CiteScore: 5.0     h-index: 22

Document Type : Review Article

Authors

1 Department of Materials Engineering School of Engineering Yasouj University Yasouj, Iran

2 Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

3 Department of Mining and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytehnic) Tehran, Iran

4 Department of Chemistry, Amirkabir University of Technology (Tehran Polytehnic), Tehran, Iran

Abstract

Water and energy are the most important topics on the environment and sustainable energy development agenda. The social and economic health of the modern world depends on sustainable supply of both energy and water. Many areas worldwide suffering from fresh water shortage are becoming increasingly dependent on purification as a highly reliable and non-conventional source of fresh water. Therefore, purification market has greatly expanded in recent decades and expected to continue in the coming years. The integration of renewable energy resources in purification and water purification has become increasingly attractive. This is justified by the fact that areas of fresh water shortages have plenty of solar energy and these technologies can be used due to their low operating and maintenance costs. This review paper discusses the systems that can be used to harness renewable energy sources including, solar collectors, solar ponds, photovoltaics, wind energy and geothermal energy and finally a discussion and conclusion about some distinguished features of each process. Merging of these renewable energy sources with conventional sources has led to optimize the performance of purification plant, less maintenance requirement and reduction in overall cost. It was found that, to choose the best renewable energy source for a purification plant in a particular area, important determinative factors should be considered such as water salinity, area remoteness, plant size, technical infrastructure of the plant, capacity factor, energy consumption and capital cost of the equipment.

