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Abstract 

Based on redundancy techniques, cloud-RAIDs (Redundant Array of Independent Disks) offer an effective storage 

solution to achieve high data reliability. Their performance however can be greatly hindered by the fault-level coverage 

(FLC) behavior, where an uncovered disk fault may crash the entire system in spite of adequate redundancy remaining. 

Moreover, different choices of cloud disk providers lead to designs with different overall reliability and cost. Thus, in 

this paper we formulate and solve optimization problems, which determine the combination of cloud disks (from different 

providers) maximizing the cloud-RAID system reliability or minimizing the total cost. The cloud-RAID reliability is 

analyzed using a combinatorial and analytical modeling method while considering effects of the FLC behavior. Multiple 

case studies are performed to demonstrate the considered optimization problems and proposed solution methodology. 

 

Keywords- Cloud storage, Cost, Fault level coverage, Optimization, Reliability. 

 

 

 

1. Introduction 
Recent advances in big data, Internet of Things, cyber-physical systems have led to great demands 

on data storage (Atat et al., 2018; Wang et al., 2018; Wang and Alexander, 2019). These demands 

engender high needs to use cloud storage services as the backbone of those technologies. As a 

continuously growing paradigm, a cloud storage system is a model with data being saved in logical 

space while the actual disks may span several physical servers managed by different cloud service 

providers (Deng et al., 2010; Erl et al., 2013). As users often expect to access their data from the 

cloud storage system anytime and anywhere, any service interruption or failure can pose negative 

impacts on the reputation and business of the cloud service provider. Thus, it is significant to 

enhance the overall data reliability through fault-tolerance techniques. Based on redundancy 

techniques (Jin et al., 2009; Bausch, 2014), cloud-RAIDs (Redundant Array of 

Independent/Inexpensive Disks) provide one such solution to achieve high data reliability (Fitch 

and Xu, 2013; Zhang et al., 2013; Liu and Xing, 2015). Their performance however may be greatly 

affected by the imperfect coverage behavior (Xing, 2005; Myers, 2010; Li and Mao, 2016), where 

due to an imperfect fault recovery mechanism, a disk fault may not be adequately or timely 

detected, located and isolated after its occurrence. The consequence from this undetected or 

uncovered fault is it may propagate to other system components, causing extensive damages and 

even crashing the entire system. Studies performed in (Amari et al., 1999) showed that an increase 

in the redundancy level may not necessarily enhance the reliability of systems subject to the 

imperfect fault coverage monotonically (after certain level, a further increase in redundancy can 
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actually reduce the system reliability). Hence, it is crucial to address the imperfect fault coverage 

behavior in the system reliability modeling, analysis and optimization activities. 

 

Some efforts have been expended in optimizing the cloud storage systems. Examples include an 

algorithmic approach (Goyal and Kant, 2014) suggested to optimize cloud storage for improving 

data accessing and storage performance. In Yahyaoui and Moalla (2016), the optimization of file 

storage service was considered through classifying customer files based on their usage rates to save 

storage space in the cloud. In Liu et al. (2018), a heterogeneous cloud storage model was optimized 

achieving the tradeoff between the system storage and repair costs. In Li et al. (2016), the structure 

and performance of an object-based cloud storage system were optimized for processing data files 

with different sizes. In Fu et al. (2016), a block replica placement method was suggested for 

optimizing performance of small files accessing in the cloud storage system. In Cha and Kim 

(2018), a software-defined storage using a combination of on-premises and public cloud storage 

was introduced to optimize the cloud storage for improving the I/O performance. In Mansouri et 

al. (2017), an optimal offline algorithm was designed to optimize the price difference between 

cloud data storage and cloud network services. In Al-Abbasi and Aggarwal (2018), a framework 

for erasure-coded storage systems was proposed to quantify and optimize the mean latency over 

the choice of cloud storage servers and auxiliary bound parameters. The above-mentioned methods 

neither addressed the imperfect fault coverage behavior, nor considered the cloud provider/disk 

selection problem that determines the optimal combination of cloud disks balancing the cloud-

RAID system reliability and cost. The selection problem belongs to the reliability allocation 

problem, which has been proven to be NP-hard (Chern, 1992; Todinov, 2006). 

