, Fortes P. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells. 2011;29:1661-1671.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 214]  [Cited by in F6Publishing: 230]  [Article Influence: 19.2]  [Reference Citation Analysis (0)]
160.  Okamoto K, Ishiguro T, Midorikawa Y, Ohata H, Izumiya M, Tsuchiya N, Sato A, Sakai H, Nakagama H. miR-493 induction during carcinogenesis blocks metastatic settlement of colon cancer cells in liver. EMBO J. 2012;31:1752-1763.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 57]  [Cited by in F6Publishing: 62]  [Article Influence: 5.2]  [Reference Citation Analysis (0)]
161.  Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene. 2013;32:1910-1920.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 164]  [Cited by in F6Publishing: 183]  [Article Influence: 15.3]  [Reference Citation Analysis (0)]
162.  Liu X, Zhang Z, Sun L, Chai N, Tang S, Jin J, Hu H, Nie Y, Wang X, Wu K. MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis. 2011;32:1798-1805.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 106]  [Cited by in F6Publishing: 121]  [Article Influence: 9.3]  [Reference Citation Analysis (0)]
163.  Zhai H, Song B, Xu X, Zhu W, Ju J. Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene. 2013;32:1570-1579.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 105]  [Cited by in F6Publishing: 113]  [Article Influence: 9.4]  [Reference Citation Analysis (0)]
164.  Tong JL, Zhang CP, Nie F, Xu XT, Zhu MM, Xiao SD, Ran ZH. MicroRNA 506 regulates expression of PPAR alpha in hydroxycamptothecin-resistant human colon cancer cells. FEBS Lett. 2011;585:3560-3568.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 61]  [Cited by in F6Publishing: 66]  [Article Influence: 5.1]  [Reference Citation Analysis (0)]
165.  Ji S, Ye G, Zhang J, Wang L, Wang T, Wang Z, Zhang T, Wang G, Guo Z, Luo Y. miR-574-5p negatively regulates Qki6/7 to impact β-catenin/Wnt signalling and the development of colorectal cancer. Gut. 2013;62:716-726.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 92]  [Cited by in F6Publishing: 99]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
166.  Wang Q, Huang Z, Ni S, Xiao X, Xu Q, Wang L, Huang D, Tan C, Sheng W, Du X. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One. 2012;7:e44398.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 156]  [Cited by in F6Publishing: 178]  [Article Influence: 14.8]  [Reference Citation Analysis (0)]
167.  Ryan BM, McClary AC, Valeri N, Robinson D, Paone A, Bowman ED, Robles AI, Croce C, Harris CC. rs4919510 in hsa-mir-608 is associated with outcome but not risk of colorectal cancer. PLoS One. 2012;7:e36306.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 60]  [Cited by in F6Publishing: 64]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
168.  Rasmussen MH, Jensen NF, Tarpgaard LS, Qvortrup C, Rømer MU, Stenvang J, Hansen TP, Christensen LL, Lindebjerg J, Hansen F. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer. Mol Oncol. 2013;7:637-646.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 66]  [Cited by in F6Publishing: 69]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
169.  Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology. 2013;145:437-446.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 103]  [Cited by in F6Publishing: 90]  [Article Influence: 8.2]  [Reference Citation Analysis (0)]
170.  Xu K, Liang X, Cui D, Wu Y, Shi W, Liu J. miR-1915 inhibits Bcl-2 to modulate multidrug resistance by increasing drug-sensitivity in human colorectal carcinoma cells. Mol Carcinog. 2013;52:70-78.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 76]  [Cited by in F6Publishing: 85]  [Article Influence: 6.5]  [Reference Citation Analysis (0)]
171.  Kim B, Lee JH, Park JW, Kwon TK, Baek SK, Hwang I, Kim S. An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas. Clin Exp Med. 2013;Epub ahead of print.  [PubMed]  [DOI]  [Cited in This Article: ]
172.  Faggad A, Kasajima A, Weichert W, Stenzinger A, Elwali NE, Dietel M, Denkert C. Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology. 2012;61:552-561.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 31]  [Cited by in F6Publishing: 37]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
173.  King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 2011;71:4260-4268.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 173]  [Cited by in F6Publishing: 190]  [Article Influence: 14.6]  [Reference Citation Analysis (0)]
174.  Naccarati A, Pardini B, Stefano L, Landi D, Slyskova J, Novotny J, Levy M, Polakova V, Lipska L, Vodicka P. Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis. 2012;33:1346-1351.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 49]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
