
 
Abstract: - Our society is heavily dependent on many interdependent and complex critical infrastructures. 
Deficiencies in the functionality of the transportation network (e.g., vehicular traffic interruptions or 
limitations) can cause enormous inconvenience to communities and people. The Italian transport infrastructure 
heritage and new infrastructure construction is so relevant that the issue of its preservation and safety has 
become a priority. Specialistic advice is therefore required to understand if the static behaviour of these 
infrastructure has changed significantly after extraordinary events (e.g., earthquakes, landslides). With the 
advent of the internet of things (IoT), infrastructures are becoming smart and procedures simpler. In the 
framework of smart infrastructure development, we implemented an experimental system that integrates 
soft computing and geomatic methodologies for solving early warning problems. This system, which has been 
tested on the Petrace bridge (Southern Italy), is able to generate forecasting information on the infrastructure 
behaviour over time, mainly exploiting geomatic parameters. We built this "early warning/predictive" system 
through integration of several significant (geometric/structural) infrastructure models, which have been merged 
into a final "type" model. The results derived from various possible scenarios have been implemented in a 
neural network. The only system’s input is represented by displacement measurements acquired by sensors 
placed on the infrastructure, and the output consists in an estimation of different risk levels. 
Sensor data are then transmitted to a control unit that sends them to a processing server, where the calculation 
system is hosted. All received data and model results are displayed on the Wordpress platform with colour 
codes calibrated on the calculated risk thresholds.  
 

Key-Words: - infrastructure monitoring, neural network, early warning, uav inspection. 

Received: January 23, 2021. Revised: April 22, 2021. Accepted: April 29, 2021. Published: May 5, 2021. 

 
1 Introduction 

 Our society is heavily dependent on numerous 
complex and interdependent critical infrastructures. 
Due to technological development, transport 
networks have become sophisticated, complex, and 
essential for people, companies, and municipalities. 
In fact, any limitation of the functionality of 
transport networks (interruptions or attenuation of 
traffic) can have serious consequences for people. 
The transport system is therefore necessary for the 
health and functionality of modern society, which 
depends on it not only for the daily mobility of 
people and for the transport of goods, but also as a 

lifeline for emergency management. The transport 
system heritage, in form of existing networks and 
infrastructures, is so significant that the problem of 
its safety and conservation is a priority for our 
country. 

The projected life cycle cost of transport 
infrastructures is an important factor that should be 
taken into consideration for optimal infrastructure 
design and management. The uncertainty of the 
expected life cycle cost depends on potentially 
damaging events and on the physical conservation 
of the infrastructures. The best economization 
strategy consists in minimizing the expected life 
cycle cost while maintaining a given infrastructural 
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safety level. These issues can be addressed with a 
multiscale approach, from the analysis of individual 
infrastructural elements (bridges, viaducts, tunnels 
and geotechnical systems) to the risk assessment 
and management of the entire network infrastructure 
[1, 2]. This multiscale approach is often ignored 
during infrastructural design, so transport 
infrastructures in Italy are generally in poor 
conditions, mainly due to the almost total lack of a 
central risk control and monitoring mechanism. 

The tendency to "economize" in the initial design 
phase can be ascribed to the lack of consideration 
for the costs arisisng from damages (caused by 
evaluation errors) are much higher than the potential 
"savings" that would be obtained by adopting in 
advance a methodology capable of evaluating the 
state of infrastructure and its future evolution. This 
issue is presently of great interest and impact in the 
context of smart cities. Smart cities are already a 
reality, where we try to optimize the utilization of 
resources and guarantee the safe and reliable 
development and growth of various sectors. As 
known, the definition of smart city introduces, 
alongside the concept of "intelligent", also that of 
"sustainable": an intelligent and sustainable city is 
an urban core that uses information and 
communication technologies (ICT) and other 
technological tools to improve the quality of life, the 
efficiency of services and urban activities, and 
competitiveness, respecting the needs of present and 
future generations from an economic, social and 
environmental point of view. Therefore, smart cities 
are not only a concentrate of technologies, but also a 
complex ecosystem based on the active participation 
of citizens, municipal authorities, local companies, 
industries, as well as different communities and 
interest groups. 

