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 

Abstract: Massive MIMO-OFDM system is proved to be an 

effective and most sustainable technology to forthcoming 

applications of 5G wireless communications. It furnished 

significant gains that facilitate a higher number of user 

connections at high data rates with improved latency and 

reliability. To achieve accurate channel knowledge, lessen pilot 

overhead is necessary. To resolve this problem, one of the favorite 

approaches is compressed sensing. Sparse channel estimation 

develops the essential sparsity between the communicating 

channels that can be improved by the channel estimation efficacy 

with lower pilot overhead. To achieve this, non-zero vector 

distribution can be taking into consideration the Gaussian 

mixture accordingly, learn their characteristics towards the 

expectation-maximization procedure. The results of simulation 

have proved the performance of proposed estimation approach of 

channel keeping with minimum pilot overhead and developed 

exceptional symbol error rate (SER) performance of the system. 

 

Index Terms:Massive MIMO-OFDM,Gaussian Mixture, 

Approximate message passing, Channel estimation Compressed 

sensing.  

I. INTRODUCTION 

The Massive MIMO-OFDM is preeminent and 

supportive technology to 5G wireless applications that has to 

maintain excellent data rate and accuracy [1]. To achieve 

these eminent properties, knowledge of channel information 

is a most challenging issue in massive MIMO-OFDM 

systems, therefore, it is necessary to apply relevant 

estimation techniques to channels between all transmitting 

and receiving antennas accordingly. In this connection, by 

the use of proper training sequence design one can acquire 

accurate channel estimation [6,7]. However, with the help of 

least square (LS) or minimum mean square error (MMSE) 

methods to estimate the channel, they are non-supportive for 

adequate performance due to high computational complexity. 

In general, communicating channels are sparse inherently; 

however, the majority of channels viewed as zero coefficients 

at channel impulse response (CIR). With a focus on channel 

sparsity, we implemented the compressed sensing-Aided 

(CS-Aided) method to characterize the channel properties of 

the massive MIMO-OFDM model [1]. The key advantage of 

the proposed approach needs fewer pilots than conventional 

methods. Many of the researches focused on different Greedy 
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algorithms and Bayesian compressed sensing (BCS) methods 

[16] which are used to determine the channel estimation onto 

the concentrated system model. Nonetheless, channel 

sparsity level is to point out as prior information at the 

receiving side. 

The sparsity adaptive matching pursuit (SAMP) provides 

high performance at a wide range of practical applications 

without channel sparsity. However, there is inconsistency 

between convergence speed and recovery accuracy because 

SAMP has maintained a constant step size [2, 3]. OFDM is 

one of the modulating systems that provide to mitigate 

interference and crosstalk resulting from the conversion of 

the serial data stream into parallel data stream at different 

frequencies. OFDM massive MIMO compressed sensing 

based channel estimation is set as sparse and dense vectors. 

These vectors are a combination of zero and nonzero vectors 

respectively. On the perfect sparse recovery, the sparse signal 

is reconstructed through the support of the LS technique [12]. 

The expectation-maximization (EM) steps are established 

to accomplish quantities of estimation following a Gaussian 

mixture model. Furthermore, the generalized approximate 

message passing (GAMP) which is an active algorithm in 

i.i.d distributed random signal [14] is exploiting to develop 

the expectation step and also mitigate computational 

complexity. The fast iterative truncation algorithm (FITRA) 

which is for sparse representation that was elaborated in [8], 

which found that it has a significant possible convergence 

rate, provided a regularization parameter to achieve the MUI 

cancellation and also standardize the functioning of the 

algorithm. In current work, we established and compared 

with a renewed compressed sensing aided over Gaussian 

mixture algorithms for downlink massive MIMO-OFDM 

systems with a reference of ZF pre-coding technique 

respectively. To estimate the error performance, the truncated 

and Bernoulli Gaussian mixture procedures are considered 

and entrusted to the unknown signal.  

Simulated results found that the suggested algorithms 

provide a substantial improvement in terms of computational 

difficulties. The remainder part of this work is partitioned as 

per the following. Second Section discusses downlink and 

estimation models of noise. The third section covers training 

sequence design and the principle of estimation to existing 

technique, the fourth section discusses OMP and Bayesian 

approaches, fifth section practical issues and finally sixth 

section concludes. 
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II. OFDM-BASED MASSIVE MIMO 

Let the Base Station (BS) have M transmitting probes and 

provide K independently single element 

antennaesystem(𝑀 ≫ 1), and the total OFDM pilot tones 

Nthat are assumed in figure 1. Indeed, the set of accessible 

pilot tones are separated into data transmission and guard 

band. Therefore, every pilot tone of the corresponding 𝐾 × 1 

signal vector of𝑥 𝑛 , that includes pilot symbols of K users 

and of corresponding 𝑛𝑡ℎ transmission symbol time with the 

data vector to satisfy 𝔼  x(𝑛) 2
2 = 1.In accordance with 

pilot tone is to be set as𝑥 𝑛 = 0𝐾×1. Consequently, there is 

no way to exist the signal within the guard band. Now, take 

into consideration Zero-Force (ZF) pre-coding spatial signal 

approach for removal of multi-user interference (MUI) at BS 

because collaborative sensing across the users is much 

complicated. 

