Next Article in Journal
The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method
Next Article in Special Issue
Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli
Previous Article in Journal
A Sample and Sensitive HPLC-MS/MS Method for Simultaneous Determination of Ziyuglycoside I and Its Metabolite Ziyuglycoside II in Rat Pharmacokinetics
Previous Article in Special Issue
Antimicrobial and Antibiofilm Activity and Machine Learning Classification Analysis of Essential Oils from Different Mediterranean Plants against Pseudomonas aeruginosa
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America

1
National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
2
Pharmaceutical Technology Laboratory, Department of Basic and Applied Science, National University of Chaco Austral, Comandante Fernández 755, Presidencia Roque Sáenz Peña, Chaco 3700, Argentina
3
Laboratory of Microbiology, Department of Basic and Applied Science, National University of Chaco Austral, Comandante Fernández 755, Presidencia Roque Sáenz Peña, Chaco 3700, Argentina
*
Author to whom correspondence should be addressed.
Molecules 2018, 23(3), 544; https://doi.org/10.3390/molecules23030544
Submission received: 30 January 2018 / Revised: 23 February 2018 / Accepted: 26 February 2018 / Published: 1 March 2018
(This article belongs to the Special Issue Essential Oils as Antimicrobial and Anti-infectious Agents)

Abstract

:
The Verbenaceae family includes 2600 species grouped into 100 genera with a pantropical distribution. Many of them are important elements of the floras of warm-temperature and tropical regions of America. This family is known in folk medicine, and its species are used as digestive, carminative, antipyretic, antitussive, antiseptic, and healing agents. This review aims to collect information about the essential oils from the most reported species of the Verbenaceae family growing in South America, focusing on their chemical composition, antimicrobial activity, and synergism with commercial antimicrobials. The information gathered comprises the last twenty years of research within the South American region and is summarized taking into consideration the most representative species in terms of their essential oils. These species belong to Aloysia, Lantana, Lippia, Phyla, and Stachytarpheta genera, and the main essential oils they contain are monoterpenes and sesquiterpenes, such as β-caryophyllene, thymol, citral, 1,8-cineole, carvone, and limonene. These compounds have been found to possess antimicrobial activities. The synergism of these essential oils with antibiotics is being studied by several research groups. It constitutes a resource of interest for the potential use of combinations of essential oils and antibiotics in infection treatments.

1. Introduction

The Verbenaceae family includes 2600 species grouped into 100 genera with pantropical distribution. The most significant number of species is found in Latin America where they occur in a wide array of ecosystems. This family involves herbs, shrubs, and a few trees. They are an important element in the flora of South America [1].
The distribution of the Verbenaceae family in America is varied: for example, the Verbena genus contains 250 species, and the majority is native to the Americas and Asia, Glandularia J.F. Gmel. is a genus distributed from North to South in America [2], and Lantana L. has spanned from the tropics to the subtropics of America and Africa [3], as also Lippia L. and Priva Adans [2]. Other genera seem to be distributed along warm-temperature and tropical regions of America, for instance, Tamonea Aubl., from Mexico and the Caribbean to northern South America, Brazil, and eastern Bolivia. Some genera are confined to the southern part of South America, i.e., Urbania Phil., Acantholippia Griseb., Diostea Miers, Lampaya Philippi ex Murillo genera, all of which are restricted to Argentina and Chile [2].
The plants of this family are known as aromatic species, for ornamental use, or in folk medicine since ancient times. Most of their properties are due to the essential oil (EO) produced by their secondary metabolism. The composition of EOs is highly variable and determines their physical, chemical, and biological properties together with their organoleptic characteristics, which therefore determine their commercial use [4].
Many EOs from Verbenaceae were studied by means of in vitro tests and demonstrated inhibition of bacteria, fungi, and yeasts. Many microorganisms related to human diseases show resistance to antibiotics because of the inappropriate use of these antimicrobials. Consequently, there is an urgent need to discover new active substances [5].
In the era of antibiotic resistance, the awareness of the importance of finding antimicrobial substances continues to grow. Over the past few decades, there has been a tendency to search for these components in natural sources, including plants, because the demand for natural products as an alternative to the conventional treatments has increased. Many representatives of the Verbenaceae family have medicinal uses closely related to bacterial infections, as they have antiseptic properties and can be used for the treatment of fever, wounds, diarrhea, bronchitis, sinusitis, tetanus. In addition, the main chemical compounds present in these plants are recognized for their antimicrobial action. Hence, the aim of this review was to gather information about the EOs obtained from species of the Verbenaceae family growing in South America, their chemical composition, and their antimicrobial effects. Many reports about ethnobotany of these species are shown in Table 1. This family includes several species with pharmacological and ornamental uses, especially those of the genera Aloysia, Lantana, Lippia, and Stachytarpheta. This family is known in folk medicine, and the main uses are as digestive, carminative, antipyretic, antitussive, antiseptic, and healing agents.
Regarding the antimicrobial activity against human pathogens carried out by EOs of species belonging to the Verbenaceae family in South America, the main genera studied were Lippia (51.79%), Lantana (26.79%) and Aloysia (16.03%). There are few works about Stachytarpheta (3.6%) and Phyla (1.8%). The main contributions were given by Brazil (86.11%) in most species of all genera of the family. Other contributions were supplied by Argentina (5.56%), Colombia (5.56%), and Peru (2.78%).
Lippia alba (34.48%) and Lippia origanoides (20.69%) were the most studied species of the Lippia genus, whereas Lantana camara (53.33%) and Lantana montevidensis (26.67%) were the most studied of the Lantana genus. Concerning the Aloysia genus, the most studied species were Aloysia triphylla (33.33%), Aloysia polystachya (22.22%), and Aloysia gratissima (22.22%).

2. Essential Oils from the Verbenaceae Family

Essential oils are heterogeneous mixtures that may contain many compounds at different concentrations. Each EO is characterized by some major compounds, which can reach high levels compared to other compounds present in trace amounts.
It is known that the occurrence of secondary metabolites with similar biological activities can be expected in phylogenetically related plants, which may contribute to the implementation of more rational approaches for the search of new substances with potential economic interest [54]. This section provides information on the chemical composition of five genera and several species of different genres of the Verbenaceae family.
The Lantana species presented β-caryophyllene in high concentration, with cubebene, elixene, and phellandrene as minor compounds [59]. The β-caryophyllene is a chemical marker for species belonging to the Lantana genus [60]. Lantana camara is the most widespread species of this genus. The chemical composition of L. camara EO plays a role in its biological activity; the β-caryophyllene and (E)-nerolidol chemotypes showed antimicrobial and cytotoxic activities [61].
The Lippia species, which are morphologically similar to the Lantana genus, contain limonene, citral, carvacrol, β-myrcene, camphor, and thymol as the main chemical components [59]. Some examples are L. alba EO composed of carvone and limonene (group I), citral and β-caryophyllene, found in L. alba, L. citriodora, and L. dulcis EOs (group II), and carvacrol, thymol, and p-cymene present in L. origanoides and L. micromera species (group III). The group IV is characterized by a greater presence of p-cymene and a small amount of carvacrol and thymol, as in L. origanoides EO [62]. The chemical composition of L. alba EO is an example of the variations in EOs’ components, which determines the existence of a large number of chemotypes. In different regions of Colombia, the citral, carvone, and limonene chemotypes were found while, in Uruguay, the linalool chemotype was identified [63]. L. alba species in Argentina present the linalool chemotype (up to 91%), citral chemotype (up to 76% with two subtypes, i.e., myrcene or limonene), piperitone chemotype (up to 37%), lippione chemotype (up to 50%), and dihydrocarvone chemotype [64]. Another example of the variable chemical composition of Verbenaceae EOs is Lippia javanica, which presents five chemotypes, namely, the myrcenone rich-type (36–62%), carvone rich-type (61–73%), piperitenone rich-type (32–48%), ipsenone rich-type (42–61%), and linalool rich-type (>65%) [65]. The EO of L. graveolens consists mainly of thymol (31.6%) and sesquiterpenes such as caryophyllene (4.6%) and caryophyllene oxide (4.8%) [66]. The EO from L. origanoides also shows diversity in its chemical composition. Several authors revealed the different chemotypes found in various South American countries. Vega-Vela et al. [67] described different chemotypes in several Colombian regions: chemotype B (rich in carvacrol), chemotypes C and D (rich in thymol), chemotype E (eucalyptol and α-phellandrene), chemotype F (p-cymene, eucalyptol or β-phellandrene trace, and thymol methyl ether), and chemotype G (thymol methyl ether, p-cymene, thymol, and γ-terpinene). On the other hand, Stashenko et al. [68] classified L. origanoides EO into three chemotypes according to their major components; they were: chemotype A (α and β-phellandrene, p-cymene, and limonene), chemotype B (carvacrol), and chemotype C (thymol). The comparison of these results allowed concluding that the chemical composition of the EOs obtained from different regions shows significant variation based on its main constituents [67,69]. This chemical diversity is related to monoterpene and sesquiterpene hydrocarbons. The principal compounds are aromatic monoterpenes such as thymol and carvacrol, and monoterpene hydrocarbons and their oxygenated compounds type thujene, pinene, and carene, which are present in a lower proportion. The sesquiterpenes and their oxygenated derivates (β-caryophyllene, humulene and germacrene) constitute about 15% of EOs [67].
The compositions of the EO of the aerial parts of some species of the Aloysia genus presented oxygenated sesquiterpenes as the main components (between 40% and 50%) followed by sesquiterpenic molecules (30–34%) [70]. The EO from the leaves of A. gratissima species, examined in Brazil, Uruguay, and Argentina, contained limonene, sabinene, α-pinene, β-bisabolene, and copaenol; the EO from the flowers presented a high percentage of pulegone (65.8%) and other featured components, such as limonene, spathulenol, α and β-thujene, dihydrocarvone, and menthone [71].
The compounds most found in Phyla nodiflora EO were mainly monoterpenoids (86%), with limonene and carvone as main components, while 3-methyltridecane represented the compound with the lowest concentration [72,73]. The volatile oil isolated from Phyla dulcis by steam distillation consisted of 19.2% hernandulcin, but no camphor was found in plants grown in Brazil, even when extracted by supercritical CO2 [74]. The Phyla dulcis EO from Brazil was high in β-caryophyllene (10.6%), 6-methyl-5-hepten-2-one (10.5%), hernandulcin (8.8%), α-copaene (8.6%), and δ-cadinene (7.2%). In addition, it contained β-cedrene and α-calacorene, compounds found in cedarwood oils [75].
There are very few data related to the chemical composition of the EOs of species belonging to the genus Stachytarpheta. The EO of Stachytarpheta gesnerioides is mainly composed of guaiol (53.5%), α-pinene (16.1%), and isocaryophyllene (1.7%) [76]. In the composition of the EO from the leaves of Stachytarpheta mutabilis, oxyquinone sesquiterpenes, such as those of the eudesman type, are present in a greater percentage [77].

