THE VIEW OF THE CLINICIAN ON THE PROBLEM OF COVID-19
PDF

Keywords

SARS-CoV-2, post COVID-19, ACE2, cytokines

How to Cite

Yeryomenko, G., Bezditko , T., & Ospanova, T. (2022). THE VIEW OF THE CLINICIAN ON THE PROBLEM OF COVID-19. Inter Collegas, 8(4), 217 - 225. https://doi.org/10.35339/ic.8.4.217-225

Abstract

The review article features the peculiarities in the epidemiological and clinical picture of a new coronavirus infection, COVID-19. The purpose of the review was to analyze the issues of the management. Pathogenetic relationships between SARS-CoV-2 virus, COVID-19 and angio- tensin-converting enzyme 2 (ACE2) are assessed. Predisposing factors, which result in devel- opment of pneumonia and endothelial dysfunction, disorders in microcirculation, vasocon- striction, work of the renin-angiotensin system with subsequent development of ischemia in certain organs, inflammation and edema of tissues, are analyzed. Lung damage causes devel- opment of interstitial pneumonia, activation of the process of formation of fibrosis and de- creased pulmonary function. Accumulation of anti-inflammatory cytokines, which break the blood-brain barrier, in the CNS can cause dysregulation of central structures, autonomic dys- function and severe asthenic syndrome, which can maintain low-grade inflammation for a long time. Opportune diagnosis and treatment of concomitant diseases in post-COVID-19 patients are of paramount significance for achieving a positive clinical outcome. The plan of rehabilita- tion treatment should be individualized according to the patient’s needs. In order to assess re- mote consequences of COVID-19 all patients require further follow-ups.

https://doi.org/10.35339/ic.8.4.217-225
PDF

References

Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., & Zuo W. (2020). Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine, 202(5), 756–759 doi: 10.1164/rccm.202001-0179LE

Feshchenko, Yu. I., Holubovska, O. A., Dziublyk, O. Ya., Havrysiuk, V. K., Dziublyk, Ya. O., & Liskina, I. V. (2021). Osoblyvosti urazhennia lehen pry COVID-19 [Pulmonary disease in COVID-19]. Ukr. pulmonol. journal, (1), 5-14. [In Ukranian] doi: 10.31215/2306-4927-2021-29-1-5-14.

Uddin, M., Mustafa, F., Rizvi, T. A., Loney, T., Suwaidi, H. A., Al-Marzouqi, …& Senok, A. C. (2020). SARS-CoV-2/COVID-19: Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions. Viruses, 12(5), 526. doi: 10.3390/v12050526.

Ortega, J. T., Serrano, M. L., Pujol, F. H., & Rangel, H. R. (2020). Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI journal, 19, 410–417. doi: 10.17179/excli2020-1167.

Bonetti, P. O., Lerman, L. O., & Lerman, A. (2003). Endothelial dysfunction: a marker of atherosclerotic risk. Arteriosclerosis, thrombosis, and vascular biology, 23(2), 168–175. doi: 10.1161/01.atv.0000051384.43104.fc.

Kopcha, V.S., Bondarenko, A.M., & Sai, I.V. (2020). Patohenetychna terapiia koronavirusnoi pnevmonii pry COVID‑19 [Pathogenetic therapy of COVID-19 associated pneumonia]. Klinichna immunolohiia. Alerholohiia. Infektolohiia, 6(127), 5-13. [in Ukrainian]/ Retrieved from: https://is.gd/9GJfKw.

South, A. M., Diz, D. I., & Chappell, M. C. (2020). COVID-19, ACE2, and the cardiovascular consequences. American journal of physiology. Heart and circulatory physiology, 318(5), H1084–H1090. doi: 10.1152/ajpheart.00217.2020.

Kai, H., & Kai, M. (2020). Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertension research : official journal of the Japanese Society of Hypertension, 43(7), 648–654. doi: 10.1038/s41440-020-0455-8.

Ahmadian, E., Hosseiniyan Khatibi, S. M., Razi Soofiyani, S., Abediazar, S., Shoja, M. M., Ardalan, M., & Zununi Vahed, S. (2021). Covid-19 and kidney injury: Pathophysiology and molecular mechanisms. Reviews in medical virology, 31(3), e2176. doi: 10.1002/rmv.2176.