The experimentation of an innovative system for 
monitoring infrastructures proposed in this work is 
intended to the needs of today’s evolving smart 
cities, especially with respect to their sustainability, 
through a combination of geomatic and soft 
computing techniques. The proposed system 
exploits the continuous technological development 
of data collection and processing tools to evaluate 
the structural characteristics and the level of damage 
of infrastructures, allowing to forecast of its 
evolution and generate early warnings. Monitoring 
the infrastructure’s health means increasing its 
safety level in its different life stages, from 
construction to demolition. The implementation of 
monitoring systems is, in fact, an instrument that 
allows authorities to identify criticalities and 
classify them. Therefore, the creation of a 
continuously updated database of monitoring 

results, allows to optimize the use of resources and 
improve the quality of the interventions to be 
planned. 

To date, monitoring systems are varied and 
diversified but in general, despite their increasing 
diffusion, their function as a supervisory and 
inspection tool is often limited to little more than a 
collection of data whose interpretation is difficult to 
implement in practice. Traditional monitoring 
systems have the following characteristics:  
▪ Data are acquired by the instrumentation and 

stored 
▪ It is verified that the acquired parameters fall 

within the set threshold values 
▪ Monitoring reports are limited to the past 

evolution of physical parameters 
▪ Data interpretation is requires a specialist 
▪ The consistency between expected and measured 

infrastructural behavior is not verified. 
This means that a specialist advice is required to 
assess the integrity of structures after potentially 
damaging exceptional events. In this context, the 
monitoring system becomes be a burden for the 
authorities in face of little benefits. This work shows 
how the above mentioned limits of traditional 
monitoring systems, can be overcome with the 
integrated use of geomatics and soft computing 
techniques. Our proposed system can be safely 
applied to most of the civil infrastructures in 
country, including those that have reached the final 
stage of their useful life, and those subjected to 
loads many times greater than those calculated in 
the design phase. It is exactly in a delicate scenario 
like this that the benefits and potential of continuous 
and efficient structural monitoring are most 
appreciated over time. 

To date, various geomatics methodologies (e.g., 
remote sensing, GNSS) have been applied to 
structural health monitoring, including radio 
detection and measurement (RADAR), light 
detection and measurement (LiDAR), 
photogrammetry, multispectral satellite imagery, 
synthetic aperture radar (SAR), ground penetration 
radar (GPR) and digital image analyses, such as 
digital image correlation (DIC) [3, 4, 5]. However, 
there are also many other non-purely geomatic 
systems used for quasi-static deformation 
measurements, (e.g., fiber optic technology), and for 
monitoring dynamic (e.g., seismic) seismic events 
(accelerometry). For instance, these distributed 
sensor systems enable the early identification of 
structural damage or failure of monumental 
architectural structures through the continuous and 
remote monitoring of the dynamic and structural 
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behavior of masonry. Some relevant examples can 
be found in [6] and [7]. 

Vaghefi et al. (2012) and Harris et al. (2016) 
compared several of the above-mentioned methods 
for monitoring and evaluating the performance of 
bridges and viaducts. Their results indicate that the 
most effective approaches where those based on the 
parallel use of different techniques [8], while certain 
combinations of detection technologies were the 
most efficient in identifying defects at specific 
locations [9]. The performance of a viaduct has 
three types of motion components: static, semi-static 
and dynamic [10, 11]. The static and semi-static 
movements of the structure are mostly measured 
using robotic total stations and displacement sensor 
techniques [12, 13]. Dynamic displacements can be 
obtained from accelerometer measurements by 
integrating acceleration data [14, 15, 16, 17, 18, 19]. 

Here, we present the implementation of a system 
that integrates geomatic methodologies with soft 
computing methodologies in order to automate the 
collection, processing, forecasting and transmission 
of data for infrastructural early warning and 
behavior prediction purposes. First tests on the 
implementation of this approach has been proposed 
in [20] and [21]. The ultimate goal consists in 
creating a real-time risk prediction system that 
allows the simulation different scenarios for the 
behavior of the infrastructures under investigation, 
and is capable of sending alerts in the event of 
imminent dangers. The proposed system integrates 
different types of data previously used to define the 
various behavior scenarios of the structural model, 
synthesizing critical threshold parameters through 
machine learning techniques. The proposed system 
is applicable to infrastructures not affected by 
subsidence.  