The pre-coding sparse signal vector on the 𝑛𝑡ℎ  pilot tone can 
be expressed as 

 

         𝒔(𝑛) = 𝑷(𝑛)𝑥 𝑛       (1) 

 

Where 𝒔(𝑛) ∈ ℂ𝑀×1  and 𝑷(𝑛) ∈ ℂ𝑀×𝐾 are precoded vector 

of 𝑛𝑡ℎ  sub-carrier of M antennas and pre-coding channel 

matrix of 𝑛𝑡ℎ  OFDM pilot tone respectively. In view of the 

fact that  𝐾 ≪ 𝑀, the ZF pre-coding spatial channel vector 

matrix is expressed by 

 

𝑷𝑛
𝑍𝐹 = 𝑿𝑛

𝐻(𝑿𝑛𝑿𝑛
𝐻)−1         (2) 

 

here𝑷𝑛
𝑍𝐹provides the inverse and of pseudo-inverse of 𝑷 𝑛  

of 𝑛𝑡ℎ  pilot tone in MIMO channel vector matrix. Then after 

pre-coding, every pre-coded vector 𝐡 𝑛 is rearranged by M 

antennae to the downlink OFDM conversion such as 

 

 𝒂1 …𝒂𝑀 =  𝐡1 …𝐡𝑀 
𝑇            (3) 

 

Here 𝐡𝑚 ∈ ℂ𝑁×1 denotes the frequency-domain samples at 

the 𝑚𝑡ℎantennae. Signals of time-domain can be achieved by 
the result of inverse discrete Fourier transform (IDFT). 

Thereafter, overcome the inter symbol interference (ISI) by 

inserting cyclic prefix (CP) to the corresponding 
time-domain signals of respective antennas. Finally these 

time varying quantity signals are changed as analog signals 

for channel transmission.  

After eliminating the CPs, the Discrete Fourier Transform 

(DFT) serves to achieve the frequency-domain signals. The 

transformed received vector of N-point DFT inclusive of K 

user signals are represented by 

 

𝐅 𝑛 =
1

 𝑁
exp

 −
𝑗2πn

𝑁
 
         0 ≤ 𝑛 ≤ 𝑁 − 1 (4) 

 

The signal corresponds to K user symbols expressed as 

 

𝒚 𝑛 = 𝐗(𝑛)𝐡 𝑛 + 𝒛 𝑛            (5) 
 

Where 𝐗 𝑛 and 𝐡 𝑛 are the vectors for channel belongs 

toℂ𝑁×1 and 𝒛 𝑛  is the receiver noise corresponding to𝑛𝑡ℎ  
transmitted symbol.  

 

The received signal vector appears error free MUI signal as 

𝒚 𝑛 = 𝐡 𝑛 + 𝒛 𝑛 , while adding of equation (1),(2) and 

(4) which is to be involved ZF pre-coding scheme [17]. 

The transmitted pilots of 𝑛𝑡ℎ  antenna can be expressed 

as (𝐗𝑃 = 𝐗𝑝1
, 𝐗𝑝2

, … , 𝐗𝑝𝑁𝑃
)𝑇 ∈ ℂ𝑁𝑃×1 , where 

[𝑝1 , 𝑝2 , … , 𝑝𝑁𝑃 ] representation of a pilot location. The signal 

received at the 𝑛𝑡ℎ  antenna can be denoted as  
       

𝒚 𝑛 =  diag

𝐿

𝑖=1

𝐅 𝑛 𝒔 𝑛 + 𝒛 𝑛                           (6) 

 

In this system model we consider  256 Base station 

antennas operates with 128 antenna users and 16-QAM 

constellation is used with 32 OFDM pilot tones. Due to 

hundreds of transmit antennas at BS, explicitly degrades their 

channels performance, and also causes high pilot overhead to 

estimatethe channels. Accordingly, it is necessary to mitigate 

the high pilot overhead in employing system towards higher 

datarates. 

III. CS-BASED CHANNEL ESTIMATION 

Consider generated DFT signal (Frequency domain) 

matrix and additive noise of massive MIMO-OFDM model 

of 𝑛𝑡ℎ  antenna that is denoted as 

 

𝒚𝑃 =  diag

𝐿

𝑖=1

(𝐗𝑃)𝐅𝑃𝐡𝑛 + 𝒛𝑃                            (7) 

 

To estimate unknown vector 𝐡𝑛  of massive 

MIMO-OFDM system, the proposed CS recovery algorithm 

is employed. For channel estimation in OFDM, the Greedy 

iteration reconstruction schemes [4, 7-9] have delivered 

potential performance.  

