
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-9S, July 2019

878

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I11410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1141.0789S19



Abstract: Software Systems are built by the Software engineers

and must ensure that software requirement document (SRS)

should be specific. Natural Language is the main representation

of Software requirement specification document, because it is the

most flexible and easiest way for clients or customers to express

their software requirements [2]. However being stated in natural

language, software requirement specification document may lead

to ambiguities [28]. The main goal of presented work to

automatically detection of the different types of ambiguities like

Lexical, Syntactic, Syntax and Pragmatic. Then an algorithm is

proposed to early detection the different types of ambiguities from

software requirement document. Part of Speech (POS) technique

and regular expression is used to detect each type of ambiguities.

An algorithm presented in this paper have two main goals (1)

Automatic detection of different types of ambiguities. (2) Count

the total number of each types of ambiguities found and evaluate

the percentage of ambiguous and non- ambiguous statements

detected from software requirement document. The suggested

algorithm can absolutely support the analyst in identifying

different kinds of ambiguities in Software requirements

specification (SRS) document.

Index Terms: Lexical ambiguity, Syntax Ambiguity, Software

Requirement Specification, Syntactic ambiguity, Pragmatic

ambiguity, Part of Speech Tagging.

I. INTRODUCTION

Software Requirement Specification (SRS) document is the

base document with a full description about functional or

non-functional requirements for software development and

helps the developer to understand the customer requirements

[26]. Majority of the requirement document (87.7%) are in

natural language [5]. Due to incomplete or frequently

changing requirements submitted by customer’s side,

Software requirement document can be inappropriate and

ambiguous which affects the software system quality.

Ambiguity is the main problem that occurred in the natural

language [23].

The main purpose of this paper is to detect the different

types of ambiguities from software requirement document. In

this paper we have designed the algorithm which is different

from other work where it focuses on the different types of

ambiguities like lexical, syntactic, syntax and pragmatic that

can be detected by regular expressions and POS Tagger

technique.

Outline: The remnants of this paper are systematized as

follow: Section 1 initiate the field of work. Section 2 defines

Revised Manuscript Received on June 15, 2019.

Ashima Rani, Research Scholar, Department of Computer Science,

Jagannath University, Jhajjar, Haryana, India(Email:

ashima.ashugambhir@gmail.com)
Dr. Gaurav Aggarwal, Associate Professor, Department of Computer

Science, Jagannath University, Jhajjar, Haryana, India(Email:

gaurav.aggarwal@jagannathuniversityncr.ac.in)

suggested system (Architecture of Ambiguities Detection

Algorithm). Sub Section 2.1explains the Part of Speech

(POS) Tagging and Regular expressions. Sub Section 2.2

defines the different kinds of ambiguities. Section 3 presents

the summary of related work. Section 4 explains the

algorithm for ambiguity detection and presentation. Section 5

explains the evaluation of proposed algorithm using example.

Section 6 presents the conclusion and future work.

II. SUGGESTED SYSTEM

Figure 1 explains the system architecture of the ambiguity

detector (suggested system). The main components of the

ambiguity detector architecture are:

1. SRS (Software Requirement Specification) Document.

2. POS (Part of Speech) Tagger.

3. Regular Expressions.

4. Algorithm for detection of ambiguous sentences.

5.

Figure 1: Ambiguity Detection Architecture

6.

A. Part Of Speech Tagger

Part of Speech (POS) Tagger is the computational Linguistics

Techniques which is used to mark each term of sentence of

SRS document with pre-defined POS tags [27].

For Example, the words of the sentence “The System can

avoid errors” are marked in following way: The\\DT

system\\NN can\\MD avoid\\VB errors\\NNS. Here DT a

determiner, NN a noun, MD means modal, VB a verb, NNS

means proper noun. POS Tagger can deliver basic form of

every term. The tags “VBZ”, “VBN”, “VBP”, “VBG”,

“VBD”, “MD”, “VB”, “JJ” and “RB” are vital to detect

lexical, syntax and syntactically ambiguity in NL

SRS(Software Requirement) document. Regular expression

is basically used to detect

pragmatic ambiguity.