Graphical Abstract

Utilization of Sustainable Energies for Purification of Water

Keywords

[1] A. Cipollina, G. Micale, L. Rizzuti, Seawater Desalination. Conventional and renewable energy processes, Berlin & Heidelberg: Springer-Verlag, 2009.
[2] S.A. Kalogirou, Prog. Energy Combust. Sci., 2005, 31, 242–281.
[3] M. Shatat, S.B. Riffat, Int. J. Low Carbon Technol., 2012, 9, 1–19.
[4] H. Ambarita, Case Stud. Thermal Eng., 2016, 8, 346–358.
[5] T. Ayhan, H. Al Madani, Renew. Energy, 2010, 35, 506–514.
[6] M. Sajjadnejad, H. Karimi Abadeh, Adv. J. Chem. A, 2020, 3, In Press.
[7] P.H. Gleick, The world's water 1998-1999: the biennial report on freshwater resources. Island Press, 1998.
[8] O. Buros, The ABCs of desalting. International Desalination Association Topsfield, MA, 2000, p 30.
[9] M. Pascoe, "Desalination," Australian State of the Environment Committee, 2006.
[10] C. Koroneos, A. Dompros, G. Roumbas, J. Clean. Prod., 2007, 15, 449–464.
[11] L. Garcı́a-Rodrı́guez, Sol. Energy, 2003, 75, 381–393.
[12] D. Colombo, M. De Gerloni, M. Reali, Desalination, 1999, 122, 171–176.
[13] V.G. Gude, Renew. Sust. Energy Rev., 2016, 57, 1038–1065.
[14] M.A. Eltawil, Z. Zhengming, L. Yuan, Renew. Sust. Energy Rev., 2009, 13, 2245–2262.
[15] A. El-Ghonemy, Renew. Sust. Energy Rev., 2012, 16, 1537–1556.
[16] M. Werner, A. Schäfer, Desalination., 2007, 203, 375–393.
[17] Q. Ma, H. Lu, Desalination, 2011, 277, 274–280.
[18] B. Keeper, R. Hembree, F. Schrack, Desalination, 1985, 54, 89–103.
[19] M.A. Samee, U.K. Mirza, T. Majeed, N. Ahmad, Renew. Sust. Energy Rev., 2007, 11, 543–549.
[20] Z.S. Abdel-Rehim, A. Lasheen, Renew. Energy, 2005, 30, 1955–1971.
[21] M.T. Chaibi, A.M. El-Nashar, Seawater Desalination, Green Energy and Technology, Springer-Verlag: Berlin, Heidelberg, 2009.
[22] S. Kalogirou, Appl. Energy, 2003, 76, 337–361.
[23] S.A. Kalogirou, Prog. Energy Combust. Sci., 2004, 30, 231–295.
[24] H. Lu, J.C. Walton, A.H. Swift, Desalination, 2001, 136, 13–23.
[25] P. Glueckstern, Desalination, 1995, 101, 11–20.
[26] Norton B. Convective Heat Transfer in Solar Energy Systems. In: Solar Energy Thermal Technology. Springer, London. 1992, pp 67–70.
[27] V. Velmurugan, K. Srithar, Renew. Sust. Energy Rev., 2008, 12, 2253–2263.
[28] M.R. Jaefarzadeh, Appl. Therm. Eng., 2000, 20, 243–252.
[29] K.R. Agha, S. Abughres, A. Ramadan, Sol. Energy, 2002, 72, 447–454.
[30] K.R. Agha, S.M. Abughres, A. Ramadan, Sol. Energy, 2004, 77, 95–104.
[31] M. Ouni, A. Guizani, H. Lu, A. Belghith, Sol. Energy, 2003, 75, 95–101.
[32] F.B. Alagao, Sol. Energy, 1996, 56, 245–260.
[33] C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, Desalination, 2007, 216, 1–76.
[34] S. Alawaji, M.S. Smiai, S. Rafique, B. Stafford, Appl. Energy, 1995, 52, 283–289.
[35] M.S. Mohsen, J.O. Jaber, Desalination, 2001, 138, 129–136.
[36] B. Richards, A. Schäfer, Renew. Energy, 2003, 28, 2013–2022.
[37] L. Karimi, L. Abkar, M. Aghajani, A. Ghassemi, Sep. Purif. Technol., 2015, 151, 82–94.
[38] B. Soerensen, Renew. Energy, 1991, 19, 386–391.
[39] H. Mahmoudi, N. Spahis, M.F. Goosen, S. Sablani, S.A. Abdul-wahab, N. Ghaffour, N. Drouiche, Renew. Sust. Energy Rev., 2009, 13, 2149–2155.
[40] M.S. Miranda, D. Infield, Desalination, 2003, 153, 9–16.
[41] V.G. Gude, N. Nirmalakhandan, S. Deng, Renew. Sust. Energy Rev., 2010, 14, 2641–2654.
[42] Y. Nakatake, H. Tanaka, Desalination, 2005, 177, 31–42.
[43] E.A.F.A. Fadigas, J. Dias, Desalination, 2009, 237, 140–146.
[44] A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Renew. Sust. Energy Rev., 2018, 81, 1–21.
[45] L. Garcia-Rodriguez, V. Romero-Ternero, C. Gomez-Camacho, Desalination, 2001, 137, 259–265.
[46] I. de la Nuez Pestana, F.J.G. Latorre, C.A. Espinoza, A.G. Gotor, Desalination, 2004, 160, 293–299.
[47] F.J.G. Latorre, S.O.P. Báez, A.G. Gotor, Desalination, 2015, 366, 146–153.
[48] M. Forstmeier, F. Mannerheim, F. D'Amato, M. Shah, Y. Liu, M. Baldea, A. Stella, Desalination, 2007, 203, 463–470.
[49] K. Quteishat, M. Abu Arabi, Middle East Desalination Research Centre, 2004.
[50] C.O. Popiel, J. Wojtkowiak, B. Biernacka, Experimen. Thermal Fluid Sci., 2001, 25, 301–309.
[51] M. Goosen, H. Mahmoudi, N. Ghaffour, Energies, 2010, 3, 1423–1442.
[52] K. Li, H. Bian, C. Liu, D. Zhang, Y. Yang, Renew. Sust. Energy Rev., 2015, 42, 1464–1474.
[53] E. Barbier, Renew. Sust. Energy Rev., 2002, 6, 3–65.
[54] E. Barbier, Renew. Sust. Energy Rev., 1997, 1, 1–69.
[55] A. Baldacci, P. Burgassi, M. Dickson, M. Fanelli, World renewable energy congress V, 1998, part I, 20–25.
[56] G.A. Florides, S.A. Kalogirou, Renew. Energy, 2004, 32, 2461–2478.
[57] A. Evans, V. Strezov, T.J. Evans, Renew. Sust. Energy Rev., 2009, 13, 1082–1088.
[58] C.R. Chamorro, M.E. Mondéjar, R. Ramos, J.J. Segovia, M.C. Martín, M.A. Villamañán, Energy, 2012, 42, 10–18.
[59] E. Delyannis, Sol. Energy, 2003, 75, 357–366.
[60] I.C. Karagiannis, P.G. Soldatos, Desalination, 2008, 223, 448–456.
[61] S. Kalogirou, Energy, 1997, 22, 69–81.