
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-2S3, December 2019

48

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10121292S319/2019©BEIESP

DOI: 10.35940/ijitee.B1012.1292S319

Abstract: : Recently, IT has popularized the term high

performance computing. In STEM High Performance

Computing is used not only to model complicated calculations,

but also to improve the applications, reduce costs and reduce

development times, in order to solve large problems, in a much

higher level of performance than a normal computer. In simple

terms, the memory computing primarily relies on keeping data

in the RAM as storage implies at high speeds. The HPC allows

big data to be processed as quickly as possible.

Keywords : Big Data,High Performance , Apache Ignite,

RAM

I. INTRODUCTION

High- powerful calculations are used not only to measure

complex calculations, but also to boost application

performance. HPC facilitates as fast as possible the storage of

large data. By using several computers together, we can

achieve 3-4 times the performance of a system in one cluster.

Flash storage such as SSDs can work if we need a 5-6x

improvement in performance.. But if we need more than 10

times the speed of the performance, we need to look for a

different solution: computer in memory. The high-efficiency

cloud application provides support for simplified data

parallel applications [7], physical applications [5]. Several

studies and research are being improved [6]. Apache Ignite

provides a simple interface for programmers to work in

real-time for large-scale data sets and other facets of storage

computing. Ignite provides Information Center, Virtual

Cloud, Network Portal, Grid Sharing, and Big Data

Accelerator. By adding additional nodes, a Ignite Cluster

setup may increase horizontally. The RDBMS Ignite Grid is

able to persist in cache, even in NoSQL cache.

Ignite promotes Cache as an organization-wide service that

provides multiple applications with access to maintained

in-memory cache rather than a disk dependent server. High

efficiency Apache Hadoop accelerator. In order to improve

the performance of all big data analyses projects, the Apache

Hadoop job tracker and IGFS can be replaced by Ignite.

Distributed computing: Ignite offers easy mechanisms for

moving computational and information for higher

performance across the network. Streaming: Ignite allows to

use continuous streams of information.

Revised Manuscript Received on December 13, 2019.

* Correspondence Author

Chaya Shivalingegowda, Asst. Professor, Dept. of ECE, Kalsekar

Engineering College, New Panvel, Mumbai, India.

Srinivas Chevula, Dept. of Electromics and Telecommunication

engineering, , AIKTC, Mumbai, India

Prof. P V Y Jayasree, Dept. of EECE, GIT, GITAM, Visakhapatnam,

A.P, India.

Fig .1 Architecture overview of Ignite

The Ignite architecture has advanced features that can be

used in a large number of different architectural patterns and

styles. We can see Ignite as a collection of in-memory

components to improve the performance and scalability of

the application. The Fig.1 schematic represents the basic

functionalities of Ignite.

Ignite design implies that the entire system itself is both

inherently available and massively scalable. Its internode

communication allows all nodes to receive updates without

the need for a master coordinator quickly. Systems can be

modified to increase the amount of RAM.

With this approach, it can perform on the same JVM with the

application. Ignite server run along with the application in

the same JVM and joins with other nodes of the grid. If the

application shuts down, its node can operate on the same

JVM as the request with this form. With the application the

Ignite server runs in the same JVM and adds to the other grid

nodes. Ignite server also shuts off if the application is shut

down. Client nodes operate in another JVM, and user nodes

are linked to servers on a remote basis. It provides three

different approaches to caching topology: Partitioned,

Replicated and Local. The default cache topology is

partitioned, without any backup option. In partitioned

caching topology Ignite cluster partitions the cached data to

distribute the load across the cluster. By partitioning the data

evenly, the size of the cache and the processing power grows

linearly with the size of the cluster. The responsibility for

managing the data is automatically shared across the cluster.

Every node or server in the cluster contains its primary data

with a backup copy if defined. In the replicated caching

topology, the goal here is to get extreme performance. This

technique replicates cache information for all cluster

participants. The information can be used without any wait

since it is distributed to every cluster node. It guarantees

optimum read-access speed; each participant may access the

data from his or her own memory.

High-Performance Computing using Apache

Ignite Hadoop Accelerator

Chaya Shivalingegowda, Srinivas Chevula, V. Y. Jaya Sree

High-Performance Computing using Apache Ignite Hadoop Accelerator

49

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10121292S319/2019©BEIESP

DOI: 10.35940/ijitee.B1012.1292S319

The downside is that frequently written documents are very

costly. Using the new version to update a distributed buffer.

With this approach, cache data is replicated to all members

of the cluster. Since the data is replicated to each cluster

node, it is available for use without any waiting. This

provides highest possible speed for read-access; each

member accesses the data from its own memory. The

disadvantage is that frequent writes are very expensive.