 

Different models have been suggested for addressing the imperfect fault coverage in reliability 

analysis of systems in diverse applications. Typical examples include the element level coverage 

(ELC) model (also known as single-fault model), the fault-level coverage (FLC) model (also known 

as multi-fault model), and the performance dependent coverage model (Levitin and Amari, 2008; 

Mandava et al., 2016; Mandava and Xing, 2017). In recent work (Mandava and Xing, 2019), the 

cloud disk selection problem was first considered for the cloud-RAID system subject to the ELC, 

where the performance of the system recovery mechanism depends on the occurrence of each 

individual disk fault and thus the fault coverage probability of a disk does not rely on statuses of 

other disks in the system. However, in a load-sharing or work-sharing environment, it is more 

practical that the fault coverage probability relies on the number of disk faults that have happened 

within a certain recovery window, which can be modeled by the FLC (Amari et al., 2008). In this 

paper, we make advancements by formulating and solving the cloud disk selection problem for 

cloud-RAID storage systems undergoing the FLC. Both unconstrained and constrained 

optimization problems are considered. Solutions to the constrained problems provide a balance 

between the overall reliability and cost when configuring a cloud-RAID system.  

 

The rest of the paper is arranged as follows. Section 2 formulates the considered optimization 

problems. Section 3 describes examples of cloud-RAID storage systems. Section 4 presents the 

reliability analysis method for the cloud-RAID systems undergoing the FLC. Section 5 

demonstrates solutions to the considered optimization problems through multiple case studies. 

Section 6 concludes the work and gives directions of future research. 
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2. Formulation of Cloud Disk Selection Problems 
In (1) an unconstrained optimization problem is formulated with the objective to minimize the 

overall cloud-RAID system unreliability, denoted as UR(t) (i.e., maximize the system reliability 1- 

UR(t)). 

 

minimize UR(t)                                                                                                                               (1) 

 

In (2) and (3), two different constrained optimization problems are formulated to balance the system 

reliability and cost. Specifically, the aim of problem (2) is to minimize the cloud-RAID system 

unreliability, UR(t) while satisfying constraint on the total system cost denoted by C*. The aim of 

problem (3) is to minimize the total system cost C while satisfying constraint on the cloud-RAID 

system unreliability denoted by UR*. 

 

minimize UR(t)        s.t. C ≤ C*                                                                                                      (2) 

 

minimize C           s.t. UR(t) ≤ UR*                                                                                                (3) 

 

UR(t) in (1)-(3) is evaluated using a combinatorial and analytical modeling method that is presented 

in Section 4. C is evaluated as summation of costs of all the chosen disks to configure the cloud-

RAID system. 

 

 

3. Example Cloud-RAID 5 Storage Systems 
There are seven levels in the conventional RAID architecture employing different redundancy 

techniques (except level one without any redundancy) (Jin et al., 2011). The RAID level 5 using 

the distributed single parity code is selected in this work to illustrate the proposed methodology 

and optimization. Specifically, data to be saved in RAID 5 are divided into non-overlapped blocks. 

These blocks are striped across different disks that form the array (Patterson et al., 1989). The parity 

stripes are also distributed across those disks in the array. The RAID 5 is able to tolerate any single 

disk failure that can be detected and located successfully. Specifically, if any disk becomes 

malfunctioning or unavailable, stripes on this disk can be restored using the parity stripe and data 

stripes from the remaining disks (in particular through performing the exclusive OR operation if an 

even parity code is utilized). In the case of disk drives within the array having different capacities, 

the usable capacity by the whole storage array is decided by the disk with the smallest storage 

capacity. 

 

Figure 1 shows the architecture of an example cloud-RAID 5 system with three disk drives coming 

from different cloud service providers. Users’ data (A, B, C) are divided into stripes (for example, 

A1 and A2 for A). Both data and parity stripes are distributed among the three disk drives. The 

system is essentially a 2-out-of-3: G model, meaning that the system is good or reliable if at least 

two out of the three disks are functioning correctly. 

