
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue- 9S2, July 2019

679

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I11390789S219/19©BEIESP

DOI : 10.35940/ijitee.I1139.0789S219

Abstract—In traditional network the coupling of data plane

and control plane makes the data forwarding, processing and

managing of the network hard and complex. Here each switch

takes its own decision, makes the network logically decentralized.

To overcome the limitations in traditional network the Engineers

developed a new model network known as Software Defined

Network (SDN). This network the control plane is decoupled

from the data plane making it less complex. It moreover has a

logically centralized approach unlike the existing network. This

separation enables the network control to be directly

programmable and the architecture to be abstracted for

applications and network services. SDN platform provides

advantages like programmability, task virtualization and easy

management of the network. However, it faces new challenges

towards scalability and performances. It is a must to understand

and analyze the performances of SDN for implementation and

deployment in live network environments. SDN working with

POX is studied. This paper analyses the working of POX

controller and evaluates the performance metrics of POX

controller for SDN environment. The emulation is done using the

Emulation software.

Keywords: Traditional Network; SDN; Mininet; Emulator;

Firewall; OpenFlow Protocol

I. INTRODUCTION

Today due to increasing network traffic and the users are

rising exponentially. The network providers find it difficult

to cope with it this phase of explosive expansion. The

Traditional Architecture Network (TAN) has only two

planes the application plane and the control plane as in

Figure 1. The TAN is defined by the physical topology

consisting of switches, routers and servers all cabled

together. This indicates that once they are set, it is difficult

to make changes in them. It is expensive and complex. This

existing network model is not compatible for varying

workload demand that is mostly the case in Datacenter’s and

Cloud Environment.The traditional network has logical

distributed control and device specific management. This

network has low dynamic configurability because it has

device specific management. In this network, the routing

table is built up by the control plane based on the learning

and awareness. The protocol support for each device varies

Revised Manuscript Received on July 18, 2019.

N. Saritakumar, Assistant Professor Department of Electronics and

Communication Engineering PSG College of Technology Coimbatore,

India.(E-mail:.skumarpsg@gmail.com)
Adarsh V Srinivasan, Bachelor of Engineering Department of

Electronics and Communication Engineering PSG College of Technology

Coimbatore, India. (E-mail:.adarshvsrinivasan@gmail.com)
Elfreda Albert, M.E Communication Systems Department of

Electronics and Communication Engineering PSG College of Technology

Coimbatore, India (E-mail:.elfredaalbert@yahoo.com)

Dr. S. Subha Rani Head of Department Department of Electronics and

Communication Engineering PSG College of Technology Coimbatore,

India.

with depending upon each of the vendor’s each release.

Thus, making the traditional network less compatible to

multi-vendor devices.

Troubleshooting in Traditional networks is difficult as the

cause and the area of the error in specific is hard to be

determined in the old network. All network devices have a

control plane that provides information which is used to

build a forwarding table. They consist of a data plane that

consults the forwarding table. The forwarding table is used

by the network device in decision making process, where to

send the frames or packets entering the device. Both of the

planes co-exist directly in a networking device. As the

network expands in TAN increases the devices used, cost,

complexity and time for the network too increases. Mostly

the functionality of an appliance is implemented in

dedicated hardware i.e. an Application Specific Integrated

Circuit (ASIC) is often used for this purpose. Also, when a

single device is needed to be added or removed in the

traditional network, the network administrator will have to

manually configure multiple devices like switches, routers,

firewalls etc. on a device-by-device basis.

One of the major issue with the traditional networks that

it is more prone to attacks from various sources, as the

control and data are in the same plane. So enhanced security

given is such that the intruders access to the controller to be

blocked or terminated. Also, the authentications given to the

packets are heavy and not always compatible for all kinds or

types of devices working in a multi-user environment.

Fig 1 : Traditional Network structure

The CAP (Consistency, Availability and Partition

Tolerance) theorem is a major issue faced in traditional

network. So, moving on to Software Defined Network

Performance Evaluation of Pox Controller

for Software Defined Networks

N. Saritakumar Adarsh V Srinivasan Elfreda Albert S. Subha Rani

PERFORMANCE EVALUATION OF POX CONTROLLER FOR SOFTWARE DEFINED NETWORKS

680

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I11390789S219/19©BEIESP

DOI : 10.35940/ijitee.I1139.0789S219

(SDN) where the control plane is decoupled from the data

plane and also, it permits dynamic configuration in the

network [1]. Hence, it is much preferred.