Yaqinuddin, A., & Kashir, J. (2020). Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents. Medical hypotheses, 140, 109777. Advance online publication. doi: 10.1016/j.mehy.2020.109777.

Bhatia, K. S., Sritharan, H. P., Chia, J., Ciofani, J., Nour, D., Chui, K. … & Bhindi, R. (2021). Cardiac Complications in Patients Hospitalised With COVID-19 in Australia. Heart, lung & circulation, 30(12), 1834–1840. doi: 10.1016/j.hlc.2021.08.001.

Arias-Reyes, C., Zubieta-DeUrioste, N., Poma-Machicao, L., Aliaga-Raduan, F., Carvajal-Rodriguez, F., Dutschmann, M., … & Soliz, J. (2020). Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respiratory physiology & neurobiology, 277, 103443. doi: 10.1016/j.resp.2020.103443.

Lindsay, P. J., Rosovsky, R., Bittner, E. A., & Chang, M. G. (2021). Nuts and bolts of COVID-19 associated coagulopathy: the essentials for management and treatment. Postgraduate medicine, 133(8), 899–911. doi: 10.1080/00325481.2021.1974212.

Egilmezer, E., & Rawlinson, W. D. (2021). Review of studies of severe acute respiratory syndrome related coronavirus-2 pathogenesis in human organoid models. Reviews in medical virology, 31(6), e2227. doi: 10.1002/rmv.2227.

Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., … &Song, Y. (2020). Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA internal medicine, 180(7), 934–943. doi: 10.1001/jamainternmed.2020.0994.

Flammer, A. J., Anderson, T., Celermajer, D. S., Creager, M. A., Deanfield, J., Ganz, P., … & Lerman, A. (2012). The assessment of endothelial function: from research into clinical practice. Circulation, 126(6), 753–767. doi: 10.1161/CIRCULATIONAHA.112.093245.

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., … & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet, 395(10234), 1417–1418. doi: 10.1016/S0140-6736(20)30937-5.

Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., … & Gallagher, P. E. (2005). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation, 111(20), 2605–2610. doi: 10.1161/CIRCULATIONAHA.104.510461.

Leon, A. S., Franklin, B. A., Costa, F., Balady, G. J., Berra, K. A., Stewart, K. J. … & Lauer, M. S. (2005). Cardiac rehabilitation and secondary prevention of coronary heart disease. Circulation , 111(3), 369-376. doi: 10.1161/01.CIR.0000151788.08740.5C.

Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R. A., Stahl, M., … & Penninger, J. M. (2020). Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell, 181(4), 905–913.e7. doi: 10.1016/j.cell.2020.04.004

Marongiu, F., Grandone, E., & Barcellona, D. (2020). Pulmonary thrombosis in 2019-nCoV pneumonia? Journal of thrombosis and haemostasis : JTH, 18(6), 1511–1513. doi: 10.1111/jth.14818.

Cecchini, R., & Cecchini, A. L. (2020). SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical hypotheses, 143, 110102. doi: 10.1016/j.mehy.2020.110102.

Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature reviews. Immunology, 20(6), 363–374. doi: 10.1038/s41577-020-0311-8.

Gemelli Against COVID-19 Post-Acute Care Study Group (2020). Post-COVID-19 global health strategies: the need for an interdisciplinary approach. Aging clinical and experimental research, 32(8), 1613–1620. doi: 10.1007/s40520-020-01616-x.

Mechi, A., Al-Khalidi, A., Al-Darraji, R., Al-Dujaili, M. N., Al-Buthabhak, K., Alareedh, M., … & Nafakhi, H. (2021). Long-term persistent symptoms of COVID-19 infection in patients with diabetes mellitus. International journal of diabetes in developing countries, 1–4. Advance online publication. doi: 10.1007/s13410-021-00994-w.

Goërtz, Y., Van Herck, M., Delbressine, J. M., Vaes, A. W., Meys, R., Machado, F. … & Spruit, M. A. (2020). Persistent symptoms 3-months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ open research, 6(4), 00542-2020. doi: 10.1183/23120541.00542-2020.