 

Figure 2 shows architecture of a larger cloud-RAID 5 with five different disks. It is a 4-out-of-5: G 

model, meaning that the system is good if at least four out of the five disks are functioning correctly. 
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Figure 1. 2-out-of-3 cloud-RAID 5 
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Figure 2. 4-out-of-5 cloud-RAID 5 

 

 

4. Combinatorial Method for Analyzing Cloud-RAID 5 with FLC 
Under the FLC, the fault coverage probability relies on the number of disk faults happening to a 

particular group (disk array) within a certain recovery window τ (Levitin and Amari, 2007; Myers 

and Rauzy, 2008). Specifically, a set of fault coverage factors ci is evaluated for a specific disk 

group.  For example, the first disk fault is covered with probability c1, the second disk fault is 

covered with probability c2, and so on. By definition, the coverage factor involving no disk faults 

c0 is always 1. Formula (4) presents an example method of evaluating ci for a system with n identical 

disk drives, where i denotes the fault number and λ denotes the constant failure rate of each disk. 

 

𝑐𝑖 = 𝑒−(𝑛−𝑖)𝜆𝜏                                                                                                                                (4) 

 

In the case of non-identical disks with different failure rates (in general, failure time distributions), 

formula (4) needs to be modified to consider a different reliability evaluation for each disk based 

on its time-to-failure distribution function. Specifically, let cid denote the coverage probability 

associated with the i-th fault happening to disk d in the cloud-RAID system. As mentioned in 

Section 3, the cloud-RAID 5 system can tolerate any single disk failure if the fault is detected and 

located successfully. This first disk failure (i=1) is covered with the coverage probability, c1d. For 

example, for the example 2-out-of-3 cloud-RAID system, if disk 1 fails first, the coverage 

probability c11 can be evaluated as (5); if disk 2 fails first, c12 in (5) is used; if disk 3 fails first, c13 

in (5) is used. 
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 𝑐11 = 𝑒−(𝜆2+𝜆3)𝜏    ,      𝑐12 = 𝑒−(𝜆1+𝜆3)𝜏   ,     𝑐13 = 𝑒−(𝜆1+𝜆2)𝜏                                                   (5) 

 

To consider effects of FLC, the binary decision diagram (BDD)-based method (Xing and Amari, 

2015; Xing et al., 2019) can be applied with an extension of inserting corresponding coverage factor 

cid onto the relevant paths in the system BDD model. The following major steps are involved in the 

extended BDD-based reliability analysis: 

 
1) Variable Ordering: assign indexes to input disk variables using the numerical order. 

 

2) BDD Generation: generate the BDD model without considering FLC by recursively applying 

manipulation rules in (6), which are used to combine two sub-BDDs into one BDD. 

 

𝑔 ◊ ℎ = 𝑖𝑡𝑒(𝑥, 𝐺1, 𝐺0) ◊ 𝑖𝑡𝑒(𝑦, 𝐻1, 𝐻0) 

= {

𝑖𝑡𝑒(𝑥, 𝐺1 ◊ 𝐻1 , 𝐺0 ◊ 𝐻0)  𝑖𝑛𝑑𝑒𝑥(𝑥) = 𝑖𝑛𝑑𝑒𝑥(𝑦)

𝑖𝑡𝑒(𝑥, 𝐺1 ◊ ℎ, 𝐺0 ◊ ℎ)        𝑖𝑛𝑑𝑒𝑥(𝑥) < 𝑖𝑛𝑑𝑒𝑥(𝑦)

𝑖𝑡𝑒(𝑦, 𝑔 ◊ 𝐻1, 𝑔 ◊ 𝐻0)      𝑖𝑛𝑑𝑒𝑥(𝑥) > 𝑖𝑛𝑑𝑒𝑥(𝑦)
                                                             (6) 

 

g and h in (6) are Boolean functions in the if-then-else (ite) format representing the two sub-

BDDs to be combined (x and y are their root nodes). ◊ denotes a logical OR/AND operation. 

For applying the rules, indexes of x and y are compared. In the first case, their indexes are 

identical meaning they are the same variable. In this case, the operation is performed between 

their child nodes. In the second and third cases, x and y have different indexes meaning they 

are variables of different disks. In this case, the variable with a smaller index becomes the root 

node of the combined BDD, and the logic operation is performed between each child node of 

the smaller index node and the entire sub-BDD rooted at the larger index node. 

 

3) Coverage Factor Nodes Insertion: node associated with each relevant coverage factor cid is 

inserted onto the relevant operational path (i.e., path from root node to sink node ‘0’) in the 

BDD model generated in step 2 for the i-th failure happening to disk d. 