3. Antimicrobial Activity

Aromatic plants have great importance for the pharmaceutical industry, although synthetic products replaced many of them. Plant species show inhibition of bacteria, fungi, and yeasts. Nowadays, the emerging problem of antibiotic resistance is a driving force behind multiple studies on the potential antibacterial activity of EOs and the development of novel preventive or therapeutic strategies for health.
Many aromatic plants are practically immune to the attack of herbivores because of the presence of bioactive metabolites. This fact makes them attractive for study in search of new antimicrobials. The active compounds may be present in the stems, leaves, roots, flowers, or fruits. Regarding the study of the Verbenaceae family, most of the works involved the leaves as a source of EO, but some studies also used flowers.
The diversity of techniques used makes it difficult to compare results from different groups of researchers. Several are the factors that influence the data found in published works related to this topic, namely, microbiological methods, techniques of EO extraction, plant part involved in the extraction, harvesting season, climatic and environmental conditions where the plants were cultivated, and others. Consequently, the differences observed between articles could not possibly reflect a real difference between EOs’ features. It has been found that there is no consensus about both the methodology for the evaluation of the antimicrobial activity of a natural product, and an acceptable value for the minimal inhibitory concentration (MIC). Deep discrepancies among researchers have been found when considering antibiotic-like concentrations or good antimicrobial potential, even when the EO activity consists in a weak inhibition. We consider that a comparison between the MIC values of EOs and commercial antibiotics is not applicable, because the former contain a mixture of compounds which can interact among them, whereas the latter are pure compounds. Aligiannis et al. [78], for example, classified the antibacterial activity of plant extracts on the basis of MIC results, indicating as strong inhibition that corresponding to MIC up to 500 μg/mL, moderate inhibition that characterized by MIC between 600 μg/mL and 1500 μg/mL, and weak inhibition that observed with MIC above 1600 μg/mL. In contrast, Holetz et al. [79] argued that MIC values lower than 0.1 mg/mL represent strong antimicrobial action, values between 0.1 mg/mL and 0.5 mg/mL indicate moderate antimicrobial activity, values between 0.5 and 1.0 mg/mL indicate weak action, while values above 1.0 mg/mL indicate inactive products. The analysis of the MIC values found in the studied EOs allows us to suggest that values less than or equal to 0.5 mg/mL represent strong activity, while those between 0.5 mg/mL and 1.0 mg/mL indicate moderate action. The values between 1.0 mg/mL and 2.0 mg/mL indicate weak action and those greater than 2.0 mg/mL should be considered as corresponding to lack of activity. This appreciation can be useful, since the previous work focused mainly on plant extracts and not on essential oils. Table 2 presents studies on the antimicrobial activity of EOs from the Verbenaceae family against human pathogens, carried out in South America in the last two decades. It should be noted that the broth microdilution test is the most used method to determine the MIC. These data are detailed in the following paragraphs.
According to Sartoratto et al. [80], the EO from A. triphylla showed inhibition values between 0.05 and >2 mg/mL against Gram-positive bacteria but it was not active against Gram-negative bacteria. However, Duarte et al. [81] reported that A. triphylla inhibited 12 Escherichia coli serotypes, with MIC values between 400–1000 μg/mL, showing moderate activity. A. polystachya showed inhibition values between 3.64 and 29.13 μg/mL against Gram-positive and Gram-negative bacteria, but it was not active against Pseudomonas aeruginosa [82]. A. gratissima showed inhibition values between 1000 and 4000 μg/mL against Gram-positive and 2000–4000 μg/mL against Gram-negative bacteria. The minimal bactericidal concentration (MBC) was twice the MIC in most of the cases and was the same as the MIC only for E. coli [8]. Aloysia sellowii showed inhibition values between 1.7 and 16 mg/mL against Gram-positive bacteria and between 6.7 and >20 mg/mL for Gram-negative bacteria. The MBC values were between two and three times the MIC. Aloysia sellowii was active against yeasts with MIC values between 4–16 mg/mL and Minimal Letal Concentration between 4–>20 mg/mL [14].
Lantana caatingensis showed inhibition values between 64 and over 1024 μg/mL against Gram-positive and 256–512 μg/mL against Gram-negative bacteria [16]. The species Lantana camara showed inhibition values between 64 and 256 mg/mL against Gram-positive and Gram-negative bacteria [26], and above 1250 μg/mL against Mycobacterium spp [83]. Lantana montevidensis showed inhibition at 256 μg/mL against Staphylococcus aureus and at 512 μg/mL against E. coli [27].
The EO of Lippia alba was active against Candida albicans [84], six E. coli serotypes [81], pathogenic bacteria which contaminate food [85], filamentous fungi [86], and oral pathogens with MIC and MBC values between 0.006–3.2 mg/mL [31].
The EO of Lippia sidoides (EOLS) showed MIC of 128 μg/mL for Staphylococcus aureus, 256 μg/mL for Streptococcus mutans, Klebsiella pneumoniae, Providencia rettigeri, and Enterobacter cloacae, and 512 μg/mL for Enterococcus faecalis, P. aeruginosa and E. coli [87]. Also, EOLS was active against strains of Candida albicans, Candida tropicalis, Candida spp. These strains were isolated from dogs and cats. Candida parapsilosis (ATCC 22019) and Candida krusei (ATCC 6528) were also used in this assay. The MICs for Candida spp. strains ranged from 620 to 2500 mg/mL, and the MFCs ranged from 1250 to 5000 mg/mL [88]. Likewise, EOLS showed MIC values between 5 and 10 mg/mL and MBC values between 20–40 mg/mL against oral pathogens [50].
Other species mentioned in Table 2 were studied by means of the disk diffusion assay. Disks of 6 mm of diameter were impregnated with 10 or 15 μL of EO, resulting in inhibition halos between 8 and 20 mm diameter. Aguiar et al. [89] considered that halos with a 10 mm diameter represent a good inhibition. According to the observed results in the literature, halos with diameters larger than 20 mm are rare. However, there are reports with these values for L. origanoides [90,91], Lippia gracilis [92] and Lippia grandis [43]. The target bacteria generally used in this type of studies were S. aureus, S. epidermidis, Bacillus cereus, and E. faecalis (Gram-positives), E. coli, P. aeruginosa, K. pneumoniae, and Salmonella (Gram-negatives). The use of ATCC strains facilitates the comparison of the antibacterial potency between plants of the same species that grow in different regions. However, the use of clinical isolates gives a valuable contribution in this field, since it gives a more realistic scenario of the activity of EOs against pathogen strains.

4. Antimicrobial Synergism

Over the last decades, interactions between natural products and commercial antibiotics have been comprehensively studied. Many researchers have demonstrated the ability of natural products to regulate antibiotic activity possibly exerting a synergistic effect.
The checkerboard test evaluates the effect of interactions between two antimicrobial substances. This assay is one of the most commonly used to determine synergism. The MIC values of combinations are registered at one time point [106], and the fractional inhibitory concentration (FIC) index for the two antimicrobial substances are calculated. Sometimes, the results of this assay are interpreted by plotting an isobologram. Another test used to determine synergism is the time-kill assay. It involves measuring the number of viable bacteria in a liquid medium in the presence of a particular combination of antimicrobial substances at different time points. Although time-kill curves are not widely used to study antibacterial interactions, they can be considered a clinically relevant model if the concentrations used represent those achieved at the site of an infection [107]. As previously mentioned, for the determination of antibacterial activity, methods used to evaluate interactions between EOs and antibiotics differ widely, and this makes data comparison difficult. However, the use of FIC indexes allows comparisons of the results. The development of a more standardized method of serial passaging in sublethal concentrations of EO would enable a better investigation of the possible loss of sensitivity or cross-resistance [108].
The commercial antibiotics and bacterial strains most frequently used to evaluate a synergistic action are shown in Table 3. The most relevant results are described below.
Many examples of synergism can be found in the literature regarding Lantana species. The concentration of neomycin decreased 50% against multiresistant E. coli when this antimicrobial was combined with L. caatingensis EO. Similarly, there was a 75% decrease in the concentration of amikacin against S. aureus ATCC 12692 when this EO was present [16]. L. camara EO at 50 μg/mL increased the activity of amikacin up to 65% against P. aeruginosa and up to 29% against S. aureus. When this EO was combined with gentamicin, the antibiotic efficacy increased to 21% against P. aeruginosa and at none effect was detect against S. aureus [24]. Lantana montevidensis EO at 50 μg/mL improved the activity of gentamicin by 12% against P. aeruginosa ATCC 15442 and by 10% against S. aureus ATCC 12692. In addition, when this EO was combined with amikacin, the antibiotic efficacy increased up to 102% against P. aeruginosa ATCC 15442 and to 29% against S. aureus ATCC 12692 [25]. The combination of neomycin with L. montevidensis and L. camara EOs showed no interaction of the two components against S. aureus ATCC 6538 [26].
Likewise, Lippia species exerted several synergistic effects. The presence of 12% L. alba EO increased between 12.5% and 35.7% the activity of erythromycin against two S. aureus ATCC [37]. Lippia gracilis showed a modulatory effect on aminoglycoside activity. A reduction of the MIC value of gentamicin and amikacin against two E. coli strains and S. aureus were observed [40]. Moreover, the addition of 128 μg/mL of L. origanoides EO to the growth medium did cause a 10-fold decrease in the MIC of neomycin (2500–248 μg/mL) and amikacin (788–78 μg/mL). This demonstrated a synergistic effect between L. origanoides EO and aminoglycosides against the methicillin resistant Staphylococcus aureus (MRSA) strain [46].
The presence of L. sidoides EO at 50%, 25%, 12% and 6%, produced an increase of 429.41%, 349%, 256.82% and 21.53% in gentamicin activity against a S. aureus strain. The activity of amikacin and neomycin was enhanced when either antibiotic were combined with this EO [52]. Veras et al. [87] combined L. sidoides EO with aminoglycosides (gentamicin and neomycin) and β-lactams (penicillin G and ceftriaxone) and demonstrated indifferent and synergistic effects depending on the bacteria tested. The combination of the EO with aminoglycosides was synergistic on S. aureus and P. aeruginosa (the MIC was reduced four times). Synergism was also detected when EO and gentamicin were used against K. pneumoniae (the MIC decreased from 32 to 1 μg/mL). This mix showed no effects on the other bacteria. Regarding the interactions between this EO and β-lactams, synergism was detected against S. mutans (EO and penicillin G) and E. faecalis (EO and ceftriaxone), whereas no effect was found against other bacteria. In the first case, there was a four-fold reduction in the MIC value; the MIC value decreased sixteen times when the EO was combined with ceftriaxone. Antagonistic interactions have not been reported in any of the papers analyzed in this work.
This body of evidence proves that plants of this family not only possess antibacterial activities but also can enhance the effects of antibiotics. The authors relate the potential antibiotic effect of EOs to the presence of monoterpenes and sesquiterpenes.

