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Abstract: In this paper, we introduce some classes of 

analytic-univalent functions and for any real µ, determine the 

sharp upper bounds of the functional  for the 

functions of the form  

k=2 

belonging to such classes in the unit disc E = {z : |z| <1}. 
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I. INTRODUCTION 

Let A be the class of analytic functions of the form 

∞ 

                                                      f(z) = z + 
X

akz
k (1.1) 

k=2 

in the unit disk ∆ = {z : |z| <1}. 

Let S be the class of functions f(z) ∈ A and univalent in 

∆. In the present paper, we consider the following 

subclasses of A. 

Definition 1.1. 

Let 

, 

the class of starlike functions with respect to symmetric 

points. 

, 

the class of convex functions with respect to symmetric 

points. 

, 

the class of close-to-convex functions with respect to 

symmetric points. 
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The classes KS and CS were introduced by Das and Singh 

[2]. 

, 

. 

Definition 1.2. 

Let 

, 

the class of starlike functions with respect to symmetric 

points 

 , 

the class of convex functions with respect to symmetric 

points. 

, 

the class of close-to-convex functions with respect to 

symmetric points. 

, 

, 

In 1976, Noonan and Thomas [12] stated the qth Hankel 

determinant for 

q ≥ 1 and n ≥ 1 as 
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This determinant has also been considered by 
several authors, for example, Noor [13] determined the 

rate of growth at Hq(n) as n → ∞ for functions given by 

Equation (1.1) with bounded boundary. Ehrenborg [3] 

studied the Hankel determinant of exponential 

polynomials and in [6], the Hankel transform of an 

integer sequence is defined and some of its properties 

discussed by Layman.Also Hankel determinant was 

studied by various authors including Hayman [5] and 

Pommerenke [14] and recently by Choc and Janteng 

[1], Mehrok and Singh [9] and Janteng et al. [10, 11]. 

Easily, one can observe that the Fekete and Szeg¨o 
functional is H2(1). Fekete and Szeg¨o [4] then further 

generalized the estimate  where µ is real 

and f ∈  S. For our discussion in this paper, we consider 
the Hankel determinant in the case of q = 2 and n = 2, 

 

In this paper, we seek upper bound for the functional 

 where µ is real, for the functions belonging to 

the above defined classes. 

II. PRELIMINARY RESULTS 

Let P be the family of all functions p analytic in ∆ for which 

Re(P(z)) >0 and 

 P(z) = 1 + p1z + p2z
2 + ··· for z ∈ ∆.(2.1) 

Lemma 2.1. [14] 

If p ∈ P, then |pk| ≤ 2 (k = 1,2,3,...) 

Lemma 2.2. [7, 8] 

If p ∈ P, then2p2 = p2
1 + (4 −p2

1)x 

4p3 = p3
1 + 2p1(4 −p2

1)x −p1(4 −p1
2)x2 + 2(4 −p2

1)(1 − |x|2)z, 

for some x and z, satisfying |x| ≤ 1, |z| ≤ 1 and p1 ∈ [0,2]. 

III. MAIN RESULT 

Theorem 3.1. 

If f(z) ∈  CS(λ) then

 

  if µ ≤ 0, 

i f 

 if,if µ ≥ 1. 

 

Proof: 

Since f ∈ CS, by definition we have 

(3.1) 

where 
∞ 

g(z) = z + 
X

bkz
k ∈ SS

∗
(λ) (3.2) 

k=2 

Using (1.1), (2.1) and (3.1), (3.2) gives 

1 + 2(1 + λ)a2z + (1 + 2λ)3a3z
2 + (1 + 3λ)4a4z

3 

 = (1 + p1z + p2z
2 + ···)[1 + (1 + 2λ)b3z

2 + ···]

 (3.3) 

On equating co-efficients in (3.9), we get 

2(1 + λ)a2 = p1, 

3a3(1 + 2λ) = (1 + 2λ)b3 + p2, 

 4a4(1 + 3λ) = (1 + 2λ)p1b3 + p3

 (3.4) 

From (3.2), we can easily verify that 

 

So (3.4) yields 

 (3.5) From (3.5), 

. 