Nonetheless, in many conventional greedy algorithms 

requires priori information at receiver side. Moreover, the 

greedy iteration schemes suffer with inaccuracy and more 

computational complexity [12, 15]. Either of these two 

schemes has been successfully detected the fading channel 

information [14]. However, the proposed CS recovery 

algorithm need not consider the channel level as a prior 

information. This iteration is in accordance with the Partial 

common support information (PCSI) and depending on an 

iteration threshold. The PCSI of the 𝑛𝑡ℎ  receive antenna is 

expressed by 

 

𝐈𝑛 =  𝐈𝑛 +  𝑛 − 1 𝐿

𝐿

𝑛=1

                                  (8) 

 

In the CS based channel estimation algorithm the 

following notations are involved.  Updated measurement 

matrix, Observation vector, column index, iteration 

threshold, updated index, estimated channel vector, and 

residual are expressed by  A𝑡 , 𝑌𝑃 , λ𝑡 , ε, Λ
𝑡
, r𝑡 , 𝐡 𝑛,𝑡  

respectively [5].  
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There are two major challenges with applying OMP to 

massive data [13, 15]. Firstly, the computation complexity 

and an iteration storage cost are relatively large and secondly, 

the single coefficient selection simultaneously requires the 

corresponding k iterationsto estimatewithk coefficient ofq. 

whenever, the k iterations are increases that leads 

impracticablyslow down its performance. To estimate the 

channel to the CS-based massive MIMO-OFDM, the 

following algorithm used as given below. 

 

Algorithm I: 

CS-Based Channel Estimation of Massive MIMO-OFDM 
 

Input:The first formulations  A𝑛 , 𝑌𝑃  and I𝑛  are selected. 

1. InitializeΛ0 = I𝑛 , A0 =   An Λ0
,  

r0 = 𝑌𝑃 −  A0( A0
𝑇  A0)−1  A0

𝑇𝑌𝑃 , 𝑡 = 0 and 𝜀 ≈ 0. 
2. 𝑡 = 𝑡 + 1 

3. λ𝑡 = arg⁡max𝑗∈0,𝑁𝐿−1( r𝑡−1
𝑇  An ) 

4. Λ𝑡 = Λ𝑡−1 ∪ {Λ𝑡} 

5.  A𝑡 =  A𝑡−1 ∪
  An λ𝑡  

6. 𝐡 𝑛,𝑡 = arg min 𝑌𝑃 −  A𝑡𝐡 𝑛,𝑡 = ( A𝑡
𝑇  A𝑡)

−1  A𝑡
𝑇𝑌𝑃 

7. r𝑡 = 𝑌𝑃 −  A𝑡𝐡 𝑛,𝑡  

End while 

Output: estimate the CIR𝐡 𝑛,𝑡 . 

 

CS based schemes (Static or Dynamic LS, 

OMP,CS-Aidedand BCS), the number of iterations are based 

on sparsity level of the channel [3, 6, 11] whereas the 

proposed methodcloses iteration only when the residual is on 

the threshold of 0. Consequently, the recovery accuracy can 

be assured. Moreover, when acquired accurate partial 

common support information, the number of iterations are 

limited; leads decrease incomputationalcomplexity of the 

proposed method. 

    To achieve this objective, we propose a 

Gaussianmixture (GM) methodical approachafterwardsby 

utilizing the expectation-maximization (EM) method [14] for 

determination of noisevariance and GM parameters. 

However, no need for concern quantitiesfor theEM updates 

because these computations made by suggested GAMP 

algorithm to decrease computational complexity [9]. The 

proposed generalized EM-TGM-AMP and EM-BGM-AMP 

can be effectively addressing at parametric estimation with 

i.i.d zero-mean Gaussian. 

IV. GAUSSIAN MIXTURE GENERALIZED AMP 

To address the random Gaussian noise, generalizedAMP 

(GAMP) algorithm, proposal was made by Rangan [7, 16]. 

This proposed approach need not require knowledge about 

𝑝𝑋(. ) and the postulated noise variance, nevertheless it 

presents great recovery performance, that need to know about 

these postulatedinformation. In this Gaussian-mixture 

GAMP algorithm, we consider the coefficient in 𝒙 =
[𝑥1 , 𝑥2 ,… , 𝑥𝑁]𝑇 isapproaching to thei.i.d distribution with 

marginalprobability density function can be expressed as   

 

𝑝𝑋 𝑥; 𝜆,𝝎, 𝜽, 𝜙 =  1 − 𝜆 𝛿 𝑥 

+ 𝜆 𝜔𝑙𝒩 𝑥; 𝜃𝑖 ,𝜙𝑖                          (9)
𝐿

𝑙=1
 

 