Algorithm for Automatic Detection of

Ambiguities from Software Requirements

Ashima Rani, Gaurav Aggarwal

SRS Document Ambiguity Detector

Part of Speech Tagger and

Regular Expression

Algorithm for ambiguous

sentence detection

Ambiguities in

SRS(Lexical/Syntax/S

yntactic/Pragmatic)

Algorithm for Automatic Detection of Ambiguities from Software Requirements

879

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number:I11410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1141.0789S19

B. Ambiguity and Its Types

Ambiguity can be defined as a statement which has more than

one meaning (interpretation). In this Paper, Ambiguity lists

various categories of ambiguities specifically Lexical,

Syntactic, Syntax and Pragmatic ambiguity.

a) Lexical Ambiguity: Lexical ambiguity occurs when a word

has many meanings [21]. For example “Young” means

“young of age” or “inexpert”, “Bat” means “flying mammal”

or “wooden club”.

b) Syntactic Ambiguity: Syntactic ambiguity occurs when a

sentence (sequence of words) has multiple parse trees or

more than one grammatical structure. Syntactic ambiguity

also known as Structural ambiguity. For example: “I saw the

men with the telescope” and “time flies like an arrow”. The

syntactic ambiguity generated when the sentence contains

vague words (adjective or adverbs).

c) Syntax Ambiguity: Syntax ambiguity occurs when a sentence

does not end with the full stop (“.”) or if user is not mentioned

in the sentence.

d) Pragmatic Ambiguity: Pragmatic ambiguity mainly focuses

on relationship or links between the sentences [15]. For

example, “they” in “The trucks shall treat the roads before

they freeze” can refer both to the roads and to the trucks.

Table 1 explains the classification of text analysis techniques

of listed four types of ambiguities.

Table 1: Text Analysis Techniques Classification

Ambiguity

Type

Analysis Task Analysis Outcomes

Lexical
classify and

authenticate the

expressions

Set of expressions used

in the manuscript

Syntactic
Identify the terms,

build and

authenticate the

model

Set of expressions used

in the manuscript and a

model of the system

defined in the text

Syntax
Construct a syntax

depiction of

sentences

Syntax depiction of

each sentence

Pragmatic
Build a

representation of

text, including

relationships

between sentences

Valid depiction of each

sentence, formulae

III. RELATED WORK

Many Researchers have already shown the SRS

importance and area of SRS for success or failure of software

project. They have applied different techniques and methods

to resolve the different types of ambiguities from software

requirements. In this section, we study the different

approaches for the same.

The work of [6] can be example of solving ambiguity using

NLP based technique. In this paper, they have created the

activity and sequence diagram using NLP standard POS

tagger and parsing technique. By this technique, it reduces

the ambiguities in NLSRS document. The main drawback of

this technique to absence of automatically prominence the

ambiguous statements in NLSRS.

The work of [7] can be another example of POS tagging

technique for ambiguity detection. In this method, it detects

only the lexical ambiguity and matches the words of one line

in NLSRS by the part of speech tagger. The main drawback

of this method is that it can work properly if the NLSRS

document does not contain more than six words.

The authors [8] developed a tool that detect the ambiguity

in NLSRS and mentioned the ambiguity sources. In this

paper, researcher used the Part of speech (POS) tagger and

regular expression to identify the uncertainties. The main

disadvantage of this research is to lack of computing the

percentage of ambiguous and non-ambiguous statements in

NLSRS.

The researcher [9] explains the different natural language

Processing (NLP) tools used for finding ambiguity,

uncertainty and quality of use cases.

The work of [4] be example of detection of syntactic,

lexical and syntax ambiguities from software requirement

specification document. In this paper, they used the POS

tagger and corpus. They match the each entry of words of

sentence with the POS tagger and identify the syntax, Lexical

and syntactic ambiguity. The limitation of this paper is to

only detect three types of ambiguity not cover all types.

The authors [5] developed a tool to detect the syntactic and

syntax ambiguity using POS tagger. In this method, they

implement the algorithm to detect the ambiguities and also

compute the percentage of ambiguous and unambiguous

statements from software requirement document. The

limitation of this paper is only focus to syntactic and syntax

ambiguities.

The researchers [3] can be another example to detect the

different types of ambiguities at early stages of SDLC. In this

research, they designed a tool to detect the lexical, syntactic

and pragmatic ambiguity using POS tagger and regular

expressions.

IV. ALGORITHM

In this Section, we have proposed an algorithm to detect

different types of ambiguities which described in section 2.2.

This algorithm consists of 7 steps to detect ambiguities using

Regular expressions matching and POS tagging [24],[25].

Step 1: Read the NL SRS document (that is to be tested)

line by line:

NL SRS document is group of paragraphs [17]. In this step,

the paragraph is divided into gradient of sentences and stores

it in data organization “splitted_sentence”. Then the total

numbers of verdicts are counted from “splitted_sentence” file

and stored it in a data

organization called

“sent_count”.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-9S, July 2019

880

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I11410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1141.0789S19

Step 2: Match every entry of “splitted_sentence” through

the POS tagger:

Tagged sentences kept in a data organization called or named

“tag_sentence”. In this step, mark each entry of

“splitted_sentence” with the entry of “tag_sentence” which

will be used to classify the sentences into different types of

ambiguities (Lexical, syntactic and syntax).