Let X = 32(1 + λ)(1 + 3λ)(1 + 2λ)2. 

Using Lemma 2.2, it gives 

 

Suppose now that p1 = p, p ∈ [0,2] and using triangle 

inequality, we get 

 

 = F(ρ) with ρ = |x| ≤ 1. (3.6) 

This gives rise to 
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if µ 

<0,                    

if 0

,

 

if, 

if . 

and for all the cases above, F 0(ρ)>0 for ρ>0;  

implying that 

Max F(ρ) = F(1) 

Now let 

 

Now we discuss the following cases:  
Case I: For µ ≤ 0, 

 
and 

 

Easy calculation reveals that G attains its maximum value at 

. 

The upper bound for equation (3.6) corresponds to ρ = 

1 and , in which case 

 

Case II: For 0

, 

 

and 

 

where G attains its maximum vlaue at p = 2, Hence we 

obtain 

 

Case III: For 1 we consider 

two subcases. Subcase (i): When 

 

 

here G attains its maximum value at p = 0 

Hence  
Subcase (ii): When 

 

 
In this case G(p) is a decreasing function so if attains its 
maximum value at p = 0. 

Case IV: Finally, for µ ≥ 1, 

 

and 

 

Here G attains its maximum 

value at . Hence 

. 

 

For µ = 1, Theorem 3.1 gives the following result. 

Corollary 3.1. 

If f(z) ∈ CS(λ) then . 

Theorem 3.2. 

If , then we obtain the same result as in 

Theorem 3.1 on the same lines, we have 

Theorem 3.3. 

If , then 
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if µ≤ 0, 

  if . 

For µ = 1 Theorem 3.3 gives 

Corollary 3.2. 

If f(z) ∈ KS(λ), then . 

Theorem 3.4. 

If f(z) ∈ CS1(λ) then 

 
if 

,  

if , 

 

. 

Proof: 

Since f ∈ CS1(λ) by definition we have 

 )

 (3.8) 
k=2 

Using (1.1), (2.1) and (3.8), (3.9) gives 

1 + 2(1 + λ)a2z + (1 + 2λ)3a3z
2 + (1 + 3λ)4a4z

3 

= (1 + p1z + p2z
2 + p3z

3 + p4z
4 + ···)(1 + (1 + λ)b3z

2 + ···] 

(3.10) 

On equating co-efficients in (3.10) we get 

2(1 + λ)a2 = p1, 

3a3(1 + 2λ) = (1 + 2λ)b3 + p2, 

 4a4(1 + 3λ) = (1 + 2λ)p1b3 + p3

 (3.11) 

From (3.9) we can easily verify that 

 

So (3.11) yields 

 
From (3.12) 

 

Let X1 = 2592(1 + λ)(1 + 3λ)(1 + 2λ)2. 

Using Lemma 2.2 it gives 

 

Suppose now that p1 = p, p ∈ [0,2] and using triangle 

inequality we get 

 

 = F(ρ) with ρ = |x| ≤ 1. (3.13) 

This gives rise to 

if µ 

≤ 

0,if 

0

, 

 if , 

. 

where 

∞ h(z) = z + Xbkzk ∈ KS(λ) (3.9) 
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We consider two subcases, 

Subcase (i): When 0

, 

 

Here G attains its maximum value at 

, in which case 

 

Subcase (ii): When 

, 

 
In this case G(p) attains its maximum value at p = 0. So 

 

Case III: For , we consider two subcases. 

Subcase (i): When 

, 

 

here G attains its maximum value at p = 0. Hence 

 

Subcase (ii): When 

, 

 

In this case G(p) is a decreasing function so it attains its 

maximum value at p = 0. 

Case IV: Finally for , 

 

we consider two subcases: 

Subcase (i): When ) is a 
decreasing function so it attains its maximum value at p = 

0. 

Subcase (ii): When

, 

 

here G attains its maximum value 

at . 