Where 𝛿 ∙  function denotes Dirac delta identity and 𝜆 is the 

percentageof sparsity rate. And  𝜔, 𝜃,𝜙 𝑘  coefficients are 

expressed as the weight, mean, and variance of 

𝑘𝑡ℎ GaussianMixture components respectively. In the 

remainder part  𝜔𝑖 = 1𝐿
𝑖=1  and zero mean and variance 𝜓 is 

used as noise. Here, the postulated parameters of GM-GAMP 

𝒒 ≜  𝜆, 𝝎, 𝜽,𝜙, 𝜓  are taken into consideration as known 

and fixed variables. Firstly, carry out the conditional 

distribution  𝑝𝑌 𝑍 (𝑦𝑛  𝑧𝑛 ; 𝒒 ) ; the expanded postulated 

approximation can be expressed as 

 

𝑝𝑍 𝒀  𝑧𝑛  𝒚; 𝑝 𝑛 , 𝜇𝑛
𝑝

, 𝒒  ≜
𝑝𝑌 𝑍  𝑦𝑛  𝑧𝑛 ; 𝒒  𝒩 𝑧𝑛 ;𝑝 𝑛 , 𝜇𝑛

𝑝
 

∫
𝑧
𝑝𝑌 𝑍  𝑦𝑛  𝑧; 𝒒  𝒩 𝑧; 𝑝 𝑛 , 𝜇𝑛

𝑝 
 10  

 

The moments of above density function under AWGN 

assumption isas 

 

𝐸𝑍 𝒀  𝑧𝑛  𝒚; 𝑝 𝑛 , 𝜇𝑛
𝑝

, 𝒒  = 𝑝 𝑛 +
𝜇𝑛
𝑝

𝜇𝑛
𝑝

+ 𝜓
 𝑦𝑛 − 𝑝 𝑛        (11a) 

var𝑍 𝒀 {𝑧𝑛  𝒚; 𝑝 𝑛 , 𝜇𝑛
𝑝

, 𝒒 } =
𝜇𝑛
𝑝
𝜓

𝜇𝑛
𝑝

+ 𝜓
)                             (11b) 

 

Secondly for computing the conditional 

distribution  𝑝𝑌 𝑍 (𝑥𝑖 𝒚; 𝒒 ) ; the expanded postulated 

approximation can be expressed as 

 

𝑝𝑋 𝒀  𝑥𝑖 𝒚; 𝑟 𝑖 , 𝜇𝑖
𝑟 , 𝒒  ≜

𝑝𝑋 𝑥𝑖 ; 𝒒 𝒩 𝑥𝑖 , 𝑟 𝑖 , 𝜇𝑖
𝑟 

∫
𝑿
𝑝𝑋 𝑥; 𝒒 𝒩 𝑥, 𝑟 𝑖 , 𝜇𝑖

𝑟 
 12  

 

To achieve subsequent approximation of GM-GAMP 

substitute the postulated parameters (3) into (8) and 
simplified expression can be given as 

 

𝑝𝑋 𝒀  𝑥𝑖 𝒚; 𝑟 𝑖 , 𝜇𝑖
𝑟 , 𝒒  = 

  1 − 𝜆 𝛿 𝑥𝑖 + 𝜆 𝜔𝑙𝒩(𝑥𝑖 ; 𝑟 𝑖 , 𝜇𝑖
𝑟)

𝐿

𝑙=1
 
𝒩(𝑥𝑖 ; 𝑟 𝑖 , 𝜇𝑖

𝑟)

𝜍𝑖
 

=   1 − 𝜋𝑖 𝛿 𝑥𝑖 + 𝜋𝑖  𝛽
𝑖,𝑙
𝒩(𝑥𝑖 ; 𝛾𝑖,𝑙 , 𝑣𝑖,𝑙)

𝐿

𝑙=1
       (13) 

 

In (13)𝜋𝑖 indicates posterior support probability values, 

Pr⁡{𝑥𝑖 ≠
 0 𝒚; 𝒒} of GM-GAMPapproximation.  

The normalized factor in (13) can be written as 

 

𝜍𝑖 ≜ ∫
𝑿
𝑝𝑋 𝑥; 𝒒 𝒩 𝑥, 𝑟 𝑖 , 𝜇𝑖

𝑟 =  1 − 𝜆 𝒩 0; 𝑟 𝑖 , 𝜇𝑖
𝑟  

+𝜆 𝜔𝑙𝒩(0; 𝑟 𝑖 − 𝜃𝑙 , 𝜇𝑖
𝑟 + 𝜙𝑙)

𝐿

𝑙=1
           (14) 

 

Both (13) and (14) can be derived from (13a) through 

Gaussian probability density function multiplication rule.In 

(14) the following dependent variables can be given by 

 