II. BACKGROUND

SDN

As mentioned in Fig 2, the Software Defined Network

(SDN) has three main planes.

They are:

a. Application plane

b. Control Plane

c. Data plane

This network is flexible and agile. This makes it user-

friendly for the users to design, build and manage the

network based on the needs. The deployment time taken by

the Software Defined Network (SDN) is minimal. Also, the

controllers can be easily programmed based on needs of the

network. The Software Defined Network (SDN) has a

logically centralized control plane which is programmable.

The SDN has three types of controllers. They are:

a. SDN controller,

b. Southbound API’s (Application Programming

Interface),

c. Northbound API’s

The SDN controller acts as the brain of the network in

coordinating the flows within inter-domain and intra-domain

networks. The Southbound API’s (Application Program

Interface) relays on information to the switches and routers

in the network. They form the connecting bridge between

control and forwarding elements. The Northbound API’s

regulate the communications with the applications and the

deployed services. They are crucial to promote application

portability and interoperability among different control

platforms. There are many controllers currently used in

Software Defined Network. They are POX, NOX,

ONOS(Open Networking Operating System), Floodlight,

Trema and Ryu [7].

Fig 2 : Software Defined Network structure

The application plane is the layer that allows the

applications to interact and manipulate the behavior of

network devices though the control plane. Mostly the

network information is provided to an application via the

Northbound API of the controller. The SDN applications are

traffic engineering, mobility and wireless, measurement and

monitoring, security and dependability and data center

networking [8].

The data plane consists of the switches, routers, and all

the data forwarding devices. The forwarding devices contain

the flow tables. They are reconfigured and reprogrammed

based on the needs of the network. The data traffic is much

reduced due the systematic check in the data packet headers.

They are analyzed by an application so-called the Virtual

Network Function (VNF) analyzer. The packets headers are

analyzed and then are routed to their destination based on

the “Best Path to be Travelled”. Most of the OpenFlow

switches used in SDN supports OpenFlow (OF) protocol [5].

The major security threats in SDN are Unauthorized Access,

Data Leakage, Data Modification, Malicious /Compromised

Applications, Denial of Service and Configuration Issues

[6]. Also, by abstracting the network from the hardware,

policies no longer are to be executed in the hardware,

instead, they use of a centralized software application

functioning as the control plane makes network

virtualization possible in SDN.

OpenFlow Protocol

OpenFlow protocol is one amongst the initially used

protocol in Software Defined Networking standards [3]. The

recently used version is 1.3.0. The OpenFlow network

policies and its applications are implemented as the OF

applications, such that any application that works in SDN

should support OF protocol. The application plane interacts

with the northbound API via the control plane.

The OF controller interacts with the data plane is via the

Southbound API. The controllers are distinct from the

switches. This separation of the control from the forwarding

allows for more sophisticated traffic management than is

feasible for users by the Access Control Lists (ACLs) and

routing protocols. Also, OpenFlow allows switches from

different vendors mostly of each one with their own

proprietary interfaces and scripting languages to be manage

remotely using a single, open protocol. To work in an

OF environment, any device needs should be communicated

to the SDN Controller which mostly supports the

OpenFlow protocol. Through this interface, the SDN

Controller pushes down any changes to the switch/router

related to the flow-table allowing network administrators

with partitioning of traffic, controlling the flows for optimal

performance, and start testing new configurations and

applications.

The OF protocol is mainly supported by OF switches in

the data plane. It runs over the “Secure Socket Layer” (SSL)

in switches. The OpenFlow protocols defines three types of

tables in the logical switch architecture as in figure 3. They

are:

 Flow tables

 Group tables

 Meter tables

The flow tables are dynamically configured on the arrival

of the packets. They match the incoming packets in the flow

to the flow rules specified in the table and specified the

action for the packet is defined in the flow-table. When they

receive a data packet, depending upon the specified action in

the packet, the work needed to be done is determined. There

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue- 9S2, July 2019

681

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I11390789S219/19©BEIESP

DOI : 10.35940/ijitee.I1139.0789S219

is also a possibility for the creation of multiple flow tables in

a pipeline fashion. It also directs the flow to the Group

tables which triggers the various actions in the flow. The

Meter table can also trigger actions which leads to

performance variations in the flows.

