Skip to main content

Open Access Quercetin Induces p53-Independent Apoptosis in Human Prostate Cancer Cells by Modulating Bcl-2-Related Proteins: A Possible Mediation by IGFBP-3

Quercetin, a flavonoid found in onion, grapes, green vegetables, etc., has been shown to possess potent antiproliferative effects against various malignant cells. We report insulin-like growth factor-binding protein-3 (IGFBP-3) as an effector of quercetin-induced apoptosis in human prostate cancer cell lines in a p53-independent manner. We evaluated the production of IGFBP-3 in quercetin-treated cells. Apoptosis was studied in quercetin-treated cells to study the IGFBP-3-mediated role with flow cytometry and DNA fragmentation. Protein expressions of Bcl-2, Bcl-xL, and Bax were studied by Western blot. Increased production of IGFBP-3 was associated with the increased ratio of proapoptotic to antiapoptotic members of the Bcl-2 family. In quercetin-treated PC-3 cells, an increase in Bax protein expression and a decrease in Bcl-xL protein and Bcl-2 protein were observed. As PC-3 is a p53-negative cell line, these modulations of proapoptotic proteins and induction of apoptosis were independent of p53. The level of IGFBP-3 on the response of PC-3 cells to quercetin was examined. There was a twofold increase in IGFBP-3 level in conditioned media of 100 μM quercetin-treated cells. Quercetin also brought a peak at sub-G1 in PC-3 cells. Thus, increased level of IGFBP-3 was associated with increased proapoptotic proteins and apoptosis in response to quercetin, suggesting it may be a p53-independent effector of apoptosis in prostate cancer cells via its modulation of the Bax/Bcl-2 protein ratio.

Keywords: Apoptosis; Bcl-2 protein; Insulin-like growth factor binding protein-3 (IGFBP-3); Quercetin

Document Type: Research Article

Affiliations: 1: Department of Endocrinology, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, India 2: School of Anatomy and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia

Publication date: 01 February 2006

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.

    From Volume 23, Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics is Open Access under the terms of the Creative Commons CC BY-NC-ND license.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content