 

For the example cloud-RAID 5 model considered in this paper, all operational paths involve 

either no failures or 1 disk failure. Thus, for paths involving a single disk failure happening to 

disk d, node c1d is inserted; for paths involving no disk failures, node c0 is simply inserted. For 

systems that can tolerate 2 disk failures (e.g., the cloud-RAID 6 model in Mandava and Xing, 

2017), there exist operational paths involving no failures, 1 disk failure, and 2 disk failures. For 

the path involving 2 disk failures, e.g., happening to disk d1 first and then disk d2, nodes c1d1 

and c2d2  are inserted onto the path. 

 

4) BDD Evaluation: the cloud-RAID system unreliability UR(t) is evaluated as summation of 

probabilities of all disjoint paths from the root node of the BDD constructed at step 3 to sink 

node ‘1’. Similarly, the reliability of the cloud-RAID system is the sum of probabilities of all 

disjoint paths from the root node to sink node ‘0’. 

 

Each single path probability is evaluated as the product of disk reliability pd (if 0-edge 

appearing on the path) or unreliability 1- pd (if 1-edge appearing on the path) for all disks d 

involved on the path. 
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Reliability pd of each single disk d is either given as an input parameter or can be derived from 

the time-to-failure distribution parameter(s). For example, if disk d has the exponential time-

to-failure distribution with parameter λd then pd = e(-λd*t); if disk d has the Weibull time-to-

failure distribution with scale parameter λd and shape parameter βd, then 𝑝𝑑 = 𝑒−(𝑡∗𝜆𝑑)𝛽𝑑
. 

 

4.1 Analysis of the 2-out-of-3 Cloud-RAID 5 
Figure 3 illustrates the BDD model constructed for the 2-out-of-3 cloud-RAID 5 with FLC. Each 

non-sink node has two outgoing edges: the solid edge (or 0-edge) represents that the disk 

represented by the node is operating and the dashed edge (or 1-edge) represents the disk is failed. 

To save space, only paths to sink node ‘0’ representing the entire system is working are shown. 

Coverage factors are inserted into the corresponding paths as described in step 3 of the algorithm. 

For example, in the second left-most path where only disk 3 fails, c13 is inserted onto that path. 
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Figure 3. BDD of the example 2-out-of-3 cloud-RAID 5 with FLC 

 

 

 

Based on the BDD model in Figure 3, the unreliability of the example 2-out-of-3 cloud-RAID 5 is 

evaluated as  

 

𝑈𝑅(𝑡) = 1 − [(1 − 𝑝1)𝑝2𝑝3𝑐11 + 𝑝1(1 − 𝑝2)𝑝3𝑐12 + 𝑝1𝑝2(1 − 𝑝3)𝑐13 + 𝑝1𝑝2𝑝3𝑐0]               (7) 

 

4.2 Analysis of 4-out-of-5 Cloud-RAID 5 
Figure 4 shows the BDD model generated for the example 4-out-of-5 cloud-RAID 5 with FLC. 

Similar to Figure 3, only paths to sink node ‘0’ representing the system is working are shown.  

Based on the generated BDD model, the system unreliability can be evaluated using (8) 

 

𝑈𝑅(𝑡) = 1 − [(1 − 𝑝1)𝑝2𝑝3𝑝4𝑝5𝑐11 + 𝑝1(1 − 𝑝2)𝑝3𝑝4𝑝5𝑐12 + 𝑝1𝑝2(1 − 𝑝3)𝑝4𝑝5𝑐13 +
𝑝1𝑝2𝑝3(1 − 𝑝4)𝑝5𝑐14 + 𝑝1𝑝2𝑝3𝑝4(1 − 𝑝5)𝑐15 + 𝑝1𝑝2𝑝3𝑝4𝑝5𝑐0]                                                (8) 
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Figure 4. BDD of the example 4-out-of-5 cloud-RAID 5 with FLC 

 

 

5. Optimization 
Consider a cloud-RAID system using n disk drives selected from w available choices (cloud 

providers). The number of possible combinations of those disk drives is 
(𝑛+𝑤−1)!

(𝑤−1)!𝑛!
. For example, 

when n=3 and w=2 (i.e., a 2-out-3 cloud-RAID is configured with disks provided by two cloud 

providers (v1, v2)), there are 4 distinct combinations: (v1, v1, v1), (v1, v1, v2), (v1, v2, v2), (v2, v2, v2). 