5. Relationship between the Chemical Composition of EOs and Their Antimicrobial Activity

The antimicrobial activity of EOs depends on their chemical composition and on the amount of the single components. Most EOs have a greater effect on Gram-positive bacteria than on Gram-negative bacteria. This behavior is attributed to the differences in the bacterial cell membrane composition. In Gram-positive bacteria, hydrophobic components easily penetrate the cell wall and act upon it as within the cytoplasm. Gram-negative bacteria have a peptidoglycan layer that is 2–3 nm thick, and an outer membrane (OM) lies outside the thin peptidoglycan layer and is firmly linked to it by Braun’s lipoprotein embedded in the OM. This is composed of a double layer of phospholipids that is linked to the inner membrane by lipopolysaccharides (LPS). The peptidoglycan layer is covered by an OM that contains various proteins as well as LPS, which makes the bacteria more resistant to EOs and other natural extracts with antimicrobial activity [107,109].
The mechanism of action of EOs depends on their chemical composition, and their antimicrobial activity is not attributable to a single mechanism; this is widely described by Nazzaro et al. in their work [109]. The effect of the chemical constituents depends on their amount in the EOs, i.e., at low concentrations, they can interfere with enzymes involved in the production of energy and, at higher concentrations, they can denature proteins [109,110]. Examples of chemical components of EO tested experimentally are discussed below.
As previously described, β-caryophyllene, citral, 1,8-cineole, linalool, thymol, limonene, and carvone are volatile substances present in several EOs extracted from plants with recognized antimicrobial properties. These compounds presented antimicrobial activity. The possible mechanisms of action of these compounds are described in the following paragraphs.
Citral exhibited antimicrobial activity against pathogenic and food-spoilage bacteria such as E. coli O157:H7, Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Staphylococcus aureus [111,112]. This compund disrupts and penetrates the lipid structure of the cell wall of bacteria. It leads to protein denaturation and destruction of the cell membrane, followed by cytoplasmic leakage, cell lysis and death [113]. Citral was reported in the EO of L. alba (citral chemotype).
Linalool is one of the main components of some of these EOs (A. sellowii, L. alba) and it was previously reported to cause an increased permeability not only of the negatively charged membranes but also of fungal cells [114,115]. Because of the nature of their chemical structure, alcohols possess a strong binding affinity to different molecular structures, such as proteins or glycoproteins. Hence, they have great affinities for cell membranes and exhibit high potential to permeate cell walls, leading to the leakage of cytoplasmic material [116,117].
Thymol is one of the monoterpene phenols present in EOs from plants belonging to the Verbenaceae family (A. triphylla, L. graciliis, L. grandis, L. origanoides, L. sidoides). Its biological activities include antioxidant, anti-inflammatory, local anaesthetic, antinociceptive, cicatrizing, antiseptic activity, and especially antibacterial and antifungal properties [118]. Some authors [118,119] speculated that the antimicrobial effect of thymol might result, at least in part, from a perturbation of the lipid fraction of the bacterial plasma membrane, resulting in the leakage of intracellular materials. Xu et al. [120] confirmed it, because they demonstrated that this natural compound induces the permeabilization and depolarization of the cytoplasmic membrane. In addition, Chauhan & Kang [121] evaluated the antimicrobial properties and mechanism of action of thymol against S. typhimurium and showed the disruption of membrane integrity. They concluded that this is the main mechanism of action of thymol.
Germacrene-D is an organic compound belonging to the class sesquiterpenoid germacrane. The sesquiterpene hydrocarbon germacrene has five isomers, i.e., Germacrene A, B, C, D, and E. Germacrene D possesses antibacterial properties [122,123]. This sesquiterpene is present in several of the EOs studied, among which we can mention EOs of A. gratissima, L. camara, L. montevidensis, L. alba.
The EO of L. alba and its main components, such as citral and carvone, presented antibacterial and antibiofilm activities against S. aureus. The lowest MIC and MBC values were 0.5 mg/mL when L. alba EOs, citral, and carvone were used. The inhibition (100%) of S. aureus biofilm formation and the elimination of biofilm cells were confirmed. No elimination of biofilm cells was observed when carvone was used. Carvone is a monoterpene reported as one of the most effective antimicrobial agents present in several plants. Its main mechanism of action comprises the destabilization of the structure of phospholipids and the interaction with membrane proteins, and it acts as a proton exchanger reducing the pH gradient across the membrane [124].

6. Conclusions

Essential oils of South American plants from the Verbenaceae family contain as their main components monoterpenes and sesquiterpenes, such as thymol, β-caryophyllene, citral, 1,8-cineole, carvone, and limonene. The presence of these compounds, which increase or alter the permeability of bacterial membranes, could explain their antimicrobial action and their synergistic effect with antibiotics.
Pharmaceutical industries are in need of eco-friendly alternatives to drug molecules to treat infectious diseases. Thus, these EOs might be a prospective source of alternative antimicrobial agents and may play an important role in the discovery of new drugs against a wide range of pathogenic microorganisms in the near future.

Acknowledgments

We would like to thank National Council for Scientific and Technical Research (CONICET), and National University of Chaco Austral for financial support.

Author Contributions

M.B.N. conceived the paper; C.M.P.-Z., C.A.T., and M.B.N. searched information, analyzed it, and wrote the paper. All authors read and approved the final version of this document.

Conflicts of Interest

The authors reported no potential conflict of interest.