𝜋𝑖 ≜
1

1 +  
 𝛽𝑖 ,𝑙
𝐿
𝑙=1

 1 − 𝜆 𝒩 0; 𝑟 𝑖 , 𝜇𝑖
𝑟 
 

−1                     (15a) 
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𝛾𝑖,𝑙 ≜

𝑟 𝑖
𝜇𝑖
𝑟 + 𝜃𝑙/𝜙𝑙

1
𝜇𝑖
𝑟 + 1/𝜙𝑙

and 𝑣𝑖,𝑙 ≜
1

1
𝜇𝑖
𝑟 + 1/𝜙𝑙

            (15b) 

𝛽𝑖 ,𝑙 ≜ 𝜆𝜔𝑙𝒩 0; 𝑟 𝑖 ; 𝜃𝑙 , 𝜇𝑖
𝑟 + 𝜙𝑙  and 𝛽

𝑖,𝑙
≜

𝛽𝑖 ,𝑙
 𝛽𝑖,𝑘
𝐿
𝑙=1

   (15c) 

 

To achieve effectiveness of GAMP approximation along 

with L-termGaussian Mixture is used to overcome 

difficulties onrealistic implementations. Using Bayesian 

parameter estimate method through AMPalgorithm [4, 

26],provides accurate approximation that involvedwith 

central-limit-theorem, together with independent 

identicallydistributed zero-mean Gaussian A. 

V. EM LEARNING OF THE PRIOR PARAMETERS 

Let us focus on learning of the priori parameters𝒒 ≜
 𝜆,𝝎, 𝜽,𝜙,𝜓 with the help of expectation-maximization 

(EM) algorithm [5, 8,14]. The maximum likelihood 

𝑝(𝒚; 𝒒)maximized a lower bound at the each iteration.The 

given illustration approximates the priori parameters by the 

following EM procedure. 

 

∫
𝑥
𝑝 (𝑥)ln 𝑝(𝒚; 𝒒) = ∫

𝑥
𝑝 (𝑥)ln  

𝑝(𝒙, 𝒚; 𝒒)

𝑝 (𝑥)

𝑝 (𝑥)

𝑝(𝒙 𝒚 ; 𝒒)
  

 
𝐸𝑝 (𝑥) ln 𝑝(𝒙, 𝒚; 𝒒) + 𝐻 𝑝  + 𝐷 𝑝  𝑝𝒙 𝒚   ∙  𝒚 ; 𝒒          (16) 
 

Here 𝐸𝑝 (𝑥) ∙ , 𝐻 𝑝   and 𝐷(𝑝  𝑝)  represents the expectation, 

entropy and Kullback-Leibler (K-L) divergence respectively. 

Here EM bounds are fixed as  𝒒 = 𝒒𝑛  and   𝑝 = 𝑝 𝑛   

respectively: expectation ln 𝑝 𝒚; 𝒒𝑛  − 𝐷(𝑝  𝑝𝑿 𝒀 
 (∙  𝒚 ; 𝒒𝑛 ) , 

afterwards the maximized function described as  𝑝 𝑛  𝒙 =
𝑝𝑿 𝒀 (𝒙 𝒚

 ; 𝒒𝑛 )  , maximization𝐸𝑝 (𝑥) ln 𝑝(𝒙, 𝒚; 𝒒) + 𝐻 𝑝 𝑛  , 

after that the maximized function produces as  𝒒𝑛+1 =
arg max𝑞 E   ln 𝑝(𝒙, 𝒚; 𝒒) 𝒚; 𝒒𝑛   [6].Where E  implies the 

use of said posterior approximation.In addition to update the 

noise variance 𝜓 from determination of 𝒒𝑛 ,therefore it can 

be expressed as 

 

𝜓𝑛+1 = arg max
𝜓>0

 ∫
𝑥

𝑀

𝑚=1

𝑝𝑍 𝒀  𝑧𝑚  𝒚; 𝒒𝑛    

. ln 𝑝𝒀 𝑍  
 𝑦𝑚  𝑧𝑚 ;𝜓                  (17) 

 

The maximized parameter 𝜓 that the derivative of the sum 

value is zero, in such way that can be obtain following noise 

variance parameter is, 
 

𝜓𝑛+1 =
1

𝑀
   𝑦𝑚 − 𝑧 𝑚  

2 + 𝜇𝑚
𝑧  

𝑀

𝑚=1

                      (18) 

 

A. EM Updates of BGM case 

Consider the marginal pdf of Bernoulli-Gaussian with 

ℓ1GM model makes it possible to reduce to (17) then results 

as𝑝𝑋 𝑥; 𝜆,𝝎, 𝜽,𝜙 =  1 − 𝜆 𝛿 𝑥 + 𝜆𝒩(𝑥; 𝜃,𝜙). Note that 

in this case need not require to find out the weight because its 

unity, so the prior benchmarks can be expressed by 𝒒𝑛 ≜
(𝜆𝑛 , 𝜃𝑛 ,𝜙𝑛 , 𝜓𝑛). 

