Articles

Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress

Published:
June 5, 2023
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Sobh, M., Zargar, T. B., Basal, O., & Veres, S. (2023). Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress. Acta Agraria Debreceniensis, 1, 105-110. https://doi.org/10.34101/actaagrar/1/12274
Received 2023-01-09
Accepted 2023-03-23
Published 2023-06-05
Abstract

Soil salinity is a severe and expanding soil degradation problem that affects 80 million ha of arable lands globally. Chickpea (Cicer arietinum L.) is very sensitive to saline conditions; the most susceptible genotypes may die in just 25 mM NaCl in hydroponics. Approximately 8–10% yield loss in chickpea production is estimated due to salinity stress. However, it is still not established why chickpea is so susceptible to salt affection. Salinity (NaCl) impedes germination of seeds, though chickpea varieties considerably differ from one another in this respect. Some chickpea genotypes are more tolerant in the stage of germination, tolerating even 320 mM NaCl. The reasons of this variation are unrevealed; there is a shortage of knowledge about the germination abilities of chickpea genotypes in saline conditions. Nevertheless, the effect of salt stress on vegetative growth can be analysed in hydroponics, in pot or field conditions, regardless the experimental environment, the ranking of genotypes regarding salt resistance is coherent. Chickpea genotypes can be different in their ability to retain water, maybe under salt affection; the more salt tolerant lines can maintain higher water content in the shoots, while the more sensitive ones cannot. The identification of salt tolerant chickpea landraces based on developing genetic variability is a suitable strategy to combat against salinity problems arising in arid and semi-arid areas.

References
  1. Abido, W.A.E.–Zsombik, L. (2017): Behavior of some Hungarian wheat varieties to seed soaking in gibberellic acid under salt stress. Acta Agraria Debreceniensis, 2017/72, doi.org/10.34101/actaagrar/72/1575.
  2. Arefian, M.–Vessal, S.–Bagheri, A. (2014): Biochemical Changes in Response to Salinity in Chickpea (Cicer Arietinum L.) During Early Stages of Seedling Growth. The Journal of Animal & Plant Sciences. 1849–1857.
  3. Basu, S.–Ramegowda, V.–Kumar, A.–Pereira A. (2016): Plant adaptation to drought stress. F1000Research. DOI: 10.12688/f1000research.7678.1
  4. Ceritoğlu, M.–Erman, M.–Yildiz, F. (2020): Effect of salinity on germination and some agro-morphological traits in chickpea seedlings. ISPEC Journal of Agricultural Sciences. 4, 82–96. https://doi.org/10.46291/ISPECJASvol4iss1pp82-96
  5. Epitalawage, N.–Eggenberg, P.–Strasser, R.J. (2003): Use of fast chlorophyll a fluorescence technique in detecting drought and salinity tolerant chickpea (Cicer arietinum L.) varieties. Archives Des Sciences. 56, 79–93.
  6. Eyidogan, F.–Oz, M.T. (2007): Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiologiae Plantarum 29, 485–493. DOI: 10.1007/s11738-007-0059-9
  7. FAO (2018): http://www.fao.org/faostat/en/#data/QC.
  8. Farooq, M.–Gogoi, N.–Hussain, M.–Barthakur, S.–Paul, S.–Bharadwaj, N.–Migdadi, H.M.–Alghamdi, S.S.–Siddique, K.H.M. (2017): Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 118, 199–217. DOI: 10.1016/j.plaphy.2017.06.020
  9. Flowers, T.J.–Gaur, P.M.–Gowda, C.L.–Krishnamurthy, L., Samineni, S.–Siddique, K.H.–Turner, N.C.–Vadez, V.–Varshney, R.K.–Colmer, T.D. (2010): Salt sensitivity in chickpea. Plant Cell and Environment 33,490–509. DOI: 10.1111/j.1365-3040.2009.02051.x
  10. Flowers, T.J.–Gaur, P.M.–Gowda, C.L.L.–Krishnamurthy, L.–Samineni, S.–Siddique, K.H.M. (2009): Salt sensitivity in chickpea. Plant, Cell and Environment, 33, 490–509.