The proposed integrated system is based on: 
a 3D model detected by drone (useful for having the 
initial state of art and the geometric information of 
the infrastructure to be monitored available); 
a final structural model (at instant "0" on which 
several boundary conditions are varied to simulate 
as many scenarios); 
▪ a sensor acquisition data system 
▪ a data transmission system 
▪ a soft computing system, where data, in form of 

static and dynamic displacements, feed a neural 
network 

▪ a visualization platform that displays early 
warning signals and predicted infrastructure 
behavior. 
 
 

 

 2 Materials and methods 
2.1 Case Study 

The proposed integrated infrastructure 
monitoring system was tested on the viaduct over 
the Petrace river (Fig. 1). The Petrace bridge is an 
imponent work that crosses the valley between the 
territories of Gioia Tauro and Palmi. The bridge 
runs at a height of >40 m above the river on a 
straight line, with spans supported by three arches, 
each in turn consisting of three arches side by side, 
set directly on the foundation works and connected 
in key, for a total length of 274 m. The deck, 
consisting in a single carriageway, is made with 
ribbed plates of reinforced concrete, with 
longitudinal and transversal ribs set together and 
supported by vertical uprights. The deck has a 
variable section, unloading on the three main arches. 
The three arches, with a tapered section towards the 
top, include a wider central arch and two side 
arches. 

 

 
Fig.1 – Petrace Bridge. 

 
2.1.1 Survey 
A DJI Inspire 1 drone (Figure 2) was used for the on-site 
inspection and for the acquisition of data used for the 
construction of the geometric 3D model. 
 

 
Fig.2 – Dji Inspire 1. 

 

This UAV weighs ~3 kg with battery and camera 
included. The camera has a 12.4MP sensor and 20 
mm focal length with the ability to record 4K videos 
at 30fps and 1080p videos at 60fps. The 20 mm 
camera objective provides a 94° wide angle field of 
view without distortion. The system also comes with 
a 3-axis gimbal for stabilization. 
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Analysis of images acquired by drone reveals 
several deterioration signs, which are partially 
visible even with the naked eye (fig. 3 4). 
Widespread degradation is testified by humidity 
stains and/or efflorescence, concrete deterioration, 
uncovered and oxidized ordinary steel reinforce-
ments of the arches, uprights and cantilevered parts 
of the decks, detachment of the edges and unco-
vering of the hooping brackets, and crawl spaces 
and areas with fine concrete matrix washout. 

 

 
Fig.3 - Visible deterioration. 

 
These deterioration signs are generically attribu-

table to the aggression of atmospheric agents and 
inadequate rainwater drainage, due to the absence of 
downspouts both in continuation of the collection 
vents and in correspondence with the ten joints that 
interrupt the spans. 

A 3D model of the viaduct has been constructed 
from the drone images using classic photogram-
metric techniques (SFM). After extracting the 
geometric characteristics from the 3D model, a 
static structural model has been implemented to 
identify possible critical issues emerging from static 
calculations. 

 
3 The sensor system detection 
The sensorial system is one of the most important 
elements of structural monitoring. The physical 
quantities considered for structural monitoring are 
of two types: 
- environmental parameters (wind, temperature, 

seismic activity), 
- structural responses (displacement, deformation, 

acceleration and inclination).  
A survey was carried out using WiseSensing 
(Datasheet v 2.0) sensors, which include: 
- Displacement and inclination sensors (fig. 4): 

used respectively to evaluate displacements and 
rotations of the structure. Displacement sensors 

are mainly used to monitor the sagging and 
widening of the edges of the lesions and the 
displacements of the joints, while inclinometers 
measure the relative rotation of whole sections. 

- Temperature and humidity sensors: installed 
respectively to monitor temperature and humidity 
gradients. They are also useful for verifying 
possible correlations with environmental parame-
ters. 

- Accelerometers: used to assess vibrations in terms 
of accelerometric histories. 

- Anemometers: used to monitor wind direction and 
speed. 

 

 

Fig.4 - Linear displacement sensor. 
 