Step 3: Detect Lexical, syntactic and Syntax ambiguity

and kept in a data organization called “Lexical”,

“Syntactic” and “Syntax” respectively.

(a) Checking if some condemnation in the “tags_sentence”

having words like they, include, minimum, easy etc. it will be

measured as lexical ambiguity.

(b) Checking if some condemnation in the “tag_sentence” does

not contain full stop (“./.” tag) at the end or is passive voice. It

will be measured as syntax ambiguity.

(c) Checking if some condemnation in the “tag_sentence” is an

adjective or adverb (adjective tag “JJ” and adverb tag “RB”).

It will be considered as syntactic ambiguity.

Step 4: Identify pragmatic ambiguity and stored in data

organization called “Pragmatic”:

Firstly build a representation of text, include links between

sentences from “splitted_sentence”. Checks whether the

analyzed line matches certain regular expression. If matches

then stored in a data structure “pragmatic”.

Step 5: Continue step 3 and 4 for every line of NLSRS till

the completion of NLSRS document.

Step 6: Compute the aggregate number of all types of

ambiguities detected by using formulas:

Lexical Ambiguity =

 Syntactic Ambiguity =

Syntax Ambiguity =

Pragmatic Ambiguity =

Where Scount = sent_count

Step 7: Compute the percentages of ambiguous and

unambiguous sentences detected by using formula:

 Percentage of lexical ambiguity detected

= (

)*100

Percentage of Syntactic ambiguity detected

= (

)*100

Percentage of Syntax ambiguity detected

= (

)*100

Percentage of Pragmatic ambiguity detected

= (

)*100

Percentage of Non-ambiguous sentences detected

=100 (

)

V. EVALUATION

In this section, we will execute the algorithm which we have

discussed in section 4. Following are the some ambigous

statements which are taken from sample SRS:

Tickets are resubale within a limited time span.

System works untill deadline.

The software must be easy as possible.

The system provides minimum output.

The system should avoid errors normally.

Both should be documented.

The trucks shall treat the roads before they freeze

For detection of four different categories of ambiguties (like

lexical, syntax, syntactic and pragmatic), each sentence are

marked with the Part of speech tagging and regular

expression as well.

1. Tickets are resubale within a limited time span.

2. System works until deadline.

3. The software must be easy as possible.

4. The system provides minimum output.

5. The system should avoid errors normally.

6. Both should be documented.

7. The trucks shall treat the roads before they freeze.

If any sentence having words like they, include, easy, until

etc. It will be considered as lexical ambiguty and denoted in

red color[22]. For example in line 2, word “until” does not

specify the perticular time. So “until” word comes under

lexical ambiguty.

If any sentence having the adjectives or adverbs [19]. It will

considered as Syntactic ambiguty. In the example, words like

“resubale”, “possible”, “norrmally”, “minimum” are vague

words(having more than one meaning) and reported as

syntactic ambiguty. These are denoted in green color.

If any sentence having some missing information. It will

considered as Syntax ambiguty[29]. For example, in line 6

sentence marked as syntax ambiguty due to word “both” and

denoted in blue color.

If any sentences having the links or relationship between

sentences. It will be considered as pragmatic ambiguty. For

example, in line 7 word “they” can refer to both trucks and

roads. It is denoted in purple color.

Calculating the percentage of ambiguities in above example:

Scount=7(Total number of statements)

Algorithm for Automatic Detection of Ambiguities from Software Requirements

881

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number:I11410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1141.0789S19

Lexical Ambiguty = (

)*100 =

(1/7)*100=14.28%

Syntactic Ambiguity = (

)*100 =

(4/7)*100= 57.14%

Syntax Ambiguity = (

)*100 =

(1/7)*100=14.28%

Pragmatic Ambiguity = (

)*100=

(1/7)*100 = 14.28%

Table 2 displays the calculation of ambiguities stated in

example.

Table 2: Percentage of ambiguities calculated in example

 Lexical

Ambig

uity

Syntactic

Ambiguit

y

Syntax

Ambiguit

y

Pragmati

c

Ambiguit

y

% of

ambiguity 14% 57% 14% 14%

Figure 2 displays the calculation of ambiguities detected in

above mentioned example in practice of pie chart. It explains

that extreme percentage of existing ambiguities (57%) are

syntactic, however 14% Lexical, 14% Syntactic and 14%

Syntax ambiguities are detected in above example.