𝜆𝑛+1 = arg max
𝜆∈ 0,1 

 E 

𝐿

𝑖=1

 ln 𝑝𝑋
  𝑥𝑖 ; 𝜆, 𝒒𝑛   𝒚;𝒒𝑛 )    (19) 

 

The maximized parameter 𝜓that the derivative of the sum 

value is zero, in such way that can be obtain following 
parameter is, 

𝜆𝑛+1 =
1

𝐿
 𝜋𝑖

𝐿

𝑖=1

                                           (20) 

 

In the similar way of (19), updatedEM parameters of𝜃, 𝜙are 

represented by 

𝜃𝑛+1 =
1

𝜆𝑛+1𝑁
 𝜋𝑖

𝐿

𝑖=1

𝛾𝑖,1                               (21) 

𝜙𝑛+1 =
1

𝜆𝑛+1𝑁
 𝜋𝑖

𝐿

𝑖=1

  𝜃𝑛 − 𝛾𝑖,1 
2

+ 𝑣𝑖,1           (22) 

 

To estimate the channel performance to the CS-based 

massive MIMO-OFDM, the EM-BGM-AMP algorithm is 

used as given below. 

 

Algorithm II: EM-BGM-AMP 

 

Initialize the value of L,𝑥 0 = 0  and unknown parameter 

of 𝒒0. 

For 𝑛 = 1 to 𝑁𝑚𝑎𝑥 do 

Generate 𝑥 𝑛 , 𝑧 𝑛 ,  𝜇z 𝑛 ,  𝜋𝑛 ,  𝛽𝑛,𝑘 ,  𝛾𝑘
𝑛 , 𝑣𝑘

𝑛  𝑘=1
𝑀 through 

BGM-GEMP with 𝒒𝑛−1 . 

if  𝑥 𝑛 − 𝑥 𝑛−1 𝟐
𝟐 < 𝜏𝐸𝑀 𝑥 

𝑛−1 𝟐
𝟐 then 

Break 

end if 

Compute 𝜆𝑛  from 𝜋𝑛−1 . 
For 𝑘 = 1 to 𝑀 do 

if sparse mode value enabled then 

Compute  𝜃𝑘
𝑛from 𝜋𝑛−1 , 𝛾𝑘

𝑛−1 ,  𝛽𝑙
𝑛−1 𝑙=1

𝑀 . 

end if 

Compute 𝜙𝑘
𝑛  from 𝜋𝑛−1 ,  𝜃𝑘

𝑛−1 , 𝛾𝑘
𝑛−1 ,  𝛽𝑙

𝑛−1 𝑙=1
𝑀 . 

Compute 𝝎𝑛from 𝜋𝑛−1  and   𝛽𝑙
𝑛−1 𝑙=1

𝑀 . 

end 

Compute 𝜓𝑛  from 𝑧 𝑛and 𝜇z 𝑛 . 

end 

 

  Apply the Leibniz’s integral principleto interexchange of 

differentiate and integrate signs, the Dirac approximation 

using this  𝛿 𝑥 = 𝒩 𝑥; 0, 𝜀 for establishrandomly 𝜀 > 0, 

thenit complete, and its differential coefficient with respect to 

λ make steadily. The similar interpretationcan be addresses to 

all interexchange ofdifferentiation and integration in the 

sequence, also mentioned in section III. 

B. EM Updates of GM case 

  Firstly we initiate EM update for 𝜆  from priori 

parameters 𝒒𝑛 ≜ (𝜆𝑛 ,𝝎𝑛 , 𝜃𝑛 , 𝜙𝑛 ,𝜓𝑛 ). Since 𝜆𝑛  is presented 

in (19) BG case i.e. 𝜆𝑛+1 =
1

𝐿
 𝜋𝑖
𝐿
𝑖=1 , so for concise not be 

repeated here. Now we 

consider the remaining 

parameters 𝝎,𝜽 and 𝜙.  In 

this case,𝑘 = 1,2,… , 𝐿 , the 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-9 Issue-2S3, December 2019 

11 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B10031292S319/2019©BEIESP 

DOI: 10.35940/ijitee.B1003.1292S319 

updates are incremented one by one that is 𝜃𝑘 → 𝜙𝑘 → 𝝎,all 

these parameters are fixed variables. The Prior parameters in 

the form of 𝑝𝑋 𝑥 =  1 − 𝜆 𝛿 𝑥 + 𝜆𝑓𝑋 , is to provide 

randomly by𝑓𝑋(∙) , the EMupdate for λ is specified by (20). 