Hence 

 

 

For µ = 1, Theorem 3.4 gives the following result. 

Corollary 3.3. 

If f(z) ∈ CS1(λ) then  on the 

same lines, we can easily prove the following theorem: 

Theorem 3.5. 

If  then we get the same result as in Theorem 

3.3. 

Theorem 3.6. 

If f(z) ∈ CS(γ,λ) then 

i µ ≤ 0, 

if 

, if 

, 

 if µ ≥ 1. 

where A1 = (1 + 6γλ + 2γ −2λ) 

B1 = (1 + 12γλ + 3γ −3λ) 

C1 = (1 + 2γλ + γ −λ) 

Proof: 

Since f ∈ CS(γ,λ) we have 

 

(3.15) 

where 
∞ 
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 (3.19) 

So (3.18) yields 

 (3.20) 

From (3.20) define 

 

Using Lemma 2.2 it gives 

 
Suppose now that p1 = p, p ∈ [0,2] and using triangle 

inequality, we get 

 

if µ <0, 

if 0, 

if  

 

 

 

 

 

 

 

if

. 

and for all the cases above F 0(ρ) >0 for ρ >0, implying that 

Max F(ρ) = F(1) Now let 

 

Now we discuss the following cases: 

 Case I: For µ ≤ 0, 

 

and 

 
Easy calculation reveals that G attainsits

 maximum value at 

. 
The upper bound for equation (3.21) corresponds to ρ 

= 1 and , in which case 

 

Case II: For 0 , 

g(z) = z + Xbkzk ∈ SS∗(γ,λ) 

k=2 

Using (1.1), (2.1) and (3.15), (3.16) gives 

1 + 2(2γλ + γ −λ + 1)a2z + 3a3[6γλ + 2γ −2λ + 1]z
2
 

+ 4a4[1 + 6γλ + 3(2γλ + γ −λ)]z
3 
+ ··· 

(3.16) 

= (1 + p1z + p2z
2 
+ ···)(1 + b3(1 + 6γλ + 2γ −2λ)z

2 
+ ···) 

On equating coefficients in (3.17) we get 

2[2γλ + γ −λ + 1)a2 = p1, 

3a3[6γλ + 2γ −2λ + 1] = b3[1 + 6γλ + 2γ −2λ) + p2, 

(3.17) 

4a4[1 + 6γλ + 3(2γλ + γ −λ)] = p1b3[1 + 6γλ + 2γ −2λ) + p3 

From (3.16), we can easily verify that 

(3.18) 

= F(ρ) with ρ = |x| ≤ 1 

This gives rise to 

(3.21) 
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where G attains maximum value at p = 2, 

Hence . 

Case III: For 1, we consider two subcases. 

Subcase (i): 

, 

 

Hence G attains its maximum value at p = 0 hence 

. 

Subcase (ii): 1, 

 

In this case G(p) is a decreasing function so it attains its 

maximum value at p = 0. 
Case IV: Finally, for µ ≥ 1, 

 

and 

 

here G attains maximum value at . 

 Hence .  

 For = 1, Theorem 3.6 

gives the following result: 

Corollary 3.4. 

If f(z) ∈ CS(γ,λ), then . 

Theorem 3.7. 

If f(z) ∈ SS
∗
(γ,λ) then we obtain the same result as in Theorem 

3.6. On the same lines we have 

Theorem 3.8. 

If f(z) ∈ KS(γ,λ) then 

if µ ≤ 0, 

 

if , if , 

if . 

For µ = 1 Theorem 3.8 gives: 

Corollary 3.5. 

If f(z) ∈ KS(γ,λ), then . 

Theorem 3.9. If f(z) ∈ CS2(γ,λ), then

  if µ ≤ 0, 

if , if , 

 if . 

For µ = 1 Theorem 3.9 gives the following result: 

Corollary 3.6. 

If f(z) ∈ CS2(γ,λ), then  on the same 

lines we can easily prove the following theorem: 

Theorem 3.10. 

If , then we get the same result as in 

Theorem 3.8. 
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