Logo-bi
Bioimpacts. 2020;10(3): 159-167.
doi: 10.34172/bi.2020.20
PMID: 32793438
PMCID: PMC7416011
Scopus ID: 85089710918
  Abstract View: 1683
  PDF Download: 663
  Full Text View: 446

Original Research

Effects of Securigera securidaca (L.) Degen & Dorfl seed extract combined with glibenclamide on paraoxonase1 activity, lipid profile and peroxidation, and cardiovascular risk indices in diabetic rats

Shahin Alizadeh-Fanalou 1 ORCID logo, Ali Nazarizadeh 1,2 ORCID logo, Mohammad Babaei 3 ORCID logo, Mohsen Khosravi 4 ORCID logo, Navid Farahmandian 1, Elham Bahreini 1* ORCID logo

1 Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
2 Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
3 Department of Clinical Sciences, Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
4 Department of Medicine, Qom Branch, Islamic Azad University, Qom, Iran
*Corresponding Author: *Corresponding author: Elham Bahreini, Email: , Email: Bahreini.e@iums.ac.ir

Abstract

Introduction: Seeds of Securigera securidaca (L.) Degen & Dorfl are rich in flavonoids and phenolic acids which have potent biological effects. The current study was undertaken to evaluate the effects of hydroalcoholic extract of S. securidaca seeds (HESS) alone, and in combination with a standard drug, glibenclamide (GB) on paraoxonase1 (PON1) activity, lipid profile and peroxidation, and cardiovascular risk indices in streptozotocin (STZ) induced diabetic rats.
Methods: Forty-eight male Wistar rats were randomly divided into eight equal groups and orally treated with various doses of HESS (100, 200, 400 mg/kg) alone and in combination with GB (5 mg/kg) for 35 consecutive days. After blood sampling, lipid profile including triglyceride (TG), cholesterol, high, low and very low-density lipoprotein-cholesterol (HDL-C, LDL-C, and VLDL-C), as well as serum PON1 activity, were assessed. Malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and high-sensitivity C-reactive protein (hs-CRP) levels were also measured. Several indices of cardiovascular risk and the correlation between PON1 activity and these indices were calculated based on the obtained results from the lipid profile.
Results: Induction of diabetes could dramatically alter all of the parameters mentioned above, and the lower dose of HESS (100 mg/kg) was not effective in restoring the parameters. However, the higher doses (200 and 400 mg/kg) alone and in combination with GB could significantly improve lipid profile, restore PON1 activity, and decrease cardiovascular risk indices, MDA, as well. However, neither HESS nor GB could significantly reduce TNF-α and hs-CRP. A significant negative correlation also was detected between PON1 activity and cardiovascular risk indices.
Conclusion: conclusively, HESS can be considered as a potent antihyperlipidemic agent with remarkable cardioprotective effects and can potentiate the antidiabetic effects of GB.
First Name
Last Name
Email Address
Comments
Security code


Abstract View: 1669

Your browser does not support the canvas element.


PDF Download: 663

Your browser does not support the canvas element.


Full Text View: 446

Your browser does not support the canvas element.

Submitted: 05 Jul 2019
Revision: 24 Oct 2019
Accepted: 03 Nov 2019
ePublished: 12 Dec 2019
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)