The sensors were installed on pillars and beams 
(Figure 5). In our case, they provide three types of 
parameters: 1. Load sources: environmental (wind, 
seismic action) or artificial (traffic), 2. structural 
responses: displacement, deformation, acceleration 
and inclination, 3. Environmental effects: tempera-
ture, precipitation, humidity. 

 

 

Fig.5 - Sensor positioning. 
 

Selected sensor records are shown in Figs. 6,7,8. 
Acceleratiosn (figure 6) were calculated in steps of 
Δt = 5 ms. Recordings of the response associated 
with traffic for a total duration of the order of 60 
minutes were obtained for each measurement confi-
guration. 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2021.17.45

Vincenzo Barrile, Rossella Nocera, 
Salvatore Calcagno

E-ISSN: 2224-3496 469 Volume 17, 2021



 

Fig.6 – Accelerometer record. 
 

Humidity and temperature records are shown in 
fig.7, while  Figure 8 shows an inclinometer record. 

 

Fig.7 - Temperature measure. 

 

 

Fig.8 - Inclinometer measure. 
 

As mentioned above, direct displacement measu-
rements are particularly important for the monito-
ring phase. Displacement data were collected by a 
base station receiver (master station) placed near the 
viaduct. Communication antennas, on the other 
hand, are positioned inside the sensors and at other 
suitable points.  

Kinematic GPS data have been acquired in real 
time (RTK). We use a LEICA-GMX902 receiver 
(24-channel L1/L2 code and phase, 20Hz data rate, 

Smart Track technology for high precession, 1mm ± 
0.5ppm horizontal accuracy, 2mm ± 1ppm vertical 
accuracy). The GPS receivers are connected via 
Internet to the server. The coordinate components of 
each observation have been converted to a local 
bridge coordinate system (BCS) for analysis and 
evaluation procedures. In this coordinate system, the 
x-axis is aligned with the traffic direction and the z-
axis points to the vertical. GPS measurements were 
filtered by denoising the time series of the GPS 
receiver outputs after conversion to the local 
coordinate system [11, 27, 28]. Quasi-static 
movements of the pillars were calculated after 
application of a low-pass moving average (MA) 
filter with 0.025 Hz corner frequency for dynamic 
noise removal. (Fig.9).  

Fig. 9 shows examples of displacements measu-
red over time on a pillar (a) and on a point positio-
ned on the central span (b). 

(a) 

 
(b) 

 
Fig.9– GPS monitoring results: (a) pillar, (b) central 

span. 
 

The data acquired in tabular form at pre-set time 
intervals can be consulted from a remote location by 
anyone with access credentials. The processed time 
records of all sensors can be displayed graphically 
for immediate identification of possible anomalies. 
 
4 Structural model  
In order to obtain an initial model, it is necessary to 
train the neural network and then proceed with the 
forecasting phase of the infrastructure behavior over 
time, according to the following steps: 
- Acquisition of geometric and construction details 

from relief and 3D modeling obtained with the 
drone; 

- Estimation of mechanical properties of construc-
tion materials and soils through the project docu-
mentation.  

40

50

60

70

80

90

15

17

19

21

23

25

27

11-set 16-set 21-set 26-set

H
u

m
id

it
y 

[%
]

D
Eg

re
e 

[°
C

]

Temperature

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2021.17.45

Vincenzo Barrile, Rossella Nocera, 
Salvatore Calcagno

E-ISSN: 2224-3496 470 Volume 17, 2021



- Estimation of infrastructure loadings through the 
on-site sensor system; 

- Creation of the final structural model using FEM. 
In general, the static and dynamic behavior of 

bridges and viaducts can be investigated through a 
simplified Finite Element Model (FEM) based on 
1D elements (such as beams, trusses and rigid 
meshes) with properties equivalent to those of real 
elements. This simplification results in a significant 
reduction in the computational load and memory 
required for analysis. Furthermore, our choice of a 
simplified model is motivated by the observation 
that essential data on subsidence, is not presently 
available, since the bridge is considered stable. This 
prevents a direct comparison of the results obtained 
from the model with the time series collected by the 
sensors. Therefore, our aim is limited to methodolo-
gical tests, rather than a precise assessment of static 
issues. 

The simplified FEM provides only some infor-
mation on the overall behavior of the structure, 
useful in the preliminary design phase. More 
realistic models based on a finer discretization 
improve the accuracy of the final results but are 
computationally demanding, being therefore less 
suited to real-time processing. 

