Methods Inf Med 2011; 50(03): 285-295
DOI: 10.3414/ME0519
Original Articles
Schattauer GmbH

Upper-level Ontologies for Health Information Systems[*]

Towards an Archetype Patterns Approach
W. Raghupathi
1   Graduate School of Business, Fordham University, New York, NY, USA
,
A. Umar
1   Graduate School of Business, Fordham University, New York, NY, USA
› Author Affiliations
Further Information

Publication History

received: 23 November 2007

accepted: 02 February 2010

Publication Date:
18 January 2018 (online)

Summary

Objectives: We examine the potential of archetype patterns for upper-level ontology development in health information systems (HISs).

Methods: Archetype patterns, based on the integration of archetype concepts and design patterns, are conceptualized and developed for ontology in the HIS domain. The UML provides the underlying modeling support.

Results: We argue in favor of the archetype pattern providing models for upper-level ontologies in HIS. This, in turn, has the potential to offer a foundation for interoperability across HIS applications and enterprises. Our research also shows the limitations of current ontology development methods as well as the challenges faced in archetype pattern development. The framework has potential for general, widespread usage. Overall, this approach supports ontology development in HIS.

Conclusions: The research demonstrates the applicability of archetype patterns to ontology development in HIS. While numerous ontologies exist in biomedicine, there are few well-developed ontologies for general healthcare. Properly modeled, archetype patterns have potential to reconcile the differences in high-level design views across health care inter-enterprises. Future research can focus on governance, standards and tools for archetype patterns, as well as development of a comprehensive set of high-level healthcare archetype patterns.

* In honor of Dr. Lawrence Schkade’s 80th birthday for introducing the first author to ontology 25 years ago.