Baj, J., Ciesielka, M., Buszewicz, G., Maciejewski, R., Budzyńska, B., Listos, P., & Teresiński, G. (2021). COVID-19 in the autopsy room-requirements, safety, recommendations and pathological findings. Forensic science, medicine, and pathology, 17(1), 101–113. doi: 10.1007/s12024-020-00341-1.

Hasichaolu, Zhang, X., Li, X., Li, X., & Li, D. (2020). Circulating Cytokines and Lymphocyte Subsets in Patients Who Have Recovered from COVID-19. BioMed research international, 2020, 7570981. doi: 10.1155/2020/7570981.

COVID-19 rapid guideline: managing the long-term effects of COVID-19. (2020). National Institute for Health and Care Excellence (NICE). Retrieved from: www.nice.org.uk/guidance/ng188

Feshchenko, Y. I., Dziublyk, O. Y., Dziublyk, Y. O., Pylypenko, M. M., & Bororova, O. L. (2020). Nehospitalna pnevmoniia, asotsiiovana z COVID-19: pohliad na likuvannia. [Community-acquired pneumonia associated with COVID-19: the treatment perspectives]. Ukr. pulmonol. journal, (2), 5-12. [In Ukrainian]. doi: 10.31215/2306-4927-2021-29-1-5-14

Rosca, E. C., Heneghan, C., Spencer, E. A., Brassey, J., Plüddemann, A., Onakpoya, I. J. … & Jefferson, T. (2021). Transmission of SARS-CoV-2 associated with aircraft travel: a systematic review. Journal of travel medicine, 28(7), taab133. doi: 10.1093/jtm/taab133.

Atique, M., Ghafoor, A., Javed, R., Fatima, N., Yousaf, A., & Zahra, S. (2021). Correlation of Viral Load With the Clinical and Biochemical Profiles of COVID-19 Patients. Cureus, 13(7), e16655. doi: 10.7759/cureus.16655.

Alba, G. A., Ziehr, D. R., Rouvina, J. N., Hariri, L. P., Knipe, R. S., Medoff, B. D. … & Hardin, C. C. (2021). Exercise performance in patients with post-acute sequelae of SARS-CoV-2 infection compared to patients with unexplained dyspnea. EClinicalMedicine, 39, 101066. doi: 10.1016/j.eclinm.2021.101066.

Pertseva, T. A., Kireyeva, T. V., Bielosludtseva, K. O., & Kryhtіna M. A. (2017). Klinichni, zahalni, hemokoahuliatsiini ta patolohoanatomichni osoblyvosti patsiientiv z pomirnoiu ta vazhkoiu vnutrishnoiu nabutoiu pnevmoniieiu za danymy retrospektyvnoho analizu. [Clinical, general, hemocoagulation and pathologicanatomical features of patients with moderate and severe community acquired pneumonia by the data of retrospective analysis]. Medicni Perspektivi, 22(3), 17–24. [In Ukrainian]. doi:10.26641/2307-0404.2017.3.111858.

Hu, B., Zeng, L. P., Yang, X. L., Ge, X. Y., Zhang, W., Li, B. ... & Shi, Z. L. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS pathogens, 13(11), e1006698. doi: 10.1371/journal.ppat.1006698

Arbour, N., Côté, G., Lachance, C., Tardieu, M., Cashman, N. R., & Talbot, P. J. (1999). Acute and persistent infection of human neural cell lines by human coronavirus OC43. Journal of virology, 73(4), 3338–3350. doi: 10.1128/JVI.73.4.3338-3350.1999.

Arbour, N., Ekandé, S., Côté, G., Lachance, C., Chagnon, F., Tardieu, M., … & Talbot, P. J. (1999). Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. Journal of virology, 73(4), 3326–3337. doi: 10.1128/JVI.73.4.3326-3337.1999.

Carvalho-Schneider, C., Lauren,t E., Lemaignen, A., Beaufils, E., Bourbao-Tournois, C., Laribi, S., …& Bernard L. (2021) Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 27(2), 258-263. doi: 10.1016/j.cmi.2020.09.052.