Therefore the EM updates are identified by 

 

𝜃𝑘
𝑛+1 = arg max

𝜃𝑘∈ℝ
 E 

𝐿

𝑖=1

 ln 𝑝𝑋
 (𝑥𝑖 ; 𝜃𝑘 , 𝒒𝑛 ) 𝒚; 𝒒𝑛 )        (23a) 

𝜙𝑘
𝑛+1 = arg max

𝜙𝑘>0
 E 

𝐿

𝑖=1

 ln 𝑝𝑋
 (𝑥𝑖 ; 𝜙𝑘 , 𝒒𝑛 ) 𝒚; 𝒒𝑛 )       (23b) 

𝝎𝑛+1 = arg max
𝜃𝑘∈ℝ

 E 

𝐿

𝑖=1

 ln 𝑝𝑋
 (𝑥𝑖 ;𝝎, 𝒒𝑛 ) 𝒚; 𝒒𝑛 )         (23c) 

 

The maximized value of 𝜃𝑘  is fundamentally requires 

zeros the derivative, i.e., that accomplished expression is  

 

 ∫
𝑥

𝐿

𝑖=1

𝑝𝑋 𝒀  𝑥𝑖 𝒚;𝒒𝑛   
𝑑

𝑑𝜃
 ln 𝑝𝑋

 (𝑥𝑖 ; 𝜃, 𝒒𝑛 ) 𝒚;𝒒𝑛 )         (24) 

 
Substitute the maximized value (23) in (22a) then produces 

 

 ∫
𝑥

𝐿

𝑖=1

𝑝𝑋 𝒀  𝑥𝑖 𝒚; 𝒒𝑛   
𝑑

𝑑𝜃𝑘
 ln 𝑝𝑋

 (𝑥𝑖 ; 𝜃𝑘 , 𝒒𝑛 ) 𝒚; 𝒒𝑛  = 0(25) 

 

Plugging in the derivative and apply the approximation 

𝒩(𝑥𝑖 ; 𝜃𝑘 , 𝜙𝑘
𝑛) ≈ 𝒩(𝑥𝑖 ; 𝜃𝑘

𝑛 ,𝜙𝑘
𝑛)  to numerator and 

denominator. Finally we acquired the simplified 

approximation coefficients are  

𝜃𝑘
𝑛+1 =

 𝜋𝑖𝛽𝑖,𝑘𝛾𝑖,𝑘
𝐿
𝑖=1

 𝜋𝑖𝛽𝑖,𝑘
𝐿
𝑖=1

                                        (26) 

 

It is found that the above EM approach gives a way to perfect 

achievement of MSE estimation at sparse signals [10]. In 

similar fashion the respective approximation parameters are 

also found to𝜙𝑘
𝑛+1  and 𝜔𝑘

𝑛+1 that are 
 

𝜙𝑘
𝑛+1 =

 𝜋𝑖𝛽 𝑖,𝑘   𝜙𝑘
𝑛 − 𝛾𝑖,𝑘  

2
+ 𝑣𝑖,𝑘 

𝐿
𝑖=1

 𝜋𝑖𝛽 𝑖,𝑘
𝐿
𝑖=1

(27a) 

𝜔𝑘
𝑛+1 =

 𝜋𝑖𝛽 𝑖 ,𝑘
𝐿
𝑖=1

 𝜋𝑖
𝐿
𝑖=1

.                                               (27b) 

 

C.EM Updates of TGM Case 

The advantage of GAMP method is to provide the 

approximation of the likelihood function 𝑝(𝒚;𝒒)  through 

𝑝 𝑛  𝒙 = 𝑝𝑿 𝒀 (𝒙 𝒚
 ; 𝒒𝑛 )and the EM produces a new estimate 

of 𝒒 𝑥  and𝜓, in addition to posteriors approximation of the 

other involved variables and determinate the boundary 

parameter v. The algorithm summarizes the proposed 

approach as follows. 

For the concise of this work we do not repeat the posterior 

approximations here; new updates of noise variance present.   

 

𝜓𝑛+1 =  𝑝𝑍 𝒀  𝑧𝑚  𝒚; 𝒒𝑛   ln 𝑝𝒀 𝑍  
 𝑦𝑚  𝑧𝑚 ;𝜓 

𝑀

𝑚=1

+ const 

          =
𝑁

2
ln𝜓 −

1

2
𝜓    𝑦𝑚 − 𝑧 𝑚  

2 + 𝜇𝑚
𝑧  

𝑀

𝑚=1

                (28) 

 

The new approximate parameter of 𝜓 is can be solved by 

setting to fundamental requirement of zeros the derivative 
refer (24) , that leads an achieved expression is  

 

𝜓𝑛+1 =
𝑀

   𝑦𝑚 − 𝑧 𝑚  
2 𝑀

𝑚=1

                            (29) 

 

To estimate the channel performance to the CS-based 

massive MIMO-OFDM, the EM-TGM-AMP algorithm is 

used as given below. 