Figure 2: Result of Example using Pie Chart

VI. CONCLUSION & FUTURE SCOPE

Requirement gathering is the most significant stage of

software development life cycle. Software project mainly

depends upon the first step of SDLC i.e. SRS(Software

Requirement Specification) document. If SRS is not properly

defined, then software project does not fulfill the users

requirements. Ambiguty is the main thing to resolve the

problems from Software requirement document. In this

paper, we suggested a algorithm to detect the different types

of ambiguties like lexical, syntactic, syntax and pragamtic

from NLSRS at the early stage. This algorithm also

determines the type of amiguties and percentage of different

types of amiguties using the formula. It also calculates the

number of ambigous and non ambigous statements from

Software requirement specification(SRS) document. The

main purpose of algorithm is to detect main four types of

ambiguties. In future work, we developed a automatic

ambiguty detection tool with the implemention of proposed

algorithm which highlights the ambigous statements with

different colors according to type of ambiguty.

REFERENCES

1. Ashima Gambhir, “Comparative Analysis of Ambiguities Resolving

Tools in Natural language Software Requirements”, Journal of Emerging
Technologies and Innovative research, Vol 6, Issue 5, May 2019, pp

133-137.

2. Ashima Rani, Gaurav Aggarwal, “Advanced Practices to Detect
Ambiguities and Inconsistencies from Software Requirements”, IEEE,

7th international conference on System Modeling & Advancement in

Research Trends, November 2018, pp. 17-21.
3. BenediktGleich, Oliver Creighton, Leonid Kof, “Ambiguity Detection:

Towards a toll explaining ambiguity sources”, International Working

Conference on Requirements Engineering: Foundation for Software
Quality, 2010, pp 218-232.

 4. Ayan Nigam, Neeraj Arya, Bhawna Nigam, Dipika Jain, “Tools for

automatic discovery of ambiguity in requirements”, International Journal
of Computer Science Issues, Vol 9, Issue 5, 2012, pp 350-356.

5. ALI OLOW JIM, WAN MOHD NAZMEE WAN ZAINON, “An

approach for detecting syntax and syntactic ambiguity in software
requirement specification”, Journal of Theoretical and applied

Information Technology, Vol 96, Issue. 8, April 2018, pp 2275-2284.

 6. Gulia, S. and T. Choudhury, “An efficient automated design to generate
UML diagram from Natural Language specifications” , IEEE 6th

International Conference Cloud System and Big Data Engineering
(Confluence), 2016.

7. Beg, R., Q. Abbas, and A. Joshi, “A method to deal with the type of lexical

ambiguity in a software requirement specification document”,
ICETET’08 in Emerging Trends in Engineering and Technology, 2008.

8. Gleich, B., O. Creighton, and L. Kof, “Ambiguity detection: Towards a

tool explaining ambiguity sources. International Working Conference on
Requirements Engineering: Foundation for Software Quality”. 2010.

Springer.

9. Arendse, B., “A thorough comparison of NLP tools for requirements
quality improvement”, 2016.

10. Umber, A. and I.S. Bajwa. Minimizing ambiguity in natural language

software requirements specification. 2011 Sixth International Conference
on Digital Information Management (ICDIM),. 2011. IEEE.

11. Takoshima, A. and M. Aoyama. Assessing the Quality of Software

Requirements Specifications for Automotive Software Systems. in
Software Engineering Conference (APSEC), 2015 Asia-Pacific. 2015.

IEEE.

12. Bano, M. Addressing the challenges of requirements ambiguity: A
review of empirical literature. in 2015 IEEE Fifth International

Workshop on Empirical Requirements Engineering (EmpiRE). 2015.

IEEE.
13. Popescu, D., Rugaber, S., Medvidovic N., & Berry, D.M. Reducing

ambiguities in requirements specifications via automatically created

object-oriented models. LNCS 5320, 2007. Springer.
14. Femmer, H., Fernandez, D.M., &Juergens, E., Rapid requirements

checks with requirements smells: two case studies. in Proceedings of the

1st International Workshop on Rapid Continuous Software Engineering.
2014. ACM.

15. Shah, U.S. and D.C. Jinwala, Resolving ambiguities in natural language

software requirements: a comprehensive survey. ACM SIGSOFT
Software Engineering Notes, 2015. 40(5): p. 1-7.

16. Korner, S.J. and T. Brumm. Resi-a natural language specification

improver. in Semantic Computing, 2009. ICSC'09. IEEE International
Conference on. 2009. IEEE.

17. Bajwa, I., M. Lee, and B. Bordbar, Resolving syntactic ambiguities in

natural language specification of constraints. Computational Linguistics
and Intelligent Text Processing, 2012: p. 178-187.