References

  1. O’Leary, N.; Calviño, C.I.; Martínez, S.; Lu-Irving, P.; Olmstead, R.G.; Múlgura, M.E. Evolution of morphological traits in Verbenaceae. Am. J. Bot. 2012, 99, 1778–1792. [Google Scholar] [CrossRef] [PubMed]
  2. Franca, F.; Atkins, S. Neotropical Verbenaceae. In Neotropikey—Interactive Key and Information Resources for Flowering Plants of the Neotropics; Milliken, W., Klitgård, B., Baracat, A., Eds.; Kew Gardens: London, UK, 2009; Available online: http://www.kew.org/science/tropamerica/neotropikey/families/Verbenaceae.htm (accessed on 5 November 2017).
  3. Ghisalberti, E.L. Lantana camara L. (Verbenaceae). Fitoterapia 2000, 71, 467–486. [Google Scholar] [CrossRef]
  4. Bandoni, A. (Ed.) Los Recursos Vegetales Aromáticos en Latinoamérica, su Aprovechamiento Industrial para la Producción de Aromas y Sabores; CYTED, Editorial Universidad Nacional de la Plata: La Plata, Argentina, 2002. [Google Scholar]
  5. World Health Organization. The World Is Running out f Antibiotics, WHO Reports Confirms. Available online: http://www.who.int/mediacentre/news/releases/2017/running-out-antibiotics/en/ (accessed on 20 February 2018).
  6. Kutschker, A.; Menoyo, H.; Hechem, V. Plantas Medicinales de uso Popular en Comunidades del Oeste del Chubut; INTA Esquel: Bariloche, Argentina, 2002. [Google Scholar]
  7. Dambolena, J.S.; Zunino, M.P.; Lucini, E.I.; Zygadlo, J.A.; Banchio, E.; Biurrun, F.; Rotman, A.; Ahumada, O. Aromatic plants of northwest Argentina. Constituents of the essential oils of aerial parts of seven Verbenaceae: Lantana and Aloysia. J. Essent. Oil Res. 2010, 22, 289–293. [Google Scholar] [CrossRef]
  8. Santos, T.G.; Laemmle, J.; Rebelo, R.A.; Dalmarco, E.M.; Cruz, A.B.; Schmit, A.P. Chemical composition and antimicrobial activity of Aloysia gratíssima (Verbenaceae) leaf essential oil. J. Essent. Oil Res. 2015, 27, 125–130. [Google Scholar] [CrossRef]
  9. Scarpa, G. El síndrome cálido-fresco en la medicina popular criolla del chaco argentino. Rev. Dialectol. Tradic. Pop. 2004, 59, 5–29. [Google Scholar] [CrossRef]
  10. Souza, A.A.; Wiest, J.M. Atividade anti-bacteriana de Aloysia gratissima (Gill et Hook) Tronc. (garupa, erva-santa), usada na medicina tradicional no Rio Grande do Sul—Brasil. Braz. J. Med. Plants 2007, 9, 23–29. [Google Scholar]
  11. Arias Toledo, B. Diversidad de usos, prácticas de recolección y diferencias según género y edad en el uso de plantas medicinales en Córdoba, Argentina. Bol. Latinoam. Caribe Plantas Med. Aromat. 2009, 8, 389–401. [Google Scholar]
  12. Pina, E.S.; da Silva Coppede, J.; Sartoratto, A.; Fachin, A.L.; Bertoni, B.W.; de Castro França, S.; Soares Pereira, A.M. Antimicrobial activity and chemical composition of essential oils from Aloysia polystachya (Griseb.) Moldenke grown in Brazil. J. Med. Plant Res. 2012, 6, 5412–5416. [Google Scholar]
  13. Demo, M.; Oliva, M.M.; Lopez, M.L.; Zunino, M.P.; Zygadlo, J.A. Antimicrobial Activity of Essential Oils Obtained from Aromatic Plants of Argentina. Pharm. Biol. 2005, 43, 129–134. [Google Scholar] [CrossRef]
  14. Simionatto, E.; Porto, C.; Silva, U.F.; Squizani, A.M.C.; Dalcol, I.I.; Morel, A.F. Composition and antimicrobial activity of the essential oil from Aloysia sellowii. J. Braz. Chem. Soc. 2005, 16, 1458–1462. [Google Scholar] [CrossRef]
  15. Ricciardi, G.A.L.; Torres, A.M.; Baren, C.V.; Lira, P.D.L.; Ricciardi, A.I.A.; Dellacassa, E.; Lorenzo, D.; Bandoni, A.L. Essential Oil of Aloysia virgata var. platyphylla (Briquet) Moldenke from Corrientes (Argentina). Flavour Fragr. J. 2005, 20, 645–649. [Google Scholar] [CrossRef]
  16. Nogueira de Aguiar, U.; Gonçalo de Lima, S.; dos Santos Rocha, M.; das Garças Lopes Citó, A.M.; Pereira Sousa, A.J.; Silva, R.M.; Alcantara Silva, I.S.; Martins da Costa, J.G. Chemical composition and modulation of antibiotic activity of essential oil of Lantana caatingensis M. (Verbenaceae). Ind. Crops Prod. 2015, 74, 165–170. [Google Scholar] [CrossRef]
  17. Benites, J.; Moiteiro, C.; Graças, M.; Rojo, L.; López, J.; Venáncio, F.; Ramalho, L.; Feio, S.; Dandlen, S.; Casanova, H.; et al. Composition and biological activity of the essential oil of Peruvian Lantana camara. J. Chil. Chem. Soc. 2009, 54, 379–384. [Google Scholar] [CrossRef]
  18. Mamone, L.; Di Venosa, G.; Valla, J.J.; Rodriguez, L.; Gándara, L.; Batlle, A.; Heinrich, M.; Juarranz, A.; Sanz-Rodriguez, F.; Casas, A. Cytotoxic effects of Argentinean plant extraction tumour an normal cell lines. Cell. Mol. Biol. 2011, 57, 1487–1499. [Google Scholar]
  19. Affonso, V.R.; Bizzo, H.R.; Lima, S.S.; Esquibel, M.A.; Sato, A. Solid phase microextraction (SPME) analysis of volatile compounds produced by in vitro shoots of Lantana camara L. under the influence of auxins and cytokinins. J. Braz. Chem. Soc. 2007, 18, 1504–1508. [Google Scholar] [CrossRef]
  20. Costa, J.G.M.; de Sousa, E.O.; Rodrigues, F.F.G.; de Lima, S.G.; Braz-Filho, R. Chemical composition, evaluation of antibacterial activity and toxicity of the essential oils from Lantana camara L. and Lantana sp. Rev. Bras. Farmacogn. 2009, 19, 710–714. [Google Scholar] [CrossRef]
  21. Carvalho dos Santos, R.; de Melho Filho, A.A.; Chagas, E.A.; Takahashi, J.A.; Ferraz, V.P.; Fernández, I.M.; Ribeiro, P.R.E.; Gonçalves Reis, A.C.; Chaves Holanda, L. Chemical composition, antimicrobial and anti-acetylcholinesterase activities of essential oil from Lantana camara (Verbenaceae) flowers. J. Med. Plant Res. 2015, 9, 922–928. [Google Scholar] [CrossRef]
  22. Oliveira, J.C.S.; Neves, I.A.; da Camara, C.A.G.; Schwartz, M.O.E. Essential oil composition of two Lantana species from mountain forests of Pernambuco (Northeast of Brazil). J. Essent. Oil Res. 2008, 6, 530–532. [Google Scholar] [CrossRef]
  23. Silva, T.S.C.; Suffredini, I.B.; Ricci, E.L.; Fernandes, S.R.C.; Gonçalves, V.J.R.; Romoff, P.; Lago, J.H.G.; Bernardi, M.M. Antinociceptive and anti-inflammatory effects of Lantana camara L. extract in mice. Rev. Bras. Plant Med. 2015, 17, 224–229. [Google Scholar] [CrossRef]
  24. Sousa, E.O.; Almeida, T.S.; Menezes, I.R.A.; Rodrigues, F.F.G.; Campos, A.R.; Gonçalo de Lima, S.; Martins da Costa, J.G. Chemical composition of essential oil of Lantana camara L. (Verbenaceae) and synergistic effect of the aminoglycosides gentamicin and amikacin. Rec. Nat. Prod. 2012, 6, 144–150. [Google Scholar]
  25. Sousa, E.O.; Rodrigues, F.F.G.; Coutinho, H.D.M.; Campos, A.R.; Lima, S.G.; Costa, J.G.M. Chemical composition and aminoglycosides synergistic effect of Lantana montevidensis Briq. (Verbenaceae) essential oil. Rec. Nat. Prod. 2011, 5, 60–64. [Google Scholar]
  26. Sousa, E.O.; Barreto, F.S.S.; Rodrigues, F.F.G.; Campos, A.R.; Costa, J.G.M. Chemical composition of the essential oils of Lantana camara L. and Lantana montevidensis Briq. and their synergistic antibiotic effects on aminoglycosides. J. Essent. Oil Res. 2012, 24, 447–452. [Google Scholar] [CrossRef]
  27. Sousa, E.O.; Galvão Rodrigues, F.F.; Rolin Campos, A.; Gonçalo Lima, S.; Martins Da Costa, J.G. Chemical composition and synergistic interaction between aminoglycosides antibiotics and essential oil of Lantana montevidensis Briq. Nat. Prod. Res. 2013, 27, 942–945. [Google Scholar] [CrossRef] [PubMed]
  28. Hennebelle, T.; Sahpaz, S.; Joseph, H.; Bailleul, F. Ethnopharmacology of Lippia alba. J. Ethnoparmacol. 2008, 116, 211–222. [Google Scholar] [CrossRef] [PubMed]
  29. Blanco, M.A.; Colareda, G.A.; van Baren, C.; Bandoni, A.L.; Ringuelet, J.; Consolini, A.E. Antispasmodic effects and composition of the essential oils from two South American chemotypes of Lippia alba. J. Ethnopharmacol. 2013, 149, 803–809. [Google Scholar] [CrossRef] [PubMed]
  30. Leitte Cartaxo, S.; Almeida Souza, M.M.; Albuquerque, U.P. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J. Ethnopharmacol. 2010, 131, 326–342. [Google Scholar] [CrossRef] [PubMed]
  31. Lima Juiz, P.J.; Lucchese, A.M.; Gambari, R.; Piva, R.; Penolazzi, L.; Di Ciano, M.; Uetanabaro, A.P.T.; Silva, F.; Avila-Campos, M.J. Essential oils and isolated compounds from Lippia alba leaves and flowers: Antimicrobial activity and osteoclast apoptosis. Int. J. Mol. Med. 2015, 35, 211–217. [Google Scholar] [CrossRef] [PubMed]
  32. Di Stasi, L.C.; Oliveira, G.P.; Carvalhaes, M.A.; Queiroz-Junior, M.; Tien, O.S.; Kakinami, S.H.; Reis, M.S. Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest. Fitoterapia 2002, 73, 69–91. [Google Scholar] [CrossRef]
  33. Machado, T.F.; Pereira, R.C.A.; Batista, V.C.V. Seasonal variability of the antimicrobial activity of the essential oil of Lippia alba. Rev. Ciênc. Agron. 2014, 45, 515–519. [Google Scholar] [CrossRef]
  34. Julião, L.S.; Tavares, E.S.; Lage, C.L.S.; Leitão, S.G. Cromatografia em camada fina de extratos de três quimiotipos de Lippia alba (Mill) N.E.Br. (erva-cidreira). Rev. Bras. Farmacogn. 2003, 13, 36–38. [Google Scholar] [CrossRef]
  35. Oliveira, D.R.; Leitão, G.G.; Santos, S.S.; Bizzo, H.R.; Lopes, D.; Alvino, C.S.; Alvino, D.S.; Leitão, S.G. Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. J. Ethnopharmacol. 2006, 108, 103–108. [Google Scholar] [CrossRef] [PubMed]
  36. Tavares, E.S.; Julião, L.S.; Lopes, D.; Bizzo, H.R.; Lage, C.L.S.; Leitão, S.G. Análise do óleo essencial de folhas de três quimiotipos de Lippia alba (Mill.) N. E. Br. (Verbenaceae) cultivados em condições semelhantes. Rev. Bras. Farmacogn. 2005, 15, 1–5. [Google Scholar] [CrossRef]
  37. Veras, H.N.H.; Campos, A.R.; Rodrigues, F.F.G.; Botelho, M.A.; Coutinho, H.D.M.; Menezes, I.R.A.; da Costa, J.G.M. Enhancement of the antibiotic activity of erythromycin by volatile compounds of Lippia alba (Mill.) N.E. Brown against Staphylococcus aureus. Pharmacogn. Mag. 2011, 7, 334–337. [Google Scholar] [CrossRef] [PubMed]