Depending on the model used, a distinction must 
be made between the design phase and the operation 
phase. Static and dynamic load actions are known 
during the design stage, and this theoretical know-
ledge is combined to obtain the prediction of the 
structural response under various conditions of 
interest (state of interest limit of service and last 
state limit). On the other hand, the structural 
response of existing manufacts to given stresses [22] 
must be measured in situ or estimated with labo-
ratory tests. In this case, contrary to the design 
phase, an unknown structural model must be 
determined from known stress responses. Accor-
dingly, the design and operation phase require 
forward and the inverse problem solutions, respecti-
vely. 

The main objective of monitoring is, in fact, to 
create a final model that can be used, for example, 
to analyze the behavior of the applied loads. For this 
purpose, a-priori information from monitoring must 
be combined with structural information obtained 
experimentally during inspections and from material 
tests [23, 24, 25]. The geometric model is built on 
dimensional data (e.g., project drawings, UAV 
surveys, Laser Scanner surveys). The structural 
model is obtained from an eligible software, and is 
unavoidably affected by errors arising from (1) 
discretization, (2) boundary conditions, and (3) 
material parameter uncertainties.  

One of the solutions proposed to overcome 
structural modeling errors (in particular those 
related to discretization) consists in implementing a 
so-called “final model” through the integration of 
geomatic surveys and structural monitoring. This 
final model enables to analyze the behavior of the 
structure under variable loads. The goodness of the 
final model can be evaluated by comparing detected 
stresses with those obtained during in-situ tests. 

Along with this solution, the final model of the 
Petrace viaduct has been obtained by integrating the 
finite element structural model (Fig. 10a) with the 
geomatic information extracted from the UAV-
based 3D model (Fig. 10b). The response 
characteristics of this concrete manufact are then 
derived from a structural dynamic analysis.  
(a) 

 
(b) 

 

Fig.10 - Structural models: (a) FEM (b) final model. 
 

Our model is characterized by the following 
assumptions: 
1. the arches, the vertical rafters, the deck trellis and 

the transversal connection elements the members 
were simulated using finite elements of 2-node 
beam where the deck slab is described by means 
of 4-node flat elements, equipped with both 
membranal and flexural stiffness; 

2. the specific weight of all linear elements (deck 
trellis, arches, rafters and transoms) was assumed 
to be 24.0 kN/m3 whereas for the deck plate a 
fictitious volume weight of 27.0 kN/m3 to take 
into account both the structural self-weight and 
the weight of the road pavement at the same time; 

3. a Poisson ratio of 0.20; 
4. the constraint at the base of the arches has been 

assimilated to a perfect joint; 
5. the deck at the ends is rigidly bound to the 

vertical and transverse translation where the 
effect of the longitudinal deformability of the 
asphalt packet that fills the gap between the 
abutments and the deck was simulated by means 
of elastic elements. 
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Next, we proceeded with a calculation of the 
response at the damage limit (Fig. 11), in order to 
verify whether the modelled structure reacts 
correctly to the applied loads or collapses.  

Considering the age of the viaduct and the 
analyzes carried out during the design check, we 
came to the conclusion that the infrastructure likely 
maintains an adequate capacity to absorb seismic 
actions up to the damage limit through the ductility 
of the resistant elements. Our simulations also 
predict that pillars are the elements with greater 
flexibility towards shear stresses and to a lesser 
extent towards bending stresses in the node sections, 
denoting an insufficient resistance to the limit state 
of collapse. The arch, on the other hand, possesses 
sufficient shear and bending capacity at the limit 
state of collapse. 

(a) 

 
(b) 

 
Fig.11 - Structural behavior at the damage limit: (a) 

f = 11.451, (b) f = 13.738. 
 

These simulations provided useful indications for 
optimal sensors placement, for the definition of 
early warning thresholds, and for infrastructure 
behavior predictions in ~800 different loading 
scenarios. 
 
4.1 Calculation of early warning thresholds 
Once the final model was built, ~1000 different 
scenarios were calculated by varying infrastructure 
loads, in order to obtain failure values and cor-
responding risk classes. Four risk classes have been 
identified according to these calculations: 
- Class A: Negligible risk. Infrastructures that do 

not show significant alterations or defects, (all 
elements are displayed in green on the platform). 