  11. Frolov, A.–Bilova, T.–Paudel, G.–Berger, R.–Balcke, G.U.–Birkemeyer, C.–Wessjohann, L.A. (2017): Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. J. Plant Physiol, 208, 70–83. DOI: 10.1016/j.jplph.2016.09.013
  12. James, R.A.–Blake, C.–Byrt, C.S.–Munns, R. (2011): Major genes for Na^+ exclusion, Nax1 and Nax2 wheatHKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions.J. Exp. Bot, 62, 2939–2947. doi: 10.1093/jxb/err003
  13. Gaur, P.M.–Tripathi, S.–Gowda, C.L.L.–Ranga Rao,G.V.–Sharma, H.C.–Pande, S.–Sharma,M. (2010): Chickpea Seed Production Manual Report. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India, Patancheru 502 324.
  14. Grasso, N.–Lynch, L.N.–Arendt, E.K.–O’Mahony, J.A. (2021): Chickpea protein ingredients: A review of composition, functionality, and application. Comprehensive Review in Food Science and Food Safety. On-line [https://doi.org/10.1111/1541-4337.12878].
  15. Kashiwagi, J.–Krishnamurthy, L.–Purushothaman, R.–Upadhyaya, H.D.–Gaur, P.M.–Gowda, C.L.–Ito, O.–Varshney, R.K. (2015): Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Research, 170, 47–54. DOI: 10.1016/j.fcr.2014.10.003
  16. Katerji, N.–van Hoorn, J.W.–Hamdy, A.–Mastrorilli, M.–Oweis, T.–Malhotra, R.S. (2001): Response to soil salinity of two chickpea varieties differing in drought tolerance. Agricultural Water Management, 50, 83–96. https://doi.org/10.1016/S0378-3774(01)00107-X
  17. Khan, H.A.–Siddique, K.H.M.–Munir, R.–Colmer, T.D. (2015): Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. J. Plant Physiol. 182, 1–12. DOI: 10.1016/j.jplph.2015.05.002
  18. Kukreja, S.–Nandwal, A.S.–Kumar, N.–Sharma, S.K.–Sharma, S.K.–Unvi, V.–Sharma, P.K. (2005): Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia Plantarum, 49, 305–308.
  19. DOI: https://doi.org/10.1007/s10535-005-5308-4
  20. Kurdali, F. (1996): Nitrogen and phosphorus assimilation, mobilization and partitioning in rainfed chickpea (Cicer arietinum L.). Elsevier Field Crops Research 47, 81–92. https://doi.org/10.1016/0378-4290(96)00034-2
  21. Lamaoui, M.–Jemo, M.–Datla, R.–Bekkaoui, F. (2018): Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. https://doi.org/10.3389/fchem.2018.00026
  22. Läuchli, A.–Lüttge, U. (2002): “Salinity in the soil environment,” in Salinity: Environment-Plants-Molecules, ed. Tanji,K.K. (Boston, MA: Boston Kluwer Academic Publishers), 21–23.
  23. Li, L.J.–Gu, W.R.–Meng, Y.–Wang, Y.L.–Mu, J.Y.–Li, J.–Wei, S. (2018): Physiological and biochemical mechanism of spermidine improving drought resistance in maize seedlings under drought stress. Ying Yong Sheng Tai Xue Bao, 29,554–564. doi: 10.13287/j.1001-9332.201802.021.
  24. Maliro, M.F.A.–McNeil, D.–Redden, B.–Kollmorgen, J.F.–Pittock, C. (2008): Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance. Genetic Resources and Crop Evolution, 55, 53–63. DOI:10.1007/s10722-007-9214-9
  25. Massimi, M.–Radocz, L. (2022): Screening of paprika (Capsicum annuum L.) varieties resistant to NaCl salt stress. Acta Agraria Debreceniensis, 2022-1, DOI: 10.34101/ACTAAGRAR/1/10420.
  26. McVay, K.–Burrows, M.–Menalled, F.–Jones, C.–Wanner, K.–Neill, R.O. (2013): Montana cool season pulse production guide. Montana State University Extension EB0210.
  27. Muller, B.–Pantin, F.–Génard, M.–Turc, O.–Freixes, S.–Piques, M.–Gibon, Y. (2011): Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot, 62,1715–1729. doi: 10.1093/jxb/erq438.
  28. Murumkar, C.V.–Chavan, P.D. (1993): Alterations in photosynthetic carbon metabolism of chickpea (Cicer arietinum L) due to imposed NaCl salinity. Agrochimica, 37, 26–32.