Çomoğlu, Ş., Öztürk, S., Topçu, A., Kulalı, F., Kant, A., Sobay, R., … & Yilmaz, G. (2021). The Role of CO-RADS Scoring System in the Diagnosis of COVID-19 Infection and its Correlation with Clinical Signs. Current medical imaging. Advance online publication. 27. doi: 10.2174/1573405617666210827150937.

Robinson, P. (2021). Long COVID and breathlessness: an overview. British journal of community nursing, 26(9), 438–443. doi: 10.12968/bjcn.2021.26.9.438.

Wynberg, E., van Willigen, H., Dijkstra, M., Boyd, A., Kootstra, N. A., van den Aardweg, J. G. … & RECoVERED Study Group (2021). Evolution of COVID-19 symptoms during the first 12 months after illness onset. Clinical infectious diseases, ciab759. doi: 10.1093/cid/ciab759. Online ahead of print.

Basanets, A. V., Yermakova, O. V., Kriukova, L. B., Gvozdetsky, V. A., & Zhurahovskaya, N. V. (2021). Acute respiratory disease COVID-19 as occupational disease. Ukrainian Pulmonology Journal, 29(2), 25–29. doi:10.31215/2306-4927-2021-29-2-25-29

Levison M.E. Commentary: what we know so far about post-COVID syndrome. Retrieved from: https://www.msdmanuals.com/professional/news/editorial/2020/09/23/20/17/post-covid-syndrome

Komaroff, A. (2020). The tragedy of long COVID. Health Alerts from Harvard Medical School, Harvard Health Publishing, Retrieved from: https://www.health.harvard.edu/blog/the-tragedy-of-the-post-covid-long-haulers-2020101521173

Wijeratne, T., & Crewther, S. (2020). Post-COVID 19 Neurological Syndrome (PCNS); a novel syndrome with challenges for the global neurology community. Journal of the neurological sciences, 419, 117179. doi: 10.1016/j.jns.2020.117179.

Dinh, A., Jaulmes, L., Dechartres, A., Duran, C., Mascitti, H., Lescure, X., … AP-HP/Universities/INSERM COVID-19 research collaboration, Data-sciences committee, Scientific committee, & Covidom regional centre steering commitee (2021). Time to resolution of respiratory and systemic coronavirus disease 2019 symptoms in community setting. Clinical microbiology and infection, 27(12), 1862.e1–1862.e4. doi: 10.1016/j.cmi.2021.08.021.

Zhao, H.M., Xie, Y.X., Wang, C.; Chinese Association of Rehabilitation Medicine; Respiratory Rehabilitation Committee of Chinese Association of Rehabilitation Medicine; Cardiopulmonary Rehabilitation Group of Chinese Society of Physical Medicine and Rehabilitation. (2020) Recommendations for respiratory rehabilitation in adults with coronavirus disease. Chin Med J (Engl), 133, 13, 1595-1602. doi: 10.1097/CM9.0000000000000848.

Wade, D.T. (2020). Rehabilitation after COVID-19: an evidence-based approach. Clin Med (Lond), 20(4), 359–365. doi: 10.7861/clinmed.2020-0353

Barker-Davies, R. M., O'Sullivan, O., Senaratne, K., Baker, P., Cranley, M., Dharm-Datta, S. … &Bahadur, S. (2020). The Stanford Hall consensus statement for post-COVID-19 rehabilitation. British journal of sports medicine, 54(16), 949–959. doi: 10.1136/bjsports-2020-102596.

Mylvaganam, R. J., Bailey, J. I., Sznajder, J. I., Sala, M. A., & Northwestern Comprehensive COVID Center Consortium (2021). Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection. European respiratory review, 15, 30(162), 210194. doi: 10.1183/16000617.0194-2021.

"Inter Collegas" is an open access journal: all articles are published in open access without an embargo period, under the terms of the CC BY-NC-SA (Creative Commons Attribution ‒ Noncommercial ‒ Share Alike) license; the content is available to all readers without registration from the moment of its publication. Electronic copies of the archive of journals are placed in the repositories of the KhNMU and V.I. Vernadsky National Library of Ukraine.