- Class B: Low risk. Infrastructures featuring some 
slightly defective elements (highlighted in yellow 
on the platform). 

- Class C: Moderate risk. The infrastructures 
belonging to this class contain elements with 
significant defects (highlighted in orange on the 
platform). 

- Class D: High risk. The infrastructures belonging 
to this class contain elements with very significant 
defects (highlighted in red color on the platform). 

Once the risk classes have been defined and  setting 
threshold values properly set, the proposed model 
can be used for early warning purposes. The system 
has been programmed in such a way that threshold 
values are compared with corresponding sensor 
records sent by the control unit to the central proces-
sing system consisting of a PC installed in the 
Geomatics Laboratory. An alarm is produced in case 
of threshold violations. 

Fig. 12 shows the assignment of individual risk 
classes for each measured element (pillars). In 
particular. In this case, green cells in the left table 
indicate a very low risk level, since all sensor data 
have never exceeded the preset threshold. The plot 
to the right shows the risk value (green line), the 
infrastructure displacement (blue line) and rotation 
(red line), and the resulting risk curve (purple line). 
 

 
Fig.12 – Early warning result. 

 

5 Infrastructure behaviour, predictive 
phase, and soft computing analysis  
From the structural model and available data, a 
neural network was implemented to obtain forecast 
values of infrastructure behavior as the measured 
displacements vary. FEM model parameters and 
measured loads have been used to create boundary 
conditions for hypothetical scenarios used to train 
the neural network on which the predictive system is 
based [13]. 

The database (Table 1) used for the training 
validation and testing phases has been constructed 
on the bases of the following elements: 
- geometric characteristics (e.g., piles, spans, bases, 

roadways, traffic islands, gutters, slabs, side-
walks, crossbars, parapets),  

- construction materials (e.g., pre-stressed reinfor-
ced concrete arches),  
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- permanent loads (structure weight, ground thrust, 
hydraulic thrust), and inserting as input evaluated 
variable data (settable and variable from time to 
time in the model) 

- the load parameters acting on the model 
- subsidence, rotation and bending data 
- risk levels (ranges between values thresholds) 

 

Table 1. Dataset used for training, validating, and 
testing 
 

 Scenario 1 … Scenario N 
Wind 4.14 kN/m2 … 2,18  
ADT 56.8 kN/m2 … 42  
Flow rate actions on piers 1.5 kN/m2 … 0,8  
Oscillations 0.007 m … 0.007  
Failures on bases 0.02 m … 0.002 
Failures on beams 0.05m … 0.002 
Failures on spans 0.12 m … 0.05 
Failures on abutments 0.06 m … 0.001 
Threshold level 2 … 1 

 
Once all model and displacement data are 

available, infrastructure behavior forecasts are 
generated using soft computing techniques. In our 
case, a suitable neural network has been imple-
mented using the Google Colab platform to execute 
codes in Python language. We built a 3-layer neural 
network with two input layers (displacements, 
loads), two hidden layers and one output layer. The 
number of nodes in the input layer is determined by 
the dimensionality of our data. Similarly, the num-
ber of nodes in the output layer is determined by the 
number of classes. The dimensionality (the number 
of nodes) of the hidden layer is a compromise 
between model flexibility, which increases with the 
number of nodes, and the limit imposed by the 
required computational power. A larger number of 
metrics also means that the output becomes more 
sensitive to input uncertainties. 

A back-propagation algorithm was used to 
implement the neural network. It was chosen 
because of its simplicity and its ability to extract 
useful information from the examples. The back-
propagation algorithm stores information implicitly 
in form of weights. The algorithm compares the 
output value of the system with the desired value 
(target) and modifies the synaptic weights of the 
neural network, making the set of output values 
progressively converge towards the desired ones. It 
was found to be much more performing than the 
feed-forward algorithms, whose output is determi-
ned only by the current input. 

The back-propagation algorithm is developed in 
two phases: an initial phase and a feedback phase. 

