Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1503-1509    DOI: 10.3724/SP.J.1037.2012.00381
  论文 本期目录 | 过刊浏览 |
敏化温度对SAF2304双相不锈钢耐局部腐蚀性能的影响
郭丽芳1,李旭晏1,孙涛1,徐菊良1,李劲1,2,蒋益明1
1. 复旦大学材料科学系, 上海 200433
2. 中国科学金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304
GUO Lifang 1, LI Xuyan 1, SUN Tao 1, XU Juliang 1, LI Jin 1,2, JIANG Yiming 1
1. Department of Materials Science, Fudan University, Shanghai 200433
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

郭丽芳 李旭晏 孙涛 徐菊良 李劲 蒋益明. 敏化温度对SAF2304双相不锈钢耐局部腐蚀性能的影响[J]. 金属学报, 2012, 48(12): 1503-1509.
GUO Lifang LI Xuyan SUN Tao XU Juliang LI Jin JIANG Yiming. THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304[J]. Acta Metall Sin, 2012, 48(12): 1503-1509.

全文: PDF(2103 KB)  
摘要: 

用双环电化学动电位再活化法(DL-EPR)和临界点蚀温度(CPT)分别评价了在不同温度(600-950℃)下敏化处理2 h对SAF2304双相不锈钢的耐晶间腐蚀性能和耐点蚀性能的影响, 并通过电化学蚀刻技术结合SEM对材料的微观组织演变进行了表征. 结果表明, 随着敏化温度的升高, SAF2304双相不锈钢的耐晶间腐蚀性能和耐点蚀性能都是先变差后增强, 在700和750 ℃下敏化处理2 h后其耐局部腐蚀性能最差. 对材料微观组织形貌的表征显示, Cr2N的析出及其周边贫Cr区的形成是导致材料耐蚀性能下降的主要原因.

关键词 2304双相不锈钢 晶间腐蚀 点蚀 敏化温度    
Abstract

Duplex stainless steels (DSS), characterized by a two–phase microstructure of ferrite (α) and austenite (γ), have an attractive combination of mechanical strength and corrosion resistance in various aggressive environment. DSS SAF2304 shows wide application potential due to its lower cost compared with conventional DSS and better corrosion performance than austenite steel. However, precipitations of detrimental phases inevitably occur when DSS is heated to temperatures ranging from 300 ℃ to 1000 ℃ during manufacturing and welding procedures. These precipitations will lead to the reduction of corrosion resistance of DSS due to the presence of chromium–depleted zones around them. This work investigates the influence of sensitive temperature on the localized corrosion resistance of DSS SAF2304. The resistances to intergranular corrosion and pitting corrosion of DSS SAF2304 annealed at various temperatures ranging from 600 ℃ to 950 ℃ for 2 h were investigated by means of double loop electrochemical potentiodynamic reactivation (DL–EPR) technique in a solution of 1 mol/L H2SO4+1 mol/L HCl+0.2 mol/L NaCl at 30 ℃ with a scanning rate of 1.667 mV/s and critical pitting corrosion temperature (CPT) technique in a solution of 1 mol/L NaCl with a rising rate of 1 ℃/min, respectively. The morphologies and microstructures of the specimens after electrolytic etching in 30%KOH, oxalic acid and potassium metabisulfite were characterized by OM and SEM techniques. A same trend was observed by the different evaluating techniques, which suggested that both of the resistances of intergranular corrosion and pitting corrosion of DSS SAF2304 decreased with the annealing temperature increased from 600 ℃ to 700 ℃, while a contrary trend was found from 750 ℃ to 950 ℃. In particular, the samples annealed at 700 and 750 ℃ suffered the severest corrosion. The relationship between microstructure and localized corrosion resistance was revealed by the evolution of the microstructure, and it was found that the deterioration of the resistance to localized corrosion was due to the formation of chromium–depleted zones around the precipitation of Cr2N.

Key wordsduplex stainless steel 2304    intergranular corrosion    pitting corrosion    sensitive temperature
收稿日期: 2012-06-28     
ZTFLH:  TG172.8  
基金资助:

国家自然科学基金项目51071049, 51134010和51131008资助

作者简介: 郭丽芳, 女, 1988年生, 硕士生

[1] Solomon H D, Devine T M. In: Lula R A ed., Proc Conf on Duplex Stainless Steels, Metals Park, Ohio: American Society for Metals, 1983: 693

[2] Olsson J O, Groth H L. Desalination, 1994; 97: 67

[3] Olsson J, Snis M. Desalination, 2007; 205: 104

[4] Zhang Z Y, Han D, Jiang Y M, Shi C, Li J. Nucl Eng Des, 2012; 243: 56

[5] Straffelini G, Baldo S, Calliari I. Metall Mater Trans, 2009; 40A: 2616

[6] Garzon C M, Ramirez A J. Acta Mater, 2006; 54: 3321

[7] Kobayashi D Y, Wolynec S. Mater Res, 1999; 2: 239

[8] Duprez L, De Cooman B, Akdut N. Steel Res, 2000; 71: 417

[9] Chen T H, Weng K L, Yang J R. Mater Sci Eng, 2002; A338: 259

[10] Wilms M E, Gadgil V J, Krougman J M, Ijsseling F P. Corros Sci, 1994; 36: 871

[11] Lopez N, Cid M, Puiggali M. Corros Sci, 1999; 41: 1615

[12] Nilsson J O. Mater Sci Technol, 1992; 8: 685

[13] King A, Johnson G, Engelberg D. Science, 2008; 321: 382

[14] Bohni H. Langmuir, 1987; 3: 924

[15] Bastos I N, Tavares S S, Dalard F, Nogueira R P. Scr Mater, 2007; 57: 913

[16] Buhler H E, Gerlach L, Greven O, Bleck W. Corros Sci, 2003; 45: 2325

[17] Lopez N, Cid M, Puiggali M, Azkarate I, Pelayo A. Mater Sci Eng, 1997; A229: 123

[18] Jin W S, Lang Y P, Rong F, Sun L J. J Chin Soc Corros Prot, 2007; 27: 54

(金维松, 郎宇平, 荣凡, 孙力军. 中国腐蚀与防护学报, 2007; 27: 54)

[19] Deng B, Jiang Y M, Gong J, Zhong C, Gao J, Li J. Electrochim Acta, 2008; 53: 5220

[20] Ovarfort R. Corros Sci, 1989; 29: 987

[21] Brigham R J, Tozer E W. Corrosion, 1973; 29: 33

[22] Moayed M H, Newman R C. Corros Sci, 2006; 48: 1004

[23] Garfias–Mesias L F, Sykes J M. Corros Sci, 1999; 41: 959

[24] Li S S. Corros Sci Technol Prot, 2000; 12: 288

(李神速. 腐蚀科学与防护技术, 2000; 12: 288)

[25] Schwind M, Kallqvist J, Nilsson J O. Acta Mater, 2000; 48: 2473

[26] Fargas G, Anglada M, Mateo A. J Mater Process Technol, 2009; 209: 1770

[27] Gao J, Jiang Y, Deng B, Ge Z, Li J. Electrochim Acta, 2010; 55: 4837

[28] Ebrahimi N, Momeni M, Moayed M H, Davoodi A. Corros Sci, 2011; 53: 637

[29] Deng B, Jiang Y, Xu J, Sun T, Gao J, Zhang L, Zhang W, Li J. Corros Sci, 2010; 52: 969

[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[5] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[6] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[7] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[8] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[9] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[10] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[11] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[12] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[13] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[14] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[15] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.