18. Soares, H.A. and R.S. Moura. A methodology to guide writing Software

Requirements Specification document. in Computing Conference
(CLEI), 2015 Latin American. 2015. IEEE.

19. Fockel, M. and J. Holtmann.

ReqPat: Efficient documentation
of high-quality requirements

using controlled natural

57
14

14
14

Ambiguties

Syntactic Ambiguty Lexical Ambiguty

Syntax Ambiguty Pragmatic Ambiguty

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-9S, July 2019

882

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I11410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1141.0789S19

language. in 2015 IEEE 23rd International Requirements Engineering

Conference (RE). 2015. IEEE.
20. Gill, K.D., Raza, A., Zaidi, A.M., &Kiani, M.M. Semi-Automation For

Ambiguity Resolution, 27th Canadian Conference on Open Source

Software requirements. in Electrical and Computer Engineering
(CCECE). 2014. IEEE.

21. Sandhu, G. and S. Sikka. State-of-art practices to detect inconsistencies

and ambiguities from software requirements. 2015 International
Conference on. Computing, Communication & Automation (ICCCA),

2015. IEEE.

22. de Bruijn, F. and H.L. Dekkers. Ambiguity in natural language software
requirements: A case study. International Working Conference on

Requirements Engineering: Foundation for Software Quality. 2010.

Springer.
23. Unnati S Shah, Devesh C. Jinawala, “Resolving Ambiguties in Natural

language Software Requirements: A Comp rehensive Survey”, ACM

SIGSOFT Software Engineering Notes, Vol 40 No. 5, September 2015.
24. Gang Liu, Shaobin Huang, Xiufeng Piao, “Study on Requirement

Testing Method Based On Alpha-Beta Cutoff Procedure” Collage of

computer Science and Technology, Harbin Engineering University,
Harbin, Heilongjiang, China, 2008 IEEE.

25. Ravi Prakash Verma, Bal Gopal, Md. Rizwan Beg, ”Algorithm for

Generating Test Case for Prerequisites of Software Requirement”

Department of Computer Science and Engineering, Integral University.

International Journal of Computer Application, September 2010 IEEE.

26. Ronald Kirk Kndt “Software Requirement Engineering: Practice and
Techniques”, Jet Propulsion Laboratory, California Institute of

Technology, November 7, 2003.
27. MassilaKamalrudin, SafiahSidek, Sharifah Sakinah, Syed Ahmad,

NadiahDaud, “A review of requirements engineering tools for

requirements validation software engineering process”,vol.1, no.1,
International journal of software engineering and technology (IJSET),

2014.

28. Dr. Sohail Asghar, Mahrukhumar, “Requirement engineering challenges
in development of software applications and selection of

customer-offthe-Shelf (COTS) components”, International journal of

software engineering (IJSE), vol. 1, no. 2, August 2010.
29. Khtira, A.; Benlarabi, A.; El Asri, B. Detecting feature duplication in

natural language specifications when evolving software product lines. In

Proceedings of the 10th International Conference on Evaluation of Novel
Approaches to Software Engineering, Barcelona, Spain, 29–30 April

2015.

AUTHORS PROFILE

Ashima Raniis Research Scholar, Department
of Computer Science, Jagannath University

Jhajjar (Haryana, India). She received her B.Sc.

from Kurukshetra University, Kurukshetra in
2007 and MCA from GITM, Gurgaon

(Maharishi Dayanand University, Rohtak) in

2010. She has done M.Tech(CSE) from MBU,
Solan in 2013. She has been teaching UG and

PG classes for well over 9 years. She has 18
Research papers in International Journals and

Conferences.She has attended more than 30

workshop/Conferences/FDP/Seminar during her 9 years of experience of
teaching. She has to her credit two books with International publisher. Her

research interest includes Software Engineering, Algorithm Designs and

Database.

 Dr. Gaurav Aggarwal is Associate Professor
and Head in Faculty Engineering & Technology

with the Jagannath University, NCR, Haryana,

India. He received his B.Tech in CSE from
Maharishi Dayanand University, Rohtak in 2005

and M.Tech from VCE, Rohtak in 2008. He

received his Ph.D. Degree from Faculty of
Engineering & Technology, JNU, Jaipur in 2016.

He has teaching experience of 14 years. He is

active member of R. G. Education Society, Rohtak.
He has more than 40 Research papers in National and International Journals

and Conferences. He has guided 20 Post graduate students and 2 Doctorate

student and currently 6 Doctorate students are doing their work under his
supervision. His research interest includes Software Engineering, Software

Reliability, Neural Networks and Data Mining.