During the forward phase, the output of a layer is 
used as input for the next layer. A dataset composed 
both by the actions acting on the infrastructure and 
by the responses of the structure itself is used for 
this purpose. In this scheme, input values x represent 
the action (wind load, seismic activity, traffic) and 
structural responses (displacements), and the output 
y consists of two correlated values (y1 for the risk 
level and y2 for the displacement y2). Each neuron is 
activated by the weighted sum of all incoming 
signals A: 

A = x1 w1 + x2 w2 + …. +xn wn + b 

where b is a constant and w1…wn are the weights, 
while the output is given by  

y= 1

1+e−A
 

 
Starting from random values of w and b a first test is 
performed using input data with known output. The 
test error Δy is calculated as the difference between 
the known and calculated outputs. 

Traffic load conditions have been calculated 
from the average daily traffic, but we are working to 
obtain better estimates based on a numerical 
counter, as for instance the vehicular recognition 
system based on the Yolo neural network. For 
neural network training purposes, the risk levels 
were experimentally established by combining the 
loads of the different risk parameters on structural 
software. 
The same procedure cannot be applied to inter-
mediate levels of the network as the output level, 
because of the lack of known expected reference 
values. Therefore, the internal neuron weights, have 
been calculated by back-propagation in the second 
processing phase. This involves a backward path 
through the network, during which the error signal 
Δy (i.e., the difference between the desired and 
obtained output) is calculated and suitably propaga-
ted from the output layer to the input state. This 
operation yields new weights to be used for 
updating the neural network. Error propagation 
through all network and simultaneous adjustment of 
all connections between weights and bases brings 
the calculated output closer to the desired value. The 
back-propagation algorithm can be divided into two 
phases: (1) initialization of weights and bases, (2) 
presentation of the desired input/output pairs.  

The syntax for creating the network structure 
built on the Colab platform in Python language is 
very compact. The number of nodes that make up 
the hidden layers of the network can be easily varied 
to test various configurations and find the most 
performing one based on the characteristics of the 
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survey, while the number of neurons in the output 
layer must necessarily be equal to the number of 
outputs we want to get. It should be emphasized that 
only data generated by the model were used during 
the training phase, while the operating phase is 
based only on sensor data. 

An example of comparison between the expected 
displacelemt and corresponding value predicted by 
the neural network is shown in Fig. 13. 

 
Fig.13 - Comparison between expected and 

obtained result. 
 
This example shows a good adaptability of the 

predictive model, as seen by the small errors of 
predicted displacements variations with respect to 
measurements. 

 
5.1 Proposed system: processing, transmis-
sion e visualization 

The proposed system analyses various scenarios 
of infrastructure behaviour constructed on the basis 
of artificial (e.g., average daily traffic) and natural 
(wind, water flow around the piles, ground capacity) 
loads using the general architecture illustrate in 
Fig.14), which consists of: 
− a data acquisition system (UAV, GNSS, accelero-

metric sensors) 
− a data transmission system 
− a soft computing system that uses a suitable 

neural network both in the training phase (using 
the different infrastructure behaviour scenarios) 
and in the forecasting phase, which requires only 
static and dynamic displacement data to estimate 
the risk levels 

− a central system for data processing and visuali-
zation. 

 

 

Fig.14 - Process of acquisition, diagnosis, 
processing and data transmission. 

 
 
 
 
The monitoring system for the trasmission and 
visualization data (early warning and prediction 
phase) consists of three main steps: data acquisition, 
data processing, and structure diagnosis (figure 15). 

 

Fig.15 - Data transmission, from sensors to 
software. 

The data acquisition step makes use of sensors 
appropriately installed on the infrastructure. The 
acquired parameters (e.g., accelerations and displa-
cements) are compared with threshold values 
previously determined through structural analysis, in 
order to assess the risk level in early warning. 
Moreover, the same data are processed through a 
predictive neural network system and compared 
with the same threshold values to determine a 
possible future risk level. In both cases the warning 
signals are transmitted to a central server via con-
nection to local networks. 