  38. Forzza, R.C. Lippia brasiliensis. Lista de Espécies Flora do Brasil, 2010. Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/reflora/ (accessed on 19 May 2017).
  39. Guilhon, C.C.; Raymundo, L.J.R.P.; Alviano, D.S.; Blank, A.F.; Arrigoni-Blank, M.F.; Matheus, M.E.; Cavalcanti, S.H.; Alviano, C.S. Characterisation of the anti-inflamatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. J. Ethnopharmacol. 2011, 135, 406–413. [Google Scholar] [CrossRef] [PubMed]
  40. Carvalho Nilo Bitu, V.; Fernandes Fecundo, H.T.; Martins da Costa, J.G.; Melo Coutinho, H.D.; Fernandes, G.; Rodrigues, F.; Matos de Santana, N.; Botelho, M.A.; Alencar Menezes, I.R. Chemical composition of the essential oil of Lippia gracilis Schauer leaves and its potential as modulator of bacterial resistance. Nat. Prod. Res. 2014, 28, 399–402. [Google Scholar] [CrossRef] [PubMed]
  41. Pascual, M.E.; Slowing, K.; Carretero, E.; Sánchez Mata, D.; Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnoparmacol. 2001, 76, 201–214. [Google Scholar] [CrossRef]
  42. Melo, J.O.; Bitencourt, T.A.; Fachin, A.L.; Cruz, E.M.O.; de Jesus, H.C.R.; Alves, P.B.; de Fátima Arrigoni-Blank, M.; Castro Franca, S.; Beleboni, R.O.; Fernandes, R.P.M.; et al. Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Trop. 2013, 128, 110–115. [Google Scholar] [CrossRef] [PubMed]
  43. Sarrazin, S.L.F.; Oliveira, R.B.; Barata, L.E.S.; Mourão, R.H.V. Chemical composition and antimicrobial activity of the essential oil of Lippia grandis Schauer (Verbenaceae) from the western Amazon. Food Chem. 2012, 134, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
  44. Alonso, J.; Desmarchelier, C. Plantas Medicinales Autóctonas de la Argentina. Bases Científicas para su Aplicación en Atención Primaria de la Salud; Fitociencia: Buenos Aires, Argentina, 2006. [Google Scholar]
  45. Simões, E.R.B.; Santos, E.A.; de Abreu, M.C.; Silva, J.N.; Nunes, N.M.F.; Costa, M.P.; Pessoa, O.D.L.; Pessoa, C.; Ferreira, P.M.P. Biomedical properties and potentiality of Lippia microphylla Cham. and its essential oils. J. Intercult. Ethnopharmacol. 2015, 4, 256–263. [Google Scholar] [CrossRef] [PubMed]
  46. Medeiros Barreto, H.; Cerqueira Fontinele, F.; Pereira de Oliveira, A.; Arcanjo, D.D.; Cavalcanti Dos Santos, B.H.; de Abreu, A.P.; Melo Coutinho, H.D.; Carvalho da Silva, R.A.; Oliveira de Sousa, T.; Freire de Medeiros, M.D.G.; et al. Phytochemical prospection and modulation of antibiotic activity in vitro by Lippia origanoides H.B.K. in methicillin resistant Staphylococcus aureus. Biomed. Res. Int. 2014, 305610, 1–7. [Google Scholar] [CrossRef] [PubMed]
  47. Oliveira, D.R.; Leitão, G.G.; Fernandes, P.D.; Leitão, S.G. Ethnopharmacological studies of Lippia origanoides. Rev. Bras. Farmacogn. 2014, 24, 206–214. [Google Scholar] [CrossRef]
  48. De Morais, S.R.; Oliveira, T.L.S.; Bara, M.T.F.; da Conceição, E.C.; Rezende, M.H.; Ferri, P.H.; de Paula, J.R. Chemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. Int. J. Anal. Chem. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
  49. De Morais, S.R.; Oliveira, T.L.; de Oliveira, L.P.; Tresvenzol, L.M.; da Conceição, E.C.; Rezende, M.H.; Fiuza, T.S.; Costa, E.A.; Ferri, P.H.; de Paula, J.R. Essential oil composition, antimicrobial and pharmacological activities of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacogn. Mag. 2016, 12, 262–270. [Google Scholar] [PubMed]
  50. Botelho, M.A.; Nogueira, N.A.P.; Bastos, G.M.; Fonseca, S.G.C.; Lemos, T.L.G.; Matos, F.J.A.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A.C. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res. 2007, 40, 349–356. [Google Scholar] [CrossRef] [PubMed]
  51. Oliveira, F.P.; Lima, E.O.; Siqueira Júnior, J.P.; Souza, E.L.; Santos, B.E.C.; Barreto, H.M. Effectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical material. Braz. J. Pharmacogn. 2006, 16, 510–516. [Google Scholar] [CrossRef]
  52. Veras, H.N.H.; Rodrigues, F.F.G.; Colares, A.V.; Menezes, I.R.A.; Coutinho, H.D.M.; Botelho, M.A.; Costa, J.G.M. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia 2012, 83, 508–512. [Google Scholar] [CrossRef] [PubMed]
  53. Veras, H.N.H.; Rodrigues, F.F.G.; Botelho, M.A.; Menezes, I.R.A.; Coutinho, H.D.M.; da Costa, J.G.M. Antimicrobial effect of Lippia sidoides and thymol on Enterococcus faecalis biofilm of the bacterium isolated from root canals. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
  54. Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J. Chemical composition and antibacterial activity of essential oils from Verbenaceae species: Alternative sources of (E)-caryophyllene and germacrene-D. Quim. Nova 2011, 34, 1550–1555. [Google Scholar] [CrossRef]
  55. Gornemann, T.; Nayal, R.; Pertz, H.H.; Melzig, M.F. Antispasmodic activity of essential oil from Lippia dulcis Trev. J. Ethnopharmacol. 2008, 117, 166–169. [Google Scholar] [CrossRef] [PubMed]
  56. Mesia-Vela, S.; Souccar, C.; Lima-Landman, M.T.R.; Lapa, A.J. Pharmacological study of Stachytarpheta cayennensis Vahl in rodents. Phytomedicine 2004, 11, 616–624. [Google Scholar] [CrossRef] [PubMed]
  57. Costa, V.P.; Mayworm, M.A.S. Plantas medicinais utilizadas pela comunidade do bairro dos Tenentes—Município de Extrema, MG, Brasil. Rev. Bras. Plantas Med. 2011, 13, 282–292. [Google Scholar] [CrossRef]
  58. Onofre, S.; Quinteiro-dos-Santos, Z.; Kagimura, F.; Matiello, S. Antifungal activity of the aqueous extract of Stachytarpheta cayennensis, (Rich.) Vahl. (Verbenaceae), on oral candida species. J. Med. Plants Res. 2015, 9, 42–47. [Google Scholar]
  59. Sena Filho, J.G.; Xavier, H.S.; Barbosa Filho, J.M.; Duringer, J.M. A chemical marker proposal for the Lantana genus: Composition of the essential oils from the leaves of Lantana radula and L. canescens. Nat. Prod. Commun. 2010, 5, 635–640. [Google Scholar] [PubMed]
  60. Sena Filho, J.G.; Carregosa Rabbani, A.R.; dos Santos Silva, T.R.; Cruz da Silva, A.V.; Azevedo Souza, I.; Araujo Santos, M.J.B.; de Jesus, J.R.; Lima Nogueira, P.C.; Duringer, J.M. Chemical and molecular characterization of fifteen species from the Lantana (Verbenaceae) genus. Biochem. Syst. Ecol. 2012, 45, 130–137. [Google Scholar] [CrossRef] [Green Version]
  61. Satyal, P.; Crouch, R.A.; Monzote, L.; Cos, P.; Awadh Ali, N.A.; Alhaj, M.A.; Setzer, W.N. The Chemical Diversity of Lantana camara: Analyses of Essential Oil Samples from Cuba, Nepal, and Yemen. Chem. Biodivers. 2016, 13, 336–342. [Google Scholar] [CrossRef] [PubMed]
  62. Escobar, P.; Milena Leal, S.; Herrera, L.V.; Martinez, J.R.; Stashenko, E. Chemical composition and antiprotozoal activities of Colombian Lippia spp. essential oils and their major components. Mem. Inst. Oswaldo Cruz 2010, 105, 184–190. [Google Scholar] [CrossRef] [PubMed]
  63. Linde, G.A. Chemotypes, extraction, chemical composition and use of Lippia alba essential oil. Rev. Bras. Plantas Med. 2016, 18, 191–200. [Google Scholar] [CrossRef]
  64. Ricciardi, G.; Ocampo, R.; Lorenzo, D.; Ricciardi, A.; Badoni, A.; Dellacassa, E. Chemical variability of essential oils of Lippia alba (Miller) N. E. Brown growing in Costa Rica in Argentina. Nat. Prod. 2009, 4, 853–858. [Google Scholar]
  65. Viljoen, A.M.; Subramoney, S.; van Vuuren, S.F.; Başer, K.H.C.; Demirci, B. The composition, geographical variation and antimicrobial activity of Lippia javanica (Verbenaceae) leaf essential oils. J. Ethnopharmacol. 2005, 96, 271–277. [Google Scholar] [CrossRef] [PubMed]
  66. Senatore, F.; Rigano, D. Essential oil of two Lippia spp. (Verbenaceae) growing wild in Guatemala. Flavour Fragr. J. 2001, 16, 169–171. [Google Scholar] [CrossRef]
  67. Vega-Vela, N.E.; Delgado-Ávila, W.A.; Cacón-Sánchez, M.I. Genetic structure and essential oil diversity of the aromatic shrub Lippia origanoides Kunth (Verbenaceae) in two populations from northern Colombia. Agron. Colomb. 2013, 31, 5–17. [Google Scholar]
  68. Stashenko, E.E.; Rui, C.A.; Salgar, W. Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis. J. Sep. Sci. 2010, 33, 93–103. [Google Scholar] [CrossRef] [PubMed]
  69. Sarrazin, S.L.; da Silva, L.A.; de Assunção, A.P.; Oliveira, R.B.; Calao, V.Y.; da Silva, R.; Stashenko, E.E.; Maia, J.G.; Mourão, R.H. Antimicrobial and seasonal evaluation of the carvacrol-chemotype oil from Lippia origanoides Kunth. Molecules 2015, 20, 1860–1871. [Google Scholar] [CrossRef] [PubMed]
  70. Arze, J.; Lopez, B.; Collin, G.; Garneau, F.; Jean, F.; Gagnon, H. Essential Oils from Bolivia. XI. Verbenaceae: Aloysia gratissima (Gillies & Hook.) Tronc. and Boraginaceae: Cordia chacoensis Chodat. J. Essent. Oil Bear. Plants 2013, 16, 545–550. [Google Scholar] [CrossRef]
  71. Pastoriza, A.; Martínez Pulido, L.; Budeguer, C.J.; Nasif, A.; Andrada Masilla, B. Estudios genéticos en Aloysia gratissima (Gill. et Hook) Tronc., Chenopodium mandonii (S. Watson) Aellen y Clinopodium gilliesii. Rev. Agron. Noroeste Argent. 2015, 35, 33–38. [Google Scholar]
  72. Benavides Calvache, O.L.; Villota, J.M.; Milena Tovar, D. Caracterización del aceite esencial presente en las hojas de Phyla nodiflora (L.) Greene (Orozul). Univ. Salud 2010, 12, 57–64. [Google Scholar]
  73. Stashenko, E.E.; Martínez, J.R.; Durán, D.C.; Córdoba, Y.; Caballero, D. Estudio comparativo de la composición química y la actividad antioxidante de los aceites esenciales de algunas plantas del género Lippia (Verbenaceae) cultivadas en Colombia. Rev. Acad. Colomb. Cienc. Exactas Fís. Nat. 2014, 38, 89–105. [Google Scholar] [CrossRef]