Mininet

It’s a network emulator [2] [4]. In this software, the

creation of Virtual hosts, switches, controllers and links are

possible. It runs in standard LINUX platform. The switches

used here support OpenFlow protocol which is highly

flexible for custom routings and Software Defined Network.

Mininet is actively developed, supported and is released

under a permissive BSD Open Source license. It’s simple,

open-sourced and less expensive, so mostly preferred for

developing OpenFlow applications. It also, permits multiple

developers to access the same topology. It has its own

Command Line Interface (CLI) for debugging and running

network wide tests.

Fig 3 : Open Flow working structure

It supports arbitrary custom topologies and basic

parametric topologies. Also provides a straight-forward

approach and extensible Python API for the network

creation and experimentation. The MiniNet network runs the

real code in the network application, Linux kernel and the

network stack.

POX Controller

POX is the upgraded Python based version of NOX

controller. It is an open source controller. It has a high level

for query-able topology and support for virtualization. It was

initially used as an OpenFlow(OF) controller but now it is

used as a switch too. It provides reusable components, path

selection, topology discovery, load balancing etc. It is the

default controller used when a controller is evoked in

Mininet software. It supports Graphic User Interface (GUI)

and visualization tools.

It architecture is simple compared to other controllers as

in figure 4. The communication between the controller and

the switches is using OF protocol. The OF switches behave

just like forwarding devices. They perform only on the

instruction from the controller. When the switch is ON, at

the next instant it will immediately connect with the

controller. Each switch has its own flow table. Initially they

are empty.

At the arrival of a packet, the switch sends a Packet-in

message to the controller. Then the controller inserts flow

entire in the flow table of the switch regarding how to

handle the packet. The flow entry has 3 parts: rule, action

and counters. So as each packet passes a flow entry is

installed in the switch such that it may be able to handle the

packet without the intervention of the controller. If the flow

entries do not match with the one in the controller, it sends a

response the discard the packet.

The benefits of using POX is the it need less memory

space to operate unlike other controllers but has low

throughput performance when compared with other

controllers.

Fig 4 : POX Controller architecture

D-ITG

D-ITG (Distributed Internet Traffic Generator) is a

platform that can generate traffic which adheres to the

patterns where the inter departure time of the packets and

the packet size can be defined [6]. It supports a lots of

probability distribution like Pareto, Cauchy, Poisson,

Normal and Gamma. It also supports wide number of

protocols like: TCP, UDP, ICMP, Telnet and VoIP. The

users can obtain the details of the flow of packet like the

One-Way-Delay(OWD), Round-Trip-Time (RTT), packet

loss, Jitter and the throughput measurement. It also permits

the users to set the Type of Service(TOS) and the Time to

Live(TTL) of the packet

Fig 5 : D-ITG Software Architecture

The D-ITG has a Distributed multi-component

architecture. The figure 5 displays the software architecture

PERFORMANCE EVALUATION OF POX CONTROLLER FOR SOFTWARE DEFINED NETWORKS

682

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I11390789S219/19©BEIESP

DOI : 10.35940/ijitee.I1139.0789S219

of D-ITG. As it is in the architecture a separate signaling

channel between the sender and receiver for communication

and it is ruled by a special protocol Traffic Specification

Protocol(TSP). D-ITG mainly comprises of ITGSend,

ITGRecv and ITGLog. The ITGSend is the only source of

traffic generation. It can operate in various modes like single

flow mode, multiple flow mode and daemon mode. In single

flow mode just generates a one flow.

A single thread is responsible for this flow generation and

management. In multiple flow mode sets of flows are

generated. It has many threads to manage flow. One among

them implements the TSP while the other generates traffic

flows. To collect the statistics of the flow, connect to the log

host for it. ITGRecv works by listening to the TSP

connections. When a connection requesting thread arrives, it

generates a thread that is responsible for its communication

with the sender. Each flow is received as a separate thread.