The ordering does not matter, e.g., (v2, v1, v1) and (v1, v2, v1) are considered the same combination. 

 

For values of n and w used in the practical implementation of the cloud-RAID system, the brute 

force approach can be sufficiently applied, which searches all possible combinations to find the 

optimal solution for problems formulated in (1)-(3). Theoretically, for large values of n and w, 

heuristic approaches e.g., the genetic algorithm (Tannous et al., 2011; Boddu and Xing, 2013; 

Bhunia et al., 2017) and meta-heuristic approaches (Dahiya et al., 2019) may be applied to solve 

those problems. 

 

 

 
Table 1. Input parameters of cloud disk drives (providers) 

 

Disk providers λd (per hour) Cd  (per hour) 

v1 0.0003 $0.0014 

v2 0.00005 $0.0042 

v3 0.00003 $0.0056 

v4 0.0001 $0.0028 

v5 0.00001 $0.007 

 

 

 

Table 1 presents parameters of cloud disk drives used in four case studies performed in the 

following subsections, including constant failure rate λd (the exponential distribution is assumed) 
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and cost Cd for disks from five providers (v1, v2, v3, v4, v5). The cost Cd is assigned based on recent 

prices of several top cloud service providers in market, like AWS, Dropbox, Google, iCloud 

(Amazon, 2019; Dropbox, 2019; Google, 2019; iCloud, 2019). 

 

 

5.1 Case Study 1: 2-out-of-3 Cloud-RAID 5 with 3 Disk Providers 
Providers v1, v2, v3 are used in this case study. Table 2 lists all the ten possible combinations and 

corresponding system unreliability and cost for three different sets of t and τ values. As the mission 

time proceeds (comparing columns 3 and 4) or the recovery window time increases (comparing 

columns 4 and 5), the system unreliability increases. For problem (1), the optimal combination is 

(v3, v3, v3) for all the three sets of t and τ values listed, respectively with the minimum system 

unreliability of 0.002584, 0.117226, and 0.117724. This is intuitive since among the three available 

providers, v3 has the lowest failure rate (the most reliable disks). For problem (2) with C* = $10, 

the optimal solution is (v1, v2, v2) for all the three sets of t and τ with cost of $9.8. For problem (3) 

under τ = 3hrs, t=1000hrs, and UR* = 0.01, the optimal solution is (v2, v2, v2) with the system cost 

of $12.6 and unreliability of 0.006943.  

 

 

 
Table 2. Results of 2-out-of-3 with 3 cloud providers 

 

Combinations Cost UR(t)  

(τ = 3hrs, t=1000hrs) 
UR(t)  

(τ = 3hrs, t=8000hrs) 

UR(t)  

 (τ = 24hrs, t=8000hrs) 

v1, v1, v1 $4.2 0.167472 0.976844 0.977125 

v1, v1, v2 $7 0.086335 0.881304 0.882147 

v1, v1, v3 $8.4 0.078922 0.862127 0.863044 

v1, v2, v2 $9.8 0.026569 0.510740 0.511890 

v1, v2, v3 $11.2 0.021109 0.436358 0.437420 

v1, v3, v3 $12.6 0.015827 0.350895 0.351813 

v2, v2, v2 $12.6 0.006943 0.254535 0.255467 

v2, v2, v3 $14 0.005150 0.203108 0.203892 

v2, v3, v3 $15.4 0.003692 0.156288 0.156923 

v3, v3, v3 $16.8 0.002584 0.117226 0.117724 

 

 

 

5.2 Case Study 2: 2-out-of-3 Cloud-RAID 5 with 5 Disk Providers 
Table 3 presents the optimization results for the 2-out-of-3 cloud-RAID 5 model considering five 

disk providers v1, v2, v3, v4, v5 for problems (1)-(3) assuming t=1000hrs, τ=3hrs.  