Updating a replicated cache requires using the new version to

all other cluster members.

A. Distributed Key-Value Store

Ignite gives different API and can be used as a pure in

memory store. Different nodes in the cluster system store

different parts of the indexes and data. Ignite provides

different APIs and can be used in memory storage for simple

purposes. Also, Ignite can store data in memory as well as on

the disk, and thus more data can be stored than using just the

secondary storages.

B. Co-locate Processing

The traditional systems use the client server way, where it

fetches data from the server to client and here it gets

processed. This way moving data from network is very

expensive operation. A better way is to co-locate which get

the processing to the servers where the computations take

place. Thus avoiding expensive network round trips. The

traditional systems use the client server way, where data is

collected from the server to the client and processed here.

This is a very difficult way to move information from a

network. A better way is to co-locate the servers where

calculations are carried out with processing. Thus, costly

network trips are avoided.

C. ACID Transactions

Ignite supports fully distributed ACID transactions. It applies

to both the in memory store as well as the secondary storages.

Transaction in Ignite can span multiple cluster nodes, caches

(aka. tables) and partitions. The purpose of this to propagate

updates to the disk in the append-only mode, which is the

fastest way to persist data to disk. It provides a recovery

mechanism for failure scenarios when a single node or the

whole cluster go down. A system can be recalled to the latest

successfully transactions.

D. Machine Learning

Ignite Machine Learning (ML) tools allow using different

models without the need for costly data handling and

transfers. Ignite ML depends on durable memory that gets

huge scalability for machine learning computations and

removes the time required for Extract, Load and transform. It

allows machine learning training and concludes directly on

data stored across the systems. Next, Ignite provides a host of

Machine learning procedures that can be used for Ignite's

collocated distributed processing. These use-cases provide in

memory speeds and massive storage space for incoming data,

without requiring the data to be moved into another store.

Thus this can be used for real time machine learning

analytics.

Fig 2. Real Time Machine learning Analytics

E. Data Loading and Streaming

Ignite data loading and streaming capabilities allow

ingesting large finite as well as never-ending volumes of data

in a scalable and fault-tolerant way into the cluster. The rate

at which data can be injected into Ignite is very high.

Ignite data loading and streaming technologies enable

massive, finite and never-ending amounts of information to

be absorbed into the cluster in an elastic and defect resistant

manner. In a moderately large cluster, the rate at which

information is injected in the ignite is very high and easily

exceeds millions of events per second. Server systems use

Ignite Data to move flows (finite or continuous) of

information to Ignite. In addition, a moderately large cluster

can easily overcome millions of events per second. Using

Ignite Data Streamers[4], client systems are transferring the

streams (finite or continuous) of data into Ignite. Data is

automatically partitioned into nodes, and the same amount of

data is allocated to each node. Streaming data can be

processed in a co-located manner directly on the Ignite data

nodes.

F. System Parameters

Intel Xeon (R) CPU E5 v4 @ 2.20GHThread(s) per core:

1Core(s) per socket: 22Socket(s): 2 RAM size: 62GB

Secondary storage: 1TB SSD Cache layers: L1, L2, L3

G. Different types of benchmark tests performed:

There exist several kind of benchmark test to test the

performance of high performance computing. Few of them

are explain in text briefly:

II. RESULTS

We perform several simulation using apache ignite to test the

performance. When running the benchmark for just 1 client

thread and 10 jobs, the CPU has utilized around 2%, and

the average number of operations were around 1559/sec

when the numbers of client threads were increased to 256,

the CPU utilization was around 38% and throughput was

around 90549 op/sec.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-2S3, December 2019

50

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10121292S319/2019©BEIESP

DOI: 10.35940/ijitee.B1012.1292S319

Fig 3. CPU Utilization around 2%

Fig 4. CPU Utilization around 38%

Fig 5. CPU usage paging and Memory Usage

Fig 6. CPU usage paging and Memory Usage

III. OPTIMAL PERFORMANCE CACHEPUTGET

BENCHMARK

In almost all cases, 1 or 2 cores were getting utilized ~95%

(60 user + 35 sys), rest all cores (42) were idle at around

75%.Cache Mode: Partitioned, Atomicity

Mode:Atomic,Page Size : 4KB Execution time: 300 secs

IV. INTEGRATION OF APACHE IGNITE WITH

APACHE KAFKA STREAMER

Apache Kafka is an open source distributed framework and

can be used for building real time data pipeline and

streaming apps. To analyze the number of messages that can

be streamed into a partitioned Ignite Cache use

configurations that yields maximum throughput. Apache

Kafka is a distributed open source frame that can be used to

build real-time data pipelines and stream applications. In

order to analyze the number of messages to be streamed in a

partitioned Ignite Cache, use configurations that provide

maximum performance. Apache Ignite Kafka Streamer

supports synchronization from the cache Kafka to the server

Ignite. Both the two approaches used in this streaming can be

used:

• use Ignite sink to link Kafka Connected functionality;

• importing the Kafka Streamer unit into the Maven project

and instanting KafkaStreamer for data streaming

Stream data with Kafka connect

Ignite Sink Connector helps to put data from Kafka to Ignite

and the procedure is as following:

Fig 7. Kafka Streamer for data streaming

High-Performance Computing using Apache Ignite Hadoop Accelerator

51

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10121292S319/2019©BEIESP

DOI: 10.35940/ijitee.B1012.1292S319

V. SETTING UP AND RUNNING

1. Put the jar files on Kafka's classpath

2. Prepare worker configurations

3. Prepare connector configurations

APACHE IGNITE HADOOP ACCELERATOR

Apache Ignite Hadoop Accelerator provides a set of modules

that enable Hadoop job execution and the running of your

File System. Ignite In-Memory MapReduce enables the

storage of information that is processed in a Hadoop File

System to be easily paralleled. It eliminates the overhead

associated with job-trackers, task-trackers and low-latency,

HPC-style distributes. First, Ignite delivers a range of

machine learning techniques which can be used for the

decentralized storage of Ignite. Such case stores have large

storage room to accept information at memory levels without

the need to transfer the data to a different store. It can

therefore be used for deep learning research in real time.

VI. CONCLUSION

We have benchmarked Apache Ignite and analyzed scenarios

where Ignite results in optimized performance, which can

eventually be used in different use-cases, a couple of them

being with Apache Kafka live data streamers and Apache

Hadoop file systems and MapReduce jobs. We have also

studied some constraints holding for our scheme. ACID

transactions in pure in-memory distributed state being one of

them.

 Ignite proves to be very efficient as compared to other

in-memory platforms and improves streaming/distributed

data of clusters’ access considerably.

Purely in-memory asynchronous ACID transfers are one of

them. Ignite is highly effective than other in-memory systems

and greatly facilitates the streaming / distribution of cluster

data.

REFERENCES

1. Santos, Adrián, Francisco Almeida, and Vicente Blanco. "Lightweight

web services for high performace computing." European Conference on

Software Architecture. Springer, Berlin, Heidelberg, 2007..

2. Distributed Persistence Ignite

https://ignite.apache.org/arch/persistence.html

3. In-Memory Database Ignite

https://ignite.apache.org/use-cases/database/in-memory-database.html

4. Data Streamers Stream large amounts of data into Ignite

caches.https://apacheignite.readme.io/docs/data-streamers

5. Zavala-Aké, J. Miguel. "A high-performace computing tool for

partitioned multi-physics applications." (2018).

6. LI, Cheng-hua, et al. "MapReduce: A new programming model for

distributed parallel computing [J]." Computer Engineering & Science 3

(2011): 026.

https://ignite.apache.org/arch/persistence.html
https://ignite.apache.org/use-cases/database/in-memory-database.html

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-2S3, December 2019

52

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10121292S319/2019©BEIESP

DOI: 10.35940/ijitee.B1012.1292S319

7. Bingxiang, Gui, and Feng Hongcai. "An New Data Parallelism Approach

with High Performace Clouds." 2009 Pacific-Asia Conference on

Circuits, Communications and Systems. IEEE, 2009

AUTHORS PROFILE

 Chaya.S, Now Ph. D Research scholar (part time) at the

Electronics & Communication Department of GITAM

Vizag. She has a Assisitant professor at the New Panvel,

Mumbai, Kalsekar Engineering College.

 Mr.Srinivas Chevula is student of AIKTC in

Electronics & Telecommunication completing his degree in

2020 from Mumbai University.His Area of Interset is

DataScience and MAchine Learning.

P.V.Y Jayasree received the B.E degree in Electronics

and Communication Engineering from GITAM University,

Andhra Pradesh, India, in 1989, Master Degree in

Electronic Engineering from Andhra University, Vizag, AP,

India in 1999, and Ph.D degree in EMI EMC from JNTU

Kakinada, India in 2010. She is currently Professor, Head of

Department of Electrical Electronics and Communication

Engineering with GITAM Univeristy, Visakhapatnam, AP, India. She has

author or co-author over 32 Journal Papers and 35 conference papers. She has

co-authored 7 books. Her current research interests includes antenna design for

5G applications, tunnel FET, microwave passive circuits and components, low

power SRAM cell design, and phased array antennas. Dr. P.V.Y. Jayasree has

been the Chair of Board of Studies with GITAM University since 2018.