ITGLog indicates a log server running on a different host

than the sender and the receiver. It is capable to receiving

and storing multiple information from multiple sender’s and

receivers. Mostly the log information is usually sent using

reliable TCP channel or rarely in unreliable UDP channel.

III. NETWORK TOPOLOGY

Fig 6 : The Topology of the Simulated Network

A linear topology was implemented with 10 switches and

11 hosts and all the further analysis and simulations were

done using the above-mentioned topology.

IV. IMPLEMENTATION & RESULTS

This work mainly focusses on the performance of POX

controller using Mininet software. As POX is the default

controller used when a controller is evoked in for any

purpose in Mininet. All the switches used here operate with

OF protocol. This protocol helps it easily and effectively

communicate with the controller regarding the flow.

Performance evaluation of POX controller is checked.

Certain parameters are deemed for testing purpose [5].

They are:

1. Bandwidth Utilized

2. CPU load allocation

3. Packet Loss

4. Scalability

The topology used is mostly linear topology with the size

of hosts or switches increasing exponentially i.e.

5,10,15.…80. or a tree topology with depth=1 and fanout=2.

For test purpose the fanout is increased from 2 to 80 i.e. the

number of hosts connected to the switch connected to the

controller is increased exponentially.

Bandwidth Utilized

For performance analysis the bandwidth usage is also an

important factor. To test the Bandwidth utilization, initially

a linear topology with 80 hosts and switches can be seen in

figure 6 is used. Then a bandwidth of 10Mbps is allocated

and the utilized bandwidth by the switches using iPerf is

recorded. Then gradually the allocated bandwidth is

increased by ten to 20Mbps and then at an exponential phase

till 50 Mbps.

The simulation is run and the test results are tabulated in

the Table 1 for reference.

Table 1 : Bandwidth utilized by the Network

Switch

Count

Utilized

BW (For

allocated

10 Mbs)

Utilized

BW (For

allocated

20 Mbs)

Utilized

BW (For

allocated

30 Mbs)

Utilized

BW (For

allocated

40 Mbs)

Utilized

BW (For

allocated

50 Mbs)

1 9.388 19 27.8 35.6 40.3

10 9.366 18.3 27.9 24.3 45.6

20 9.285 18.5 27 17.3 44.6

30 9.26 18.3 26.8 31.3 37.7

40 8.946 18.1 24.5 32.4 37.4

50 8.84 17.2 22.1 28.2 40.3

60 8.796 14 24.9 27.3 38.6

70 8.28 16.9 24 24.9 36.3

80 8.11 14.5 23.1 22.6 35.1

Then the values in Table 1 is plotted as a graph as in

figure 7. From the figure it can be analyzed that for 10Mbps

the bandwidth utilized is minimum and constant. For

20Mbps the effective utilization is till 50 switches and for

30Mbps it is till 45 switches. At 40Mbps unlike others

effective utilization of bandwidth is at 40 to 50 switches and

at 50Mbps effective bandwidth utilization is at 10 to 20

switches. This brings to the conclusion that effective

bandwidth utilization happens at 20 to 50 switches. After

that wastage of bandwidth is detected.

Fig 7 : Plot of Bandwidth Utilization Vs Switch count

CPU Load Allocation

This checks the efficiency of how the POX controller

works depending on the amount of load given. So, for this

test a Tree topology is considered as in figure 6 with depth =

1 and fanout = 2. Initially 10% of the CPU is allocated and

10*10^9 bits is sent from the controller to the Hosts. The

number of bits received per second value is taken. Gradually

the CPU load is increased by10 to 20%.

From the figure 9, initially as the load is 10% the rate of

bits received is less i.e. speed is less. But at 75-80%

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue- 9S2, July 2019

683

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I11390789S219/19©BEIESP

DOI : 10.35940/ijitee.I1139.0789S219

allotment better performance is achieved i.e. when

maximum CPU space is allocated to CFS (Completely Fair

Scheduler), maximum packets are received.