  29. Nandwal, A.S.–Kukreja, S.–Kumar, N.–Sharma, P.K.–Jain, M.–Mann, A.–Singh, S. (2007): Plant water, status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinisation and desalinisation. Journal of Plant Physiology, 164, 1161–1169. DOI: 10.1016/j.jplph.2006.05.017
  30. Nene, Y.L.–Reddy, M.V. (1987): Chickpea diseases and their control in The Chickpea (eds M.C. Saxna & K.B. Singh). CAB International, Wallingford, UK, 233–270.
  31. Pujol, J.A.–Calvo, J.F.–Ramírez-Díaz, L. (2000): Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Ann Bot, 85,279–86. DOI : 10.1006/anbo.1999.1028
  32. Rahnama, A.–James, R.A.–Poustini, K.–Munns, R. (2010): Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol, 37, 255–263. doi: 10.1071/FP 09148,
  33. Reddy, M.P.–Sanish, S.–Iyengar, E.R.R. (1992): Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiate Roxb under saline conditions. Photosynthetic, 26, 173–179.
  34. Reed, W.–Cardona, S.–Sithanantham, S.–Lateef, S.S. (1987): The chickpea insect pests and their control. In The Chickpea (eds M.C. Saxena & K.B. Singh), CAB International, Wallingford, UK, 283–318.
  35. Rengasamy, P. (2006): World salinisation with emphasis on Australia. Journal of Experimental Botany, 57, 1017–23. DOI: 10.1093/jxb/erj108
  36. Roy, F.–Boye, J.–Simpson, B. (2010): Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res Int, 43,432–42. DOI:10.1016/j.foodres.2009.09.002
  37. Roy, S.J.–Negrão, S.–Tester, M. (2014): Salt resistant crop plants. Curr. Opin. Biotechnol, 26, 115–124. doi: 10.1016/j.copbio.2013.12.004
  38. Rupela, O. (1987): Nodulation and nitrogen fixation in chickpea. In The Chickpea (eds M. Saxena & K.B. Singh). CAB International, Wallingford, UK, 191–206.
  39. Sairam, R.–Tyagi, A.–Chinnusamy, V. (2006): Salinity tolerance: cellular mechanisms and gene regulation. In Plant-Environment Interactions, CRC Press, Boca Raton, FL, USA, 121–175. DOI:10.1201/9781420019346.ch6
  40. Samineni, S.–Siddique, K.H.M.–Gaur, P.M.–Colmer, T.D. (2011): Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicerarietinum L.) podding is a particularly sensitive stage. Environmental and Experimental Botany, 71, 260–8.
  41. Serraj, R.–Krishnamurthy, L.–Upadhyaya, H.D. (2004): Screening chickpea mini-core germplasm for tolerance to soil salinity. International Chickpea and Pigeonpea Newsletter, 11, 29–32.
  42. Shahid, S.A.–Zaman, M.–Heng, L. (2018): Soil Salinity: Historical Perspectives and a World Overview of the Problem. Guideline for Salinity Assessment, Mitigation and Adaptation using Nuclear and Related Techniques, Springer, Cham.
  43. Tatrai, Z.A.–Sanoubar, R.–Pluhar Z.–Mancarella, S.–Orsini, F.–Gianquinto, G. (2016): Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus. Int. J. Agron, 10,1–8. https://doi.org/10.1155/2016/4165750
  44. Van Der Maesen, L.J.G. (1987): Origin, history, and taxonomy of chickpea. In M.C. Saxena & K.B. Singh (Eds.), The Chickpea, UK, CAB International Publications.
  45. Varshney, R.K.–Roorkiwal, M.–Sun, S. et al (2021): A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599, 622–627. https://doi.org/10.1038/s41586-021-04066-1.
  46. Vavilov, N.I. (1926): Studies on the Origin of Cultivated Plants. Bulletin of Applied Botany and Plant Breeding, VVI, 16 (2).
  47. Verslues, P.E.–Agarwal, M.–Katiyar-Agarwal, S.–Zhu, J.–Zhu, J.K. (2006): Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 45,523–539. https://doi.org/10.1111/j.1365-313X.2005.02593.x
  48. Zawude, S.–Shanko, D. (2017): Effects of salinity stress on chickpea (Cicer arietinum L.) landraces during early growth stage. International Journal of Scientific Reports, 214–219. DOI: https://doi.org/10.18203/issn.2454-2156.IntJSciRep20173093