  74. Oliveira, P.F.; Machado, R.A.F.; Bolzan, A.; Barth, D. Seasonal variation on the yield of Lippia dulcis Trev. extract obtained by supercritical CO2. J. Supercrit. Fluids 2012, 63, 161–168. [Google Scholar] [CrossRef]
  75. Adams, R.P.; Oliveira, P.F. Comparison of intensely sweet volatile leaf oils of Lippia dulcis (Verbenaceae) with low and high camphor from Brazil and Mexico. Phytologia 2016, 98, 207–212. [Google Scholar]
  76. Souza Silva, P.; Yoko Suzuki, E.; Moreira, A.P.; Barbosa Raposo, N.R.; Almeida Alves, T.M.; Facio Viccini, L. Stachytarpheta gesnerioides Cham.: Chemical composition of hexane fraction and essential oil, antioxidant and antimicrobial activities. Bol. Latinoam. Caribe Plantas Med. Aromat. 2012, 11, 542–548. [Google Scholar]
  77. Villalobos Osorio, D.; Ramírez González, I.; Rojas Fermín, L.; Santiago Silva, B.; Carmona Arzola, J.; Avendaño Meza, M. Composición del aceite esencial y caracterización físicoquímica de las hojas de Stachytarpheta mutabilis (Jacq.) Vahl. Av Quim. 2014, 9, 15–19. [Google Scholar]
  78. Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and Antimicrobial Activity of the Essential Oils of Two Origanum Species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef] [PubMed]
  79. Holetz, F.; Pessini, G.; Sanches, N.; Cortez, D.; Nakamura, C.; Filho, B. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
  80. Sartoratto, A.; Machado, A.; Delarmelina, C.; Figueira, G.; Duarte, M.; Rehder, L. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef]
  81. Duarte, M.C.; Leme, E.E.; Delarmelina, C.; Soares, A.A.; Figueira, G.M.; Sartoratto, A. Activity of essential oils from Brazilian medicinal plants on Escherichia coli. J. Ethnopharmacol. 2007, 111, 197–201. [Google Scholar] [CrossRef] [PubMed]
  82. Pérez-Zamora, C.M.; Torres, C.A.; Aguado, M.I.; Bela, A.J.; Nuñez, M.B.; Bregni, C. Antibacterial activity of essential oils of Aloysia polystachya and Lippia turbinata (Verbenaceae). Bol. Latinoam. Caribe Plantas Med. Aromat. 2016, 15, 199–205. [Google Scholar]
  83. Machado, R.R.P.; Dutra, R.C.; Pittella, F.; Raposo, N.R.B.; Lesche, B.; Duarte, R.S.; Soares, G.L.G.; Kaplan, M.A.C. Screening antimycobacterial activity of Baccharis dracunculifolia, Centella asiatica, Lantana camara and Pterodon emarginatus. Rev. Bras. Plantas Med. 2015, 17, 891–899. [Google Scholar] [CrossRef]
  84. Duarte, M.C.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.; Delarmelina, C. Anti-candida activity of Brazilian medicinal plants. J. Ethnopharmacol. 2005, 97, 305–311. [Google Scholar] [CrossRef] [PubMed]
  85. Machado, T.F.; Nogueira, N.A.P.; Alves Pereira, R.C.; de Sousa, C.T.; Batista, V.C.V. The antimicrobial efficacy of Lippia alba essential oil and its interaction with food ingredients. Braz. J. Microbiol. 2014, 5, 699–705. [Google Scholar] [CrossRef]
  86. Machado Costa, D.C.; Vermelho, A.B.; Amancio Almeida, C.A.; de Souza Dias, E.P.; Lage Cedrola, S.M.; Arrigoni-Blank, M.F.; Blank, A.F.; Sales Alviano, C.; Sales Alviano, D. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes. J. Enzym. Inhib. Med. Chem. 2013, 1–6. [Google Scholar] [CrossRef]
  87. Veras, H.N.H.; Rodrigues, F.F.G.; Botelho, M.A.; Menezes, I.R.A.; Coutinho, H.D.M.; Costa, C.J.G.M. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arab. J. Chem. 2013, 10, S2790–S2795. [Google Scholar] [CrossRef]
  88. Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Kerntopf, M.R.; Brilhante, R.S.N.; Cordeiro, R.A.; Tome, A.R.; Queiroz, M.G.R.; Nascimento, N.R.F.; Rocha, M.F.G.; et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J. Antimicrob. Chemother. 2007, 59, 934–940. [Google Scholar] [CrossRef] [PubMed]
  89. Aguiar, S.J.; Costa, M.C.C.D.; Nascimento, S.C.; Sena, K.X.F.R. Atividade antimicrobiana de Lippia alba (Mill.) N. E. Brown (Verbenaceae). Braz. J. Pharmacogn. 2008, 18, 436–440. [Google Scholar] [CrossRef]
  90. Dos Santos, F.J.; Lopes, J.A.D.; Cito, A.G.L.; De Oliveira, E.H.; De Lima, S.G.; Reis, F.D.A. Composition and biological activity of essential oils from Lippia origanoides HBK. J. Essent. Oil Res. 2004, 16, 504–506. [Google Scholar] [CrossRef]
  91. Oliveira, D.R.; Leitão, G.G.; Bizzo, H.R.; Lopes, D.; Alviano, D.S.; Alviano, C.S. Chemical and antimicrobial analyses of essential oil of Lippia origanoides H.B.K. Food Chem. 2007, 101, 236–240. [Google Scholar] [CrossRef]
  92. Pessoa, O.D.L.; Carvalho, C.B.M.; Silvestre, J.O.V.; Lima, M.C.L.; Neto, R.M.; Matos, F.J.A.; Lemos, T.L.G. Antibacterial activity of the essential oil from Lippia aff. gracillis. Fitoterapia 2005, 76, 712–714. [Google Scholar] [CrossRef] [PubMed]
  93. Bersan, M.F.; Galvão, L.C.C.; Goes, V.F.F.; Sartoratto, A.; Figueira, G.M.; Rehder, V.L.G.; Alencar, S.M.; Duarte, R.M.T.; Rosalen, P.L.; Duarte, M.C.T. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement. Altern. Med. 2014, 14, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Oliva, M.M.; Beltramino, E.; Gallucci, N.; Casero, C.; Zygadlo, J.; Demo, M. Antimicrobial activity of essential oils of Aloysia triphylla (L’Her.) Britton from different regions of Argentina. Bol. Latinoam. Caribe Plantas Med. Aromat. 2010, 9, 21–37. [Google Scholar]
  95. Rojas, L.B.; Velasco, J.; Diaz, T.; Gil Otaiza, R.; Carmona, J.; Usubillaga, A. Composición química y efecto antibacteriano del aceite esencial de Aloysia triphylla (L’Hér.) Britton contra patógenos genito-urinarios. Bol. Latinoam. Caribe Plantas Med. Aromat. 2010, 9, 56–62. [Google Scholar]
  96. Oliva, M.M.; Carezzano, E.; Gallucci, N.; Freytes, S.; Zygadlo, J.A.; Demo, M.S. Growth inhibition and morphological alterations of Staphylococcus aureus caused by the essential oil of Aloysia triphylla. Bol. Latinoam. Caribe Plantas Med. Aromat. 2015, 14, 83–91. [Google Scholar]
  97. Medeiros, L.B.P.; Rocha, M.S.; Lima, S.G.; Sousa Júnior, G.R.; Citó, A.M.G.; Silva, D.; Lopes, J.A.D.; Moura, D.J.; Saffi, J.; Mobin, M.; et al. Chemical constituents and evaluation of cytotoxic and antifungal activity of Lantana camara essential oils. Rev. Bras. Farmacogn. 2012, 22, 1259–1267. [Google Scholar] [CrossRef]
  98. Venegas del Castillo, A.; Vásquez-Valles, M.N. Effect of Lantana camara essential oil on growth of Staphylococcus aureus and Escherichia coli. REBIOL 2016, 36, 29–37. [Google Scholar]
  99. Celis, C.N.; Escobar Rivero, P.; Isaza, J.H.; Martínez, J.R.; Stashenko, E. Estudio comparativo de la composición y actividad biológica de los aceites esenciales extraídos de Lippia alba, Lippia origanoides y Phyla dulcis, especies de la familia Verbenaceae. Sci. Tech. 2007, 13, 103–105. [Google Scholar]
  100. Tofiño-Rivera, A.; Ortega-Cuadros, M.; Galvis-Pareja, D.; Jiménez-Ríos, H.; Merini, L.J.; Martínez-Pabón, M.C. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. J. Ethnopharmacol. 2016, 194, 749–754. [Google Scholar] [CrossRef] [PubMed]
  101. Andrade, V.A.; Almeida, A.C.; Souza, D.S.; Colen, K.G.F.; Macêdo, A.A.; Martins, E.R.; Fonseca, F.S.A.; Santos, R.L. Antimicrobial activity and acute and chronic toxicity of the essential oil of Lippia origanoides. Pesqui. Vet. Bras. 2014, 34, 1153–1161. [Google Scholar] [CrossRef]
  102. Hernandes, C.; Pina, E.S.; Taleb-Contini, S.H.; Bertoni, B.W.; Cestari, I.M.; Espanha, L.G.; Varanda, E.A.; Camilo, K.F.B.; Martinez, E.Z.; França, S.C.; et al. Lippia origanoides essential oil: An efficient and safe alternative to preserve food, cosmetic and pharmaceutical products. J. Appl. Microbiol. 2017, 122, 900–910. [Google Scholar] [CrossRef] [PubMed]
  103. Castro, C.E.; Ribeiro, J.M.; Diniz, T.T.; Almeida, A.C.; Ferreira, L.C.; Martins, E.R.; Duarte, E.R. Antimicrobial activity of Lippia sidoides Cham. (Verbenaceae) essential oil against Staphylococcus aureus and Escherichia coli. Rev. Bras. Plantas Med. 2011, 13, 293–297. [Google Scholar] [CrossRef]
  104. Costa, J.P.R.; Almeida, A.C.; Martins, E.R.; Rodrigues, M.N.; Santos, C.A.; Menezes, I.R. Atividade antimicrobiana do óleo essencial de alecrim-pimenta e do extrato bruto seco do barbatimão diante de bactérias isoladas do leite. Biotemas 2011, 24, 1–6. [Google Scholar] [CrossRef]
  105. Brito, D.I.V.; Morais-Braga, M.F.B.; Cunha, F.A.B.; Albuquerque, R.S.; Carneiro, J.N.P.; Lima, M.S.F.; Leite, N.F.; Souza, C.E.S.; Andrade, J.C.; Alencar, L.B.B.; et al. Análise fitoquímica e atividade antifúngica do óleo essencial de folhas de Lippia sidoides Cham. e do Timol contra cepas de Candida spp. Rev. Bras. Plantas Med. 2015, 17, 836–844. [Google Scholar] [CrossRef]
  106. Pillai, S.K.; Moellering, R.C.; Eliopoulos, G.M. Antimicrobial combinations. In Antibiotics in Laboratory Medicine; Lorian, V., Ed.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 365–440. [Google Scholar]
  107. Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
  108. Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2013, 1–19. Available online: https://www.researchgate.net/publication/235749047_Synergy_between_essential_oil_components_and_antibiotics_A_review (accessed on 12 September 2017). [CrossRef] [PubMed]
  109. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
  110. Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef] [PubMed]
  111. Solominos, M.; Garcia, D.; Pagán, R.; Mackey, B. Relationship between sublethal injury and microbial inactivation by the combination of high hydrostatic pressure and citral or tert-butyl hydroquinone. Environ. Microbiol. 2008, 74, 7570–7577. [Google Scholar] [CrossRef] [PubMed]
  112. Fisher, K.; Pilliphs, C.A. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008, 19, 156–164. [Google Scholar] [CrossRef]
  113. Amna, A.S.; Suzan, A.K. Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Phys. 2010, 98, 89–93. [Google Scholar]