Table 2 : Packets received based on the CPU Load

CPU (% allocated) Received Bits per Sec

10 5.90E+08

20 1.23E+09

30 1.83E+09

40 2.38E+09

50 3.50E+09

60 3.09E+09

70 4.91E+09

80 6.20E+09

90 3.50E+09

100 4.29E+09

Fig 8 : Space Allocated to CPU Load Vs Received

bits/sec

Packet Loss

Fig 9 : D-ITG used in Linear topology

The final test is to check the Packet loss. It is an important

factor when it comes efficiency of packet delivered. It also

determines the networks reliability. For this a traffic

generator known as D-ITG (Distributed Internet Traffic

Generator) is used. For this test a linear topology is taken

into consideration with 10 hosts and switches. Here hosts h6

and h8 are the senders. Host h1 is considered as the receiver

and h10 is made remote log host as in Fig 9. flows with

varying the packet size from 64 to 1450 bytes are sent.

Table 3 : Packet loss based on Packet size

From the Fig 10, at 200 and 900 bytes there is a sharp rise

in the packets lost. At about 450 to 800 the packet loss is

stable. After 1200 the loss is rising exponentially. Initially

there is no packet loss, but from 192 there is a small loss

which gradually increases

Fig 10 : Plot of Packet Size Vs Packet Loss

V. ADVANTAGES

There are certain advantages of using a Software Defined

Network (SDN). The programmability of a Network is very

essential to any organization where the operational costs are

reduced by many folds. The existing conventional network

can be expanded which in turn increases the scalability and

provides the users with a lot of re-usability options.

The SDN provides a Centralized view of the entire

network, making it easier to centralize enterprise

management and provisioning. The SDN also provides

centralized security as it can be controlled virtually.

The ability to shape and control data traffic is another

advantage of using a SDN. Being able to achieve this, the

Quality of Service (QoS) is increased and this system also

provides flawless user experience. So content delivery is

Guaranteed.

VI. CONCLUSION

This work specifically uses POX controller and evaluated

its performance factors as Bandwidth utilization, CPU load

and Packet Loss using iPerf and D-ITG. It was analyzed that

effective bandwidth utilization happens with 20 to 50

PERFORMANCE EVALUATION OF POX CONTROLLER FOR SOFTWARE DEFINED NETWORKS

684

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I11390789S219/19©BEIESP

DOI : 10.35940/ijitee.I1139.0789S219

switches in the network. When 75-80% of the CPU load is

given to Completely Fair Scheduler, it performs better. The

packet loss drastically increases after 1200 bytes, which

makes this controller less reliable after. Mainly the SDN is a

boon for data centers where large amount of data, user’s and

devices are handled. So, reliability, scalability, are some

important parameters needed for SDN to be deployed. The

latest hardware for Software Defined Network, the

OpenFlow switch Zodiac FX can be deployed with POX

controller.

REFERENCES

1. Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and
Steve Uhlig, “ Software Defined Networking : A
Comprehensive Survey,” 2014, in Proceedings of the second
workshop on Hot topics in software defined networks

2. Faris Keti, Shavan Askar,” Emulation of Software Defined
Networks Using MiniNet in Different Simulation

Environments”, 2015, 6th International Conference on
intelligent Systems, Modelling and Simulation, pp 9-2,2016

3. Fei Hu, Qii Hao and Ke Bao, “A Survey on Software Defined
Network and OpenFlow: From Concept to Implementation” in
IEEE Communication surveys & Tutorials,vol.16,No.4,Fourth
Quarter 2014

4. Rogerio Leao Santos de Oliveria, Christiane Maire
Schweitzer, Ailton Akira Shinoda, Ligia Rodrigues Prete,”
Using mininet emulation and prototyping Software Defined

networks”, 2014, IEEE Colombian Conference on
Communication and Computing(COLCOM), pp 4-6,2014

5. The Openflow Switch, openflowswitch.org.
6. S.Avallone, S.Guadagno, D.Emma and A.Pescape,“ D-ITG

Distributed Internet Traffic Generator,” 2014, Proceedings of
the First international conference on Quantitative Evaluation
of Systems (QEST’04).

7. Saleh Asadollahi, Bhargavi Goswami and Mohammed

Sameer,” Ryu Controller’s Scalability Experiment on
Software Defined Networks”, 2016, 7th International
Conference on intelligent Systems, Modelling and Simulation,
pp 9-2,2017

8. Semaliansky R.L, “SDN for Network Security”, 2014 IEEE
International Conference.