175.  Wang J, Wang Q, Liu H, Shao N, Tan B, Zhang G, Wang K, Jia Y, Ma W, Wang N. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies. Mutagenesis. 2012;27:779-788.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 56]  [Cited by in F6Publishing: 60]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
176.  Lv M, Dong W, Li L, Zhang L, Su X, Wang L, Gao L, Zhang L. Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. J Cancer Res Clin Oncol. 2013;139:1405-1410.  [PubMed]  [DOI]  [Cited in This Article: ]
177.  He B, Pan Y, Cho WC, Xu Y, Gu L, Nie Z, Chen L, Song G, Gao T, Li R. The association between four genetic variants in microRNAs (rs11614913, rs2910164, rs3746444, rs2292832) and cancer risk: evidence from published studies. PLoS One. 2012;7:e49032.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 56]  [Cited by in F6Publishing: 65]  [Article Influence: 5.4]  [Reference Citation Analysis (0)]
178.  Azimzadeh P, Romani S, Mohebbi SR, Mahmoudi T, Vahedi M, Fatemi SR, Zali N, Zali MR. Association of polymorphisms in microRNA-binding sites and colorectal cancer in an Iranian population. Cancer Genet. 2012;205:501-507.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 23]  [Article Influence: 1.9]  [Reference Citation Analysis (0)]
179.  Bovell LC, Shanmugam C, Putcha BD, Katkoori VR, Zhang B, Bae S, Singh KP, Grizzle WE, Manne U. The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer. Clin Cancer Res. 2013;19:3955-3965.  [PubMed]  [DOI]  [Cited in This Article: ]
180.  Xing J, Wan S, Zhou F, Qu F, Li B, Myers RE, Fu X, Palazzo JP, He X, Chen Z. Genetic polymorphisms in pre-microRNA genes as prognostic markers of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2012;21:217-227.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 62]  [Cited by in F6Publishing: 71]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
181.  Luo X, Stock C, Burwinkel B, Brenner H. Identification and evaluation of plasma microRNAs for early detection of colorectal cancer. PLoS One. 2013;8:e62880.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 117]  [Cited by in F6Publishing: 130]  [Article Influence: 11.8]  [Reference Citation Analysis (0)]
182.  Blanco-Calvo M, Calvo L, Figueroa A, Haz-Conde M, Antón-Aparicio L, Valladares-Ayerbes M. Circulating microRNAs: molecular microsensors in gastrointestinal cancer. Sensors (Basel). 2012;12:9349-9362.  [PubMed]  [DOI]  [Cited in This Article: ]
183.  Menéndez P, Villarejo P, Padilla D, Menéndez JM, Montes JA. Diagnostic and prognostic significance of serum microRNAs in colorectal cancer. J Surg Oncol. 2013;107:217-220.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 26]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
184.  Luo X, Burwinkel B, Tao S, Brenner H. MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev. 2011;20:1272-1286.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 181]  [Cited by in F6Publishing: 193]  [Article Influence: 14.8]  [Reference Citation Analysis (0)]
185.  Mostert B, Sieuwerts AM, Martens JW, Sleijfer S. Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients. Expert Rev Mol Diagn. 2011;11:259-275.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 49]  [Cited by in F6Publishing: 55]  [Article Influence: 4.2]  [Reference Citation Analysis (0)]
186.  Kamimae S, Yamamoto E, Yamano HO, Nojima M, Suzuki H, Ashida M, Hatahira T, Sato A, Kimura T, Yoshikawa K. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. Cancer Prev Res (Phila). 2011;4:674-683.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 34]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
187.  Yamazaki N, Koga Y, Yamamoto S, Kakugawa Y, Otake Y, Hayashi R, Saito N, Matsumura Y. Application of the fecal microRNA test to the residuum from the fecal occult blood test. Jpn J Clin Oncol. 2013;43:726-733.  [PubMed]  [DOI]  [Cited in This Article: ]
188.  Cho WC. Epigenetic alteration of microRNAs in feces of colorectal cancer and its clinical significance. Expert Rev Mol Diagn. 2011;11:691-694.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 23]  [Article Influence: 1.9]  [Reference Citation Analysis (0)]
189.  Bovell L, Shanmugam C, Katkoori VR, Zhang B, Vogtmann E, Grizzle WE, Manne U. miRNAs are stable in colorectal cancer archival tissue blocks. Front Biosci (Elite Ed). 2012;4:1937-1940.  [PubMed]  [DOI]  [Cited in This Article: ]
190.  Dassow H, Aigner A. MicroRNAs (miRNAs) in colorectal cancer: from aberrant expression towards therapy. Curr Pharm Des. 2013;19:1242-1252.  [PubMed]  [DOI]  [Cited in This Article: ]
191.  Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R, Kai M, Yamano HO, Sasaki Y, Tokino T. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res. 2011;71:5646-5658.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 122]  [Cited by in F6Publishing: 132]  [Article Influence: 10.2]  [Reference Citation Analysis (0)]