  114. Alviano, W.S.; Mendonça-Filho, R.R.; Alviano, D.S.; Bizzo, H.R.; Souto-Padrón, T.; Rodrigues, M.L.; Bolognese, A.M.; Alviano, C.S.; Souza, M.M. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Immunol. 2005, 20, 101–105. [Google Scholar] [CrossRef] [PubMed]
  115. Silva, F.; Ferreira, S.; Queiroz, J.A.; Domingues, F.C. Coriander (Coriandrum sativum L.) essential oil: Its antibacterial activity and mode of action evaluated by flow cytometry. J. Med. Microbiol. 2011, 60, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
  116. Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine 2009, 16, 997–1005. [Google Scholar] [CrossRef] [PubMed]
  117. Wang, Y.W.; Zeng, W.C.; Xu, P.Y.; Lan, Y.J.; Zhu, R.X.; Zhong, K.; Huang, Y.N.; Gao, H. Chemical composition and antimicrobial activity of the essential oil of Kumquat (Fortunella crassifolia Swingle) Peel. Int. J. Mol. Sci. 2012, 13, 3382–3393. [Google Scholar] [CrossRef] [PubMed]
  118. Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
  119. Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Cemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
  120. Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef] [PubMed]
  121. Chauhan, A.K.; Kang, S.C. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res. Microbiol. 2014, 165, 559–565. [Google Scholar] [CrossRef] [PubMed]
  122. Sahin, F.; Gulluc, M.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M.; Agar, G.; Ozer, H. Biological activities of the essential oils and methanol extract of Orignum vulgare ssp. Vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
  123. Olajuyigbe, O.; Ashafa, A. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa. Iran. J. Pharm. Res. 2014, 13, 1417–1423. [Google Scholar] [PubMed]
  124. Porfírio, E.M.; Machado Melo, H.; Gomes Pereira, A.M.; Arruda Cavalcante, T.T.; Amorim Gomes, G.; de Carvalho, M.G.; Costa, R.A.; Catunda Júnior, F.E.A. In vitro antibacterial and antibiofilm activity of Lippia alba essential oil, citral, and carvone against Staphylococcus aureus. Sci. World J. 2017. [Google Scholar] [CrossRef] [PubMed]
Table 1. Ethnobotany of Verbenaceae family plants.
Table 1. Ethnobotany of Verbenaceae family plants.
Scientific nameVernacularar NameCountryUsed PartPopular UseReference
Acantholippia seriphioides (A. Gray) MoldenkeTomillo de campoArgentinaNot specifiedDigestive, antipyretic, and to treat cold.[6]
Aloysia castellanosii MoldenkeNo dataArgentinaLeaves
Herbal tea
Digestive and antispasmodic.[7]
Aloysia catamarcensis MoldenkeNo dataArgentinaLeaves
Herbal tea
Digestive and antispasmodic.[7]
Aloysia gratissima (Gillies & Hook.) Tronc. var. chacoensis (Moldenke) BottaErva santa, poleo del campo.Brazil, ArgentinaLeavesTo treat symptoms associated with headaches, bronchitis, digestive disorders, and nervous disorders.[8,9,10,11]
Aloysia polystachyaPoleo real, té de burro, burrito.Argentina, BrazilLeaves, flowery summits.Digestive, carminative, hypertensive, sedative.[12,13]
Aloysia sellowii (Briq.) Moldenke (Syn.: Lippia affinis Briq.)Garupá, cidrozinho or erva de sepultura.Brazil Diuretic, digestive, to treat cold, influenza, and respiratory disorders.[14]
Aloysia triphylla (L´Hér.) BrittonCedrónArgentinaLeavesDigestive, carminative, and tonic.[13]
Aloysia virgata (Ruiz & Pav.) Pers. Aloysia virgata var. platyphylla (Briquet) Mold.Niño rupá guazú or pa’ira yvoty.ArgentinaNot specifiedNot specified.[15]
Glandularia incisa (Hook.) Tronc.MargaritaArgentinaLeavesAntipyretic[14]
Lantana caatingensis MoldenkeNo dataBrazil Antirheumatic, antipyretic, to treat wounds and intestinal colics.[16]
Lantana camara L. (Syn. Lantana mutabilis Weigel, L. aculeata L., Camara aculeata Kuntze, C. vulgaris Benth.)Yerba de la maestranza, siete colores, lantana, camará, camara de spinho, camará-vermelho, camará-branco, camará-juba, camarazinho, cambará-cambará -de-cheiro, erva-chumbinho, erva-sagrada, capitão-do-campo, chá-de-pedestre.Peru, Brazil.Leaves, flowers, and roots.To treat tetanus, malaria, tumors, rheumatism. Symptoms of itches, dermatitis, ulcers, swellings, catarrh, dysentery, eczema, fever, influenza, asthma, and roughor bronchitis.
Emmenagogue, carminative, emetic, sudorific, diuretic, expectorant, febrifuge, anticonvulsivant, antiseptic.
[17,18,19,20,21,22,23,24]
Lantana fucata Lindl.Cidreira bravaBrazil.Leaves and flowers.Tonic, digestive, for pruritus, ulcers, swellings, biliary fever, rheumatism, antiseptic for wounds.[22]
Lantana montevidensis Briq.CambaráBrazil.Leaves.Digestive, biliary fever. Toothache, bronchitis, antiseptic for wounds, treatment of pruritus.[25,26,27]
Lippia alba (Mill.) N.E. Br. ex Britton and P. Wilson. (Syn.: Lantana alba Mill., Lantana geminata (Kunth) Spreng., Lippia geminata Kunth, Lippia geminata var. microphylla Griseb., Lippia globiflora var. geminata (Kunth) Kuntze).Lemon balm, bushy matgrass, bushy lippia, pitiona, erva-cidreira, cidrila, chá-de-tabuleiro, cidreira-brava, alecrim-selvagem, falsa-melissa, alecrim-do-campo, erva-cidreira-de-campo, salva-do-brasil, salva-limão, salvia de castilla, salvia morada, carmelita.Brazil, Argentina.Leaves.Digestive, anti-spasmodic, emmenagogue. To treat diarrhea, cough, asthma, and fever. Antipyretic, analgesic, and sedative.[13,28,29,30,31,32,33,34,35,36,37]
Lippia brasiliensis (Link) T. Silva (Syn.: Camara brasiliensis (Link) Kuntze; Lantana brasiliensis Link; Lantana cinerea Lam. ex Otto & Dietr; Lantana longifolia Mart. ex Colla; Lantana pernambucensis Moldenke; Lantana spicata Vell.Yarabisco, sucupira, yerba sagrada.Brazil, Peru, Paraguay and Venezuela.Leaves and flowers.No data.[38]
Lippia gracilis Schauer (Syn: Lippia af.f gracillis)Alecrim-da-chapada, alecrim-de-serrote, alecrim-de-tabuleiro.BrazilLeavesTo treat cough, bronchitis, nasal congestion, headache, flu, sinusitis, jaundice, and paralysis, antimicrobial and antiseptic.[39,40,41,42]
Lippia grandis SchauerErva-do-marajóBrazilLeavesTreatment of disorders of the liver and stomach.[43]
Lippia integrifoliaIncayuyoArgentinaNot specifiedDyspepsia, indigestion, stomachaches, diuretic, emmenagogue, tonic agent.[44]
Lippia microphylla Cham. (Syn.: L. microphylla Cham. and Schlecht.; L. microphylla Mart.; Lantana microphylla Mart. ex Uphof.).“alecrim-da- chapada,” “alecrim-de-tabuleiro,” “alecrim-pimenta,” and “alecrim-do-mato”.BrazilLeavesTo treat gastrointestinal disorders, influenza, bronchitis, cough, nasal congestion, and sinusitis.[45]
Lippia origanoides H.B.K. (Syn.: L. berterii Spreng., Lippia schomb urgkiana Schauer)Oregano de monteColombia and Brazil.Not specifiedStomach pains, indigestion, heartburn, diarrhea, nausea, flatulence. To treat respiratory disease, menstrual cramps, Antiseptic for mouth, throat, and wound.[46,47]
Lippia sidoides Cham. (Syn.: L. multicapitata Mart.)“Alecrim-pimenta” and ”alecrim do campo”.BrazilLeavesTo treat acne, antiseptic on skin and mucosal tissues, inflammation of the gums. For rhinitis, influenza, colds, pulmonary.[48,49,50,51,52,53,54]
Lippia trifolia BrazilLeavesTreatment of respiratory disorders and as a sedative.[54]
Lippia turbinata var. integrifolia Griseb. (Syn.: L. integrifolia (Griseb.) Hieron.)“poleo”ArgentinaLeaves and flowery summits.Digestive and antispasmodic. Dyspepsia, oliguria and dysmenorrhea.[9,44]
Phyla dulcis (Syn.: Lippia dulcis)Aztec sweet herb, honey herb and Mexican lippia.BrazilHerbal as infusionTreatment of cough, colds, bronchitis, asthma. Antispasmodic activity.[55]
Phyla reptans (Kunth) GreeneMosko yuyoArgentinaLeavesTo treat infected wounds, skin rashes.[9]
Stachytarpheta cayennensis (Rich.) VahlGerbãoBrazilLeaves and flowers.Purgative, vermifuge, expectorant, diuretic, emmenagogue, liver disorder anti-inflammatory, antihelmintic, and antiulcerogenic.[56,57,58]
Table 2. Antimicrobial activity of essential oils (EOs) of plants belonging to the Verbenacea family against human pathogens (bacteria, fungi, or yeasts).
Table 2. Antimicrobial activity of essential oils (EOs) of plants belonging to the Verbenacea family against human pathogens (bacteria, fungi, or yeasts).
Botanical NameMajority CompoundsOrganisms inhibitedMIC Value/RangeReference
Gram PositiveGram NegativeFungy/Yeast
Aloysia gratissimaNo data.--Candida albicans ATCC 10231>2 mg/mL [84]
β-pinene, E-pinocamphone, Z-pinocamphone, E-pinocarveol acetate, α-caryophyllene, guaiolStreptococcus sanguis ATCC 10556, S. mitis ATCC 903Fusobacterium nucleatum, ATCC 25586, Porphyromonas gingivalis ATCC 33277C. albicans CBS 5620.015–0.5 mg/mL [93]
1,8-cineole, germacrene-D, β-caryophyllene, and β-pineneS. aureus ATCC 25923, Bacillus cereus ATCC 11778Acinetobacter baumanii ATCC 17978, E. coli ATCC 25922, P. aeruginosa ATCC 27853Cryptococcus neoformans ATCC 32264, C. albicans ATCC 10231, Aspergillus flavus ATCC 9170, A. fumigates ATCC 26934, Rhizopus sp. CL 35, Microsporum canis C112, M. gypseum C115, Trichophyton mentagrophytes ATCC 9972, T. rubrum C137, Epidermophyton floccosum C1141000–4000 μg/mL [8]
Aloysia polystachyacarvone, limoneneStaphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. epidermidis ATCC 12228, Enterococcus faecalis ATCC 29212Escherichia coli ATCC 35218, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae, Enterobacter cloacae-3.64–29.13 μL/mL [82]
Aloysia sellowii1,8-cineole, carvacrol, terpinen-4-ol, linalool, β-pinene, R (+)-limonene, myrceneS. aureus, S. epidermidis. Micrococcus luteusK. pneumoniae, E. coli, Salmonella SetubalSaccharomyces cerevisiae, C albicans1.7– >20 mg/mL [14]
Aloysia triphyllaoxygenated monoterpenesB. cereus, S. aureus ATCC 25212, S. epidermidis, M. luteus ATCC 9341, Enterococcus faecalis ATCC 29212E. coli, P. aeruginosa, Klebsiella sp., Proteus mirabilisC. albicans28.12–450 μg/disk [13]