 
  • References

  • 1 Aloisio G, Barba MC, Blasi E, Cafaro M, Fiore S, Mirto M. A web service-based grid portal for edge-breaker compression. Methods Inf Med 2005; 44: 233-238.
  • 2 Arlow J, Neustadt I. Enterprise Patterns and MDA. Boston: Addison-Wesley; 2004
  • 3 Van der Maas AAF, Ter Hofstede AHM, Ten Hoopen AJ. Requirements for medical modeling languages. JAMIA 2001; 8: 146-162
  • 4 Beale T. Archetypes: constraint-based domain models for future-proof information systems. Proc 11th OOPSLA Workshop on Behavioral Semantics: Serving the Customer. Seattle; Washington, USA: 2002. pp 16-32.
  • 5 Bird L, Goodchild A, Heard S. Importing clinical data into electronic health records – lessons learnt from the first Australian GEHR trials. Proc 10th National Health Informatics Conference Melbourne, Australia: 2002. pp 94-98.
  • 6 Blobel BGME, Engel K, Pharow P. Semantic inter-operability – HL7 Version 3 compared to advanced architecture standards. Methods Inf Med 2006; 45: 343-353.
  • 7 Bodenreider O, Burgun A. Biomedical ontologies. In: Chen H, Fuller S, Hersh WR, Friedman C. (eds). Medical Informatics: Advances in Knowledge Management and Data Mining in Biomedicine. Springer-Verlag: 2005. pp 211-236.
  • 8 Bodenreider O, Stevens R. Bio-ontologies: current trends and future directions. Briefings in Bioinformatics 2006; 7: 256-274.
  • 9 Dogac A, Laleci GB, Kabak Y, Unal S, Beale T, Heard S, Elkin PL, Najmi F, Mattocks C, Weber D, Kernberg M. Exploiting ebXML registry semantic constructs for handling archetype metadata in health-care informatics. International Journal of Meta-data, Semantics and Ontologies 2006; 1: 21-36.
  • 10 Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shabo A. HL7 clinical document architecture, Release 2. JAMIA 2006; 13: 30-39.
  • 11 Eggebraaten TJ, Tenner JW, Dubbels JC. A health-care data model based on the HL7 reference information model. IBM Systems Journal 2007; 46: 5-18.
  • 12 Elkin P, Kernberg M. HL7 template and archetype architecture. HL7 Template Special Interest Group; January 2004 p 15.
  • 13 Estrella F, Hauer T, McClatchey R, Odeh M, Rogulin D, Solomonides T. Experiences of engineering grid-based medical software. Int J Med Inform 2007; 76: 621-632.
  • 14 Fowler M. Analysis Patterns: Reusable Object Models. Addison-Welsey Longman; 1997
  • 15 Gamma E, Helm R, Johnson R, Vlissides JM. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series; 1994
  • 16 Garde S, Baumgarten B, Basu O, Graf N, Haux R, Herold R, Kutscha U, Schilling F, Selle B, Spiess C, Wetter T, Knaup P. A meta-model of chemotherapy planning in the multi-hospital/multi-trial-center-environment of pediatric oncology. Methods Inf Med 2004; 43: 171-183.
  • 17 Garde S, Knaup P, Hovenga EJS, Heard S. Towards semantic interoperability for electronic health records. Methods Inf Med 2007; 46: 332-343.
  • 18 Greenwood R, Hinings CR. Understanding strategic change: the contribution of archetypes. The Academy of Management Journal 1983; 36: 1052-1081.
  • 19 Gold JD, Ball MJ. The health record banking imperative: a conceptual model. IBM Systems Journal 2007; 46: 43-55.
  • 20 Hajdukiewicz JR, Vicente KJ, Doyle DJ, Milgram P, Burns CM. Modeling a medical environment: an ontology for integrated medical informatics design. Int J Med Inform 2001; 62: 79-99.
  • 21 Heja G, Surjan G, Lukacsy G, Pallinger P, Gergely M. GALEN based formal representation of ICD10. Int J Med Inform 2007; 76: 118-123.
  • 22 Hess HM. Aligning technology and business: applying patterns for legacy transformation. IBM Systems Journal 2005; 44: 25-45.
  • 23 Hovenga E, Garde S, Heard S. Nursing constraint models for electronic health records: a vision for domain knowledge governance. Int J Med Inform 2005; 74: 886-898.
  • 24 Hunt J. Guide to the Unified Process Featuring UML Java and Design Patterns. Springer; 2003
  • 25 Lyalin D, Williams W. Modeling cancer registration processes with an enhanced activity diagram. Methods Inf Med 2005; 44: 11-13.
  • 26 Maojo V, Crespo J, de la Calle G, Barreiro J, Garcia-Remesal M. Using web services for linking genomic data to medical information systems. Methods Inf Med 2007; 46: 484-492.
  • 27 Massingill BL. Experiments with program parallelization using archetypes and stepwise refinement. In: Lecture Notes in Computer Science 1998; 1388: 844-856.
  • 28 Massingill BL, Mattson TG, Sanders BA. A pattern language for parallel application programs. In: Lecture Notes in Computer Science 2000; 1900: 678.
  • 29 McCray AT. An upper-level ontology for the biomedical domain. Comparative and Functional Genomics 2003; 4: 80-84.
  • 30 Miller D, Friesen PH. Archetypes of strategy formulation. Management Science 1978; 24: 921-933.
  • 31 Miller D, Friesen PH. Archetypes of organizational transition. Administrative Science Quarterly 1980; 25: 268-299.
  • 32 Pease A, Niles I. IEEE standard upper ontology: a progress report. The Knowledge Engineering Review 2002; 17: 65-70.
  • 33 Porter ME, Teisberg EO. Redefining Health Care. Boston, MA: Harvard Business School Press; 2006
  • 34 Powner DA. Health information technology. HHS is continuing efforts to define a national strategy. GAO-06-346T, United States Government Accountability Office (3-15-2006) ( http://www.gao.gov. )
  • 35 Raghupathi W, Gao W. Exploring a UML profile approach to modeling web services in health care. International Journal of Healthcare Information Systems and Informatics 2007; 2: 36-52.
  • 36 Raghupathi W, Kesh S. Interoperable electronic health records design: towards a service-oriented architecture. E-service Journal 2007; 5: 39-57.
  • 37 Raghupathi W, Gao W. An eclipse-based development approach to health information technology. International Journal of Electronic Healthcare 2007; 3: 433-452.
  • 38 Raghupathi W, Umar A. Exploring an MDA approach to developing information systems in health care. Int J Med Inform 2008; 77: 305-314.
  • 39 Rowland G. Archetypes of systems design. Systemic Practice and Action Research 1995; 8: 277-288.
  • 40 Schulz S, Boeker M, Stenzhorn H, Niggemann J. Granularity issues in the alignment of upper ontologies. Methods Inf Med 2009; 48: 184-189.
  • 41 Schwaninger M. Modeling with archetypes: an effective approach to dealing with complexity. In: Lecture Notes in Computer Science 2004; 2809: 127-138.
  • 42 Shabo A. A global socio-economic-medico-legal model for the sustainability of longitudinal electronic health records – part 1. Methods Inf Med 2006; 45: 240-245.
  • 43 Simons WW, Mandl KD, Kohane IS. The PING personally controlled electronic medical record system: technical architecture. JAMIA 2005; 12: 47-54.
  • 44 Stevens R, Goble C, Horrocks I, Bechhofer S. Building a bioinformatics ontology using OIL. IEEE Transactions on Information Technology in Biomedicine 2002; 6: 135-141
  • 45 Stojanovic L, Schneider J, Maedche A, Libischer S, Studer R, Lumpp Th, Abecker A, Breiter G, Dinger J. The role of ontologies in autonomic computing systems. IBM Systems Journal 2004; 43: 598-616.
  • 46 Tambouratzis G, Tambouratzis D. Self-organization in complex pattern spaces using a logic neural network. Network: Computation in Neural Systems 1994; 5: 599-617.
  • 47 Tirado-Ramos A, Jingkun Hu J, Lee KP. Representation of DICOM structured reporting: a case study of transcoding DICOM to XML. JAMIA 2002; 9: 63-72.
  • 48 van der Linden H, Talmon J, Tange H, Grimson J, Hasman A. PropeR revisited. Int J Med Inform 2005; 74: 235-244.
  • 49 Winter A, Brigl B, Wendt T. Modeling hospital information systems (part 1): the revised three-layer graph-based meta model 3LGM2. Methods Inf Med 2003; 42: 544-551.