 

Algorithm II: EM-TGM-AMP 
 

The first formulations 𝜓(0), 𝑣(0) are selected. 

1. Initialize the mean, variance parameters of 𝒒 𝑥 and  

GAMP iterations the iteration number, 𝑡, with zero. 

Repeat until𝑡 ≥ 𝑡𝑚𝑎𝑥  

2. Calculate the approximate distribution 𝑝 (𝒙 𝒚 ; 𝒒) and  

𝑝 𝑍 𝒀  𝑧𝑚  𝒚;𝒒𝑛    

3. Utilize the approximate likelihoods 𝑝 (𝒙 𝒚 ; 𝒒), update   

Posterior variables𝒒 𝑛 𝜆𝑛 ,𝝎𝑛 , 𝜃𝑛 , 𝜙𝑛   

4.  Compute noise variance 𝜓 𝑛+1  from and obtain 𝑣 𝑛+1 

5. 𝑡 = 𝑡 + 1. 

Return to step 2. 

Now consider the boundary parameter v, to achieve this 

choose the mean of posterior distributed parameter of 𝒒(𝑥). 

 

𝑣𝑛+1 = 𝑣𝑛 + Δ𝑣                                     (30) 

 

Where Δ𝑣 step-size of boundary points is: expand the 

boundary point vfor that adequately smaller step-sizeΔ𝑣 . 

Here we may be able to anticipate towards the signal x will be 
increase as a result.  

VI. SIMULATION RESULTS AND DISCUSSIONS  

The efficiency of proposed truncated Gaussian mixture 

EM-GAMP and Gaussian Bernoulli EM-GAMP algorithm 

can be compared in accordance with obtained results of 

zero-forcing (ZF) pre-coding OMP andCS-Aided approach.  

  Fig. 1 has presented the comparison of various schemes 

of NMSE performance withknownerror value of 𝑘𝑠
𝑒  (assume 

estimate channel coefficient𝑘𝑠 = 2). The estimation methods 

are employing with the previous support informationshows 

the poor performance upon theunbalanced parameter arises, 

whereas the quality of support information is trivial to the 

proposed approaches. Because the imperfect 

channelcoefficients are evaluatedby a compressed sensing 

(CS) algorithm and has low mismatched influence. In 

addition, iferroneouscoefficients are selectedby this method 

that clipping step can terminate the impact of erroneous 

coefficients. In addition, proposed and CS-Aided methods 

can be maintained the constant support information. 
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Fig. 2 indicates the performance of NMSE versus SNR 

with various schemes with varying SNR depends on the pilot 

tone performance. Since, by considering noise level CS 

algorithms are fundamentally sensitive, the estimation 

methods are employing with CS, including the considered 

approaches, yields great outcome in range of SNR.Moreover, 

the CS-Aided, OMP and ZF pre-coding scheme show 

comparatively low error. And the SNR between 13dB to 15 

dB, the proposed schemes produces better results than ZF and 

OMP. Throughout the simulation results on figure 3, the 

proposed schemes can be obtained the lowest error rate than 

ZF and the basic greedy algorithm is called the OMP. 

 
Fig.1. NMSE vs mismatched parameter with M = 128, k= 

64,and SNR= 20 dB. 

 
Fig. 2. MSE versus SNR recovery performance of various 

schemes 

 
Fig. 3. SER versus SNR recovery performance of various 

schemes 

The effectiveness MSE with different algorithms is proved 

in Fig.3. It appears that the suggested schemes are 

achievedbetter Signal to noise ratio (SNR) performance as 

against the ZF pre-coding. However, the ZF provides the 

least-norm solution. 

In order to sustain the same, must have to remove the 

undesirable characteristics, i.e. perfect normalization is must.  

In comparison to this, LS based schemes have less error. For 

SNR between 10-11 dBs, the proposed schemes are better 

than ZF and as reasonably good performance. Overall, the 

performed proposed methods have less error than 

conventional CS techniques. 

According to estimate made by comparison, the GM-based 

CS approaches are easy to determine better training signals. 

Thus, quality of channel estimate is evaluated by the intended 

GM-based CS approaches which provides better performance 

through flagship challenge ofthe trainingsignals. 

VII. CONCLUSION 

This work focused on estimate the channel efficacy over 

OFDM based massive MIMO downlink system under 

Gaussian mixture learning with various approaches for 

compressed sensing. Particularly the composition of the 

GAMP technique with the EM iterative methods and they 

facilitate the less computational complexity through designed 

pilot approach. Through the continuous support of the 

CS-Aided approach, the pilot overhead is reduced. The 

favorable channel performance is achieved by the use of 

EM-TGM-GAMP, EM-BGM-GAMP, and CS-Aided 

schemes. The obtained simulation figures give the truncated 

GM appears better performance than GB distribution in 

CS,and also achieved better output compared to the ZF and 

OMP techniques.  
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