monoterpenes, thymol, geranial, neral, limoneneRhodococcus equi CCT0541, M. luteus CCT2692, S. aureus CCT2740, S. epidermidis ATCC12228, B. subtilis Cohn CCT2576, Enterococcus faecium ATCC10541 Schleifer Kilpper-Balz (registered at ATCC as Streptococcus faecium), Enterococcus faecium CCT5079, clinical isolates of genito-urinary infections S. aureus, and Enterococcus sp.P. aeruginosa ATCC13388, Salmonella choleraesuis CCT4296, E. coli CCT0547, clinical isolates of genito-urinary infections: E. coli, Klebsiella ozaenae, Enterobacter aerogenes, Proteus mirabilis.C. albicans ATCC 102310.05– >2 mg/mL [80]
No data-E. coli (13 serotypes clinical strains)-400–1000 μg/mL [81]
E-pinocarveol, guaiol, bulnesolS. sanuis ATCC 10556, S. mitis ATCC 903F. nucleatum, ATCC 25586, Porphyromonas gingivalis ATCC 33277C. albicans CBS 5620.015–0.5 mg/mL [93]
geranial, neral, limonene, camphor, cariophyllene oxide, spathulenolB. cereus, E. faecalis, M. luteus, S. aureus, S. epidermidisE. coli, K. pneumoniae, P. mirabilis, P. aeruginosaRhodotorula sp, Hansenula sp, C. Albicans7–900 mg/mL [94]
geranial, neral, geraniol, biciclogermacreno, nerolStaphylococcus aureus and Enterococcus sp.Escherichia coli, Klebsiella ozaenae, Enterobacter aerogenes, Proteus mirabilis-10–50 μg/mL [95]
geranial, neral, limonene, caryophyllene oxide, spathulenolS. aureus ATCC 25923--2.3–200 μg/mL [96]
Aloysia virgataβ-caryophylleneS. aureus ATCC 25923, Bacillus cereus Ribotype 1 222-173-S4E. coli ATCC 11229-0.125% (v/v) [54]
Lantana caatingensisβ-caryophyllene, spathulenol, and bicyclogermanecreneS. aureus ATCC 6538, ATCC 12692, and 358 (multiresistant clinical strain)E. coli ATCC 25922, and 27 (multiresistant clinical strain), P. aeruginosa ATCC 15442-64– ≥1024 μg/mL [16]
Lantana camaracarvone, limoneneListeria monocytogenes CCMI 1106, M. luteus CCMI 322, S. faecium CCMI 338, S. aureus CCMI 335E. coli CCMI 270, P. aeruginosa CCMI 331-≥200 μg/mL [17]
bicyclogermacrene, isocaryophyllene, valencene, germacrene-DS. aureus ATCC 10390E. coli ATCC 25922, P. vulgaris ATCC 13315, P. aeruginosa ATCC 15442, Vibrio cholerae ATCC 15748-0.62–10% (v/v) [20]
germacrene-DS. aureus ATCC 25923, S. sanguinis ATCC 49456E. coli ATCC 25922, S. tiphymurium ATCC 14028C. albicans ATCC 18804, A. flavus CCT 4952, F. proliferatum CML 32873.91–125 μg/mL [21]
isocaryophyllene, valencene, germacrene-DS. aureus ATCC 6538, P. vulgaris ATCC 13135Escherichia coli ATCC 2992, Pseudomonas aeruginosa ATCC 5442, V. cholerae ATCC 15748-64– ≥512 μg/mL [26]
germacrene-D, β-caryophylleneS. aureus ATCC 25923, B. cereus Ribotype 1 222-173-S4E. coli ATCC 11229-5 μL/disk [54]
germacrene-D, β -caryophyllene, farneseneMycobacterium spp. (smegmatis, chelonae, tuberculosis)-->1250 μg/mL [84]
bicyclogermacrene, β-caryophyllene--Candida krusei ATCC 6258, C. albicans (clinical isolates)12.5 mg/mL [97]
No dataS. aureusE. coli-289.7 μg/mL [98]
Lantana montevidensisβ-caryophyllene, germacrene-D, bicyclogermacreneS. aureus ATCC 6538E. coli ATCC 2992, P. aeruginosa ATCC 5442, P. vulgaris ATCC 13135, V. cholerae ATCC 15748-128– ≥512 μg/mL [26]
germacrene-DS. aureus ATCC 25923, B. cereus, Ribotype 1 222-173-S4E. coli ATCC 11229 5 μL/disk [54]
Lippia albalimonene, carvone, geranial, neral-Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans ATCC 43717, Fusobacterium nucleatum ATCC 25586, Bacterioides fragilis ATCC 25285-0.00625– >3.2 mg/mL [31]
No data-E. coli (13 serotypes clinical strains)-400– >1000 μg/mL [81]
Linalool--C. albicans ATCC 102310.6 mg/mL [84]
geranial, neral, d-limonene, germacrene-D, g-terpinene, α-pinene, citronellal, α-phellandrene, α-copaeneS. aureus ATCC 6538P, L. monocytogenes ATCC 33090, L. innocua ATCC 19115E. coli ATCC 10536, P. aeruginosa ATCC 9027, S. choleraesuis ATCC 10708-0.29–9.37 mg/mL [85]
Linalool--Trichophytum ribrum, Microsporum gypseum, Epidermophytum floccosum39–312 μg/mL [86]
No dataS. sanguis ATCC 10556, S. mitis ATCC 903F. nucleatum ATCC 25586, Porphyromonas gingivali, ATCC 33277C. albicans CBS 5620.25– >1 mg/mL [93]
carvone, piperitenone, piperitone, citralS. aureusEscherichia coli, Salmonella tiphymurium-No active[99]
Geraniol, geranial, neralS. mutans ATCC 35668--0.001 mg/ 100 mL [100]
Lippia brasiliensishydrocarbons sesquiterpens: β-caryophyllene, germacrene-D, and bicyclogermacreneS. aureus ATCC 25923, Bacillus cereus Ribotype 1 222-173-S4E. coli ATCC 11229-0.125% (v/v) [54]
Lippia gracillisthymol, methyl thymol, β-caryophyllene, carvacrol, p-cymene, γ-terpinene--Tricophytum rubrum H6 (ATCC-MYA3108), 2 clinical isolated T. rubrum11.72–93.75 μg/mL [42]
CarvacrolS. aureusMorganella morganii, Salmonella sp, Salmonella paratiphy, Serratia mercescens, P. mirabilis, K. pneumoniae, E. coli, P. aeruginosa-5 μg/mL [92]
Lippia grandiscarvacrol, p-cymene, thymolS. aureus ATCC 25923, Enterococcus faecalis ATCC 51299, E. faecalis ATCC 29212E. coli ATCC 35218, E. coli ATCC 25922, K. pneumoniae ATCC 700603, P. aeruginosa ATCC 27953C. albicans (clinical isolated)0.57–1.15 mg/mL [43]
Lippia origanoidescarvacrol, γ-terpinene, thymol, methyl thymol, p-cymeneS. aureus ATCC 25923, S. aureus MRSAE. coli ATCC 25922C. albicans, C. tropicalis10 μL [90]
CarvacrolS. mutans ATCC 25175, S. aureus ATCC 25923, S. aureus MRSA (BMB9393), Lactobacillus casei ATTC 4646-C. albicans Serotype B ATCC 36802, C. albicans, C. guilliermondii, C. parapsilosis, Cryptococcus neoformans T1-444 Serotype A, Trichophytum rubrum T544, Fonsecaea pedrosoi 5VPL10 μL *[91]
phenolic compounds: thymol and carvacrolS. aureusE. coli, S. Tiphymurium-No data [99]
o-cymene
thymol methyl ether
carvacrol
S. aureus ATCC 25923E. coli ATCC 25922, S. cholerasuis ATCC10708-30–120 μL/mL [101]
CarvacrolS. aureus ATCC 6538E. coli ATCC 6538, P. aeruginosa ATCC 9027C. albicans ATCC 10231, Aspergillus brasiliensis ATCC 164040.62–2.5 μL/mL [102]
Lippia sidoidesthymol, carvacrolS. mutans ss-980, S. mitis (clinical isolates), S. sanguis (clinical isolates), S. salivarius (clinical isolates)-C. albicans ATCC 102392.5–10 mg/mL [50]
thymol, p-cymene, ether ethyl carvacrolEnterococcus faecalis ATCC 4083--2.5% [53]
ThymolS. sanguis ATCC 10556, S. mitis ATCC 903F. nucleatum ATCC 25586, Porphyromonas gingivalis ATCC 33277C. albicans CBS 5620.125–0.250 mg/mL [93]
No dataS. aureus (13 clinical isolates)E. coli (13 clinical isolates)-3–13 μL/mL [103]
No dataS. aureus ATCC 25923, S. aureus (isolated from milk)E. coli (isolated from milk)-80–320 μL/mL [104]
thymol, p-cymene, ether-methyl carvacrol--C. albicans (8 biological isolated), C. tropicalis (6 biological isolated), C. krusei (2 biological isolated)64–256 μg/mL [105]
Lippia turbinatacarvone, limonene, β-caryophyllene, 1,8-cineoleS. aureus ATCC 25923, S. aureus ATCC 29213, S. epidermidis ATCC 12228, E. faecalis ATCC 29212, S. aureus (i.c.)E. coli ATCC 35218, P. aeruginosa ATCC 27853, K. pneumoniae, E. cloacae-3.64–29.13 μL/mL [82]
Phyla dulcisβ-caryophyllene, δ-cadineneS. aureusE. coli, S. Tiphymurium-No active[99]
Stachytarpheta cayennensisNo data-E. coli (13 serotypes clinical strains)-≥900 μg/mL [81]
No data--C. albicans ATCC 102310.25 mg/mL [84]
References: minimal inhibitory concentration (MIC) values determined by: ♣ Disk Diffusion Method, * Drop Agar Diffusion Method, ● Broth Dilution Method, ▲ Broth Microdilution Method, ◊ Well Diffusion Method. ♠ MIC values for inhibition of biofilm formation. ♦ The authors no reports MIC values.
Table 3. Synergistic interactions between EOs of plants belonging to the Verbenacea family and antibiotics used for human infectious diseases.
Table 3. Synergistic interactions between EOs of plants belonging to the Verbenacea family and antibiotics used for human infectious diseases.
Botanical NameAntibioticStrainsReference
Gram PositiveGram Negative
Lantana caatingensisNeomycin, amikacin, gentamicinS. aureus 358 (multiresistant clinical strain)E. coli 27 (multiresistant clinical strain)[16]
L. camaraAmikacin, gentamicinS. aureusP. aeruginosa[24]
Kanamycin, amikacin, gentamicinProteus vulgaris ATCC 13315, S. aureus ATCC 10390No data[26]
L. montevidensisGentamicin, amikacinS. aureus ATCC 12692P. aeruginosa ATCC 15442[25]
Neomycin, kanamycin, amikacin, gentamicinProteus vulgaris ATCC 13315, S. aureus ATCC 10390No data[26]
Amikacin, neomycin, gentamicin, kanamycinS. aureus Sa358 (clinical strain)E. coli Ec27 (clinical strain)[27]
Lippia albaErythromycinS. aureus ATCC 12692, ATCC 25923, and ATCC 6538No data[37]
L. gracilisKanamycin, gentamicin, tobramycin, amikacin, gentamicinS. aureus ATCC 12692E. coli 27 (clinical strain)
E. coli ATCC 10536
[40]
L. origanoidesAmikacin, neomycinS. aureus SA10 (MRSA clinical isolated), S. aureus ATCC 25923No data[46]
L. sidoidesGentamicin, amikacin, neomycinS. aureus ATCC 12624P. aeruginosa ATCC 15442[52]
Gentamicin, neomycin, penicillin G, ceftriaxoneS. aureus ATCC 12624, S. mutans ATCC 446, E. faecalis ATCC 4083, E. coli ATCC 25922, E. cloacae ATCC 23355, K. pneumoniae ATCC 1003, Providencia rettigeri, ATCC 29944P. aeruginosa ATCC 15442[87]

Share and Cite

MDPI and ACS Style

Pérez Zamora, C.M.; Torres, C.A.; Nuñez, M.B. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. https://doi.org/10.3390/molecules23030544

AMA Style

Pérez Zamora CM, Torres CA, Nuñez MB. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules. 2018; 23(3):544. https://doi.org/10.3390/molecules23030544

Chicago/Turabian Style

Pérez Zamora, Cristina M., Carola A. Torres, and María B. Nuñez. 2018. "Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America" Molecules 23, no. 3: 544. https://doi.org/10.3390/molecules23030544

Article Metrics

Back to TopTop