The central server currently consists of a PC 
installed at the DICEAM Geomatics Laboratory of 
the Mediterranean University of Reggio Calabria, 
and is based on the following components: 
- A structural analysis software (RFEM) used for 

producing the final model 
- SQLite3 (C-language library) 
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- Google Colab (platform to execute code in Python 
language) used to implement the neural network 

- Pythontutor (web platform for viewing the code of 
strings and libraries) 

- Wordpad (software for reading .csv files) 
- Wordpress (web platform that allows monitoring 

platform) 
The connected sensors transmit the acquired data 

to the control unit through a ZigBee Wireless 
Protocol Stack. ZigBee protocols are designed for 
use in embedded applications that require a low 
transfer rate and low power consumption. The goal 
of ZigBee is to define a non-targeted, low-cost, self-
managing Wireless mesh network. The resulting 
network will have such low power consumption that 
it will be able to operate for one or two years using 
the embedded battery in individual nodes. The 
sensors are equipped with an on-board processor, 
which transmits only requested and pre-processed 
data, instead of sending raw data to the nodes 
responsible for data collection. 

Data are subsequently sent to the central server 
through the 4G LTE CAT-M1/NB-IoT internet 
network and stored on a Raspberry system through 
the SQLite C-language library, which is a DN 
engine (Version extended) lightweight, fast and 
compatible with Python. Sensor data are made avai-
lable on a daily basis through updates scheduled by 
a daily backup of the SQLite DB. A web server was 
also created to store data using the Python web.py 
library. Sever Web; the same is started on system 
boot. Daily measurement data are then exported to 
.csv files created within a single folder. Once all 
model and displacement data are available in .csv 
format, soft computing techniques provide a fore-
cast output value. 

At this point data processing continues with the 
following steps: 
- Early warning. Sensor outputs are compared with 

the data obtained from risk classes previously 
defined through the structural software) 

- Predictive phase. Forecast data (i.e., the displa-
cement y2) returned from the neural network is 
compared with risk class thresholds (y1 predicted 
by the neural network) in order to assign a risk 
class. 

The data processing phase is followed by the display 
phase. The same visualization platform, implemen-
ted in the WordPress® environment, is used for both 
for the Early Warning phase and for the structural 
behavior prediction phase. This platform integrates 
SSL security protocols, which provide a minimum 
level of online security, essential when transmitting 
sensitive information. 

For early warning purposes, the platform dis-
plays all sensor outputs in tabular form, followed by 
a color-coded box indicating the hazard status of the 
structural element on which the sensor is installed 
(Fig. 12). The predictive system display includes, in 
addition to measured displacement values and plots, 
also the values predicted by the neural network, 
along with the corresponding risk classes. 
Infrastructure components (e.g., beams, pillars, 
spans, bases) are represented using colors corres-
ponding to their predicted risk class: green (very 
low), yellow (low), orange (high), and red (very 
high) (Figure 13) 

An example of the system response visualization 
for early warning and predictive phase results is 
shown in Fig. 16. A comparison between measured 
and predicted displacements is shown on the right. 
A plot of real-time sensor outputs and a table sensor 
readings and associated risk classes for each struc-
tural element monitored are shown on the left as 
part of the predictive phase, along with a plot of the 
risk curve and the threshold values obtained from 
the finite element structural analysis illustrated in 
Section 3. 
 

 
Fig.16 - Monitor screen. 

4 Conclusions 
We have examined different aspects of the infras-
tructure monitoring problem. The structural model 
used in this trial represents a simplified version of a 
complete monitoring system. Improvements include 
a more complex structural model, based on variable 
loads, and validation on a test infrastructure where 
more important displacements can be monitored. To 
date, the trained neural network has been calibrated 
for 24-hours displacement predictions (scenario 
n+1), in a four-week cycle (really close to the early 
warning signal). 

Further checks are needed to verify the forecast 
reliability, since both the training and the test phase 
took place on a virtual model, without comparisons 
with the real behavior of the infrastructure, which, 
in this case, is not affected by critical displacements 
required for a complete test. 

An improved system based on more detailed 
structural models enables low-cost monitoring of 
infrastructures at a significantly reduced cost. Our 
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research therefore aims at providing a proactive 
contribution to the solution of problems related to 
infrastructure monitoring and management using 
alternative methods. We believe that the ability to 
infer the behavior of the entire infrastructure from 
monitoring of selected parameters (e.g., displace-
ments, can be of great interests for institutions 
dealing with limited maintenance resources, as well 
as providing an excellent instrument for guaran-
teeing the safety of end users. 
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