 

 

 
Table 3. Optimal results of 2-out-of-3 with 5 disk providers 

 

Optimization Problem Optimal Solution Cost C Unreliability UR(t) 

min UR(t) v5, v5, v5 $21 0.000297 

min UR(t) s.t. C ≤ C1
* = $8 v1, v4, v4 $7 0.053971 

min UR(t) s.t. C ≤ C2
* =$12 v2, v2, v4 $11.2 0.011272 

min UR(t) s.t. C ≤ C3
* = $17 v4, v5, v5 $16.8 0.001985 

min C s.t. UR(t) ≤ UR1
* = 0.02 v2, v4, v4 $9.8 0.017553 

min C s.t. UR(t) ≤ UR2
* = 0.005 v3, v4, v5 $15.4 0.004021 

min C s.t. UR(t) ≤ UR3
* =0.001 v3, v5, v5 $19.6 0.000685 
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5.3 Case Study 3: 4-out-of-5 Cloud-RAID 5 with 3 Disk Providers 
Assume disk providers v1, v2, v3 are used in this case study. Table 4 lists all the 21 possible 

combinations and corresponding system unreliability and cost for three different sets of t and τ 

values. 

 
Table 4. Results of 4-out-of-5 with 3 cloud providers 

 

Combinations Cost UR(t)  

(τ =3hrs,  

t=1000hrs) 

UR(t)  

(τ = 3hrs, t=8000hrs) 

UR(t)  

 (τ =24hrs, t=8000hrs) 

v1, v1, v1, v1, v1 $7 0.387952 0.999687 0.999695 

v1, v1, v1, v1, v2 $9.8 0.299055 0.998117 0.998154 

v1, v1, v1, v1, v3 $11.2 0.290933 0.997802 0.997844 

v1, v1, v1, v2, v2 $12.6 0.209197 0.989269 0.989423 

v1, v1, v1, v2, v3 $14 0.200988 0.987493 0.987667 

v1, v1, v1, v3, v3 $15.4 0.192770 0.985424 0.985620 

v1, v1, v2, v2, v2 $15.4 0.125052 0.944249 0.944769 

v1, v1, v2, v2, v3 $16.8 0.117365 0.935212 0.935787 

v1, v1, v2, v3, v3 $18.2 0.109725 0.924718 0.925353 

v1, v1, v3, v3, v3 $19.6 0.102138 0.912532 0.913231 

v1, v2, v2, v2, v2 $18.2 0.057174 0.762230 0.763337 

v1, v2, v2, v2, v3 $19.6 0.050973 0.725694 0.726846 

v1, v2, v2, v3, v3 $21 0.044907 0.683638 0.684821 

v1, v2, v3, v3, v3 $22.4 0.038985 0.635247 0.636443 

v1, v3, v3, v3, v3 $23.8 0.033216 0.579589 0.580772 

v2, v2, v2, v2, v2 $21 0.021669 0.532058 0.533452 

v2, v2, v2, v2, v3 $22.4 0.018425 0.485857 0.487215 

v2, v2, v2, v3, v3 $23.8 0.015452 0.437715 0.439018 

v2, v2, v3, v3, v3 $25.2 0.012761 0.388352 0.389580 

v2, v3, v3, v3, v3 $26.6 0.010365 0.338793 0.339928 

v3, v3, v3, v3, v3 $28 0.008277 0.290459 0.291487 

 

For problem (1), the optimal combination is (v3, v3, v3, v3, v3) for all the three sets of t and τ values, 

respectively with the minimum system unreliability of 0.008277, 0.290459, and 0.291487. This is 

intuitive since among the three available providers, v3 has the most reliable disks; without any cost 

constraints, v3 should be selected for all the five disks. For problem (2) with C* = $20, the optimal 

solution is (v1, v2, v2, v2, v3) for all the three sets of t and τ with the system cost of $19.6. For problem 

(3) under τ = 3hrs, t=1000hrs, and UR* = 0.07, the optimal solution is (v1, v2, v2, v2, v2) with the 

system cost of $18.2 and unreliability of 0.057174. 

 

5.4 Case Study 4: 4-out-of-5 Cloud-RAID 5 with 5 Disk Providers 
Table 5 presents the optimization results for the 4-out-of-5 cloud-RAID 5 model using five disk 

providers v1, v2, v3, v4, v5 for problems (1)-(3) assuming t=1000hrs, τ=3hrs. 

 

 
Table 5. Optimal results of 4-out-of-5 with 5 disk providers 

 

Optimization Problem Optimal Solution Cost C Unreliability UR(t) 

min UR(t) v5, v5, v5, v5, v5 $35 0.000976 

min UR(t) s.t. C ≤ C1
* = $12 v1, v1, v4, v4, v4 $11.2 0.181488 

min UR(t) s.t. C ≤ C2
* = $20 v2, v2, v2, v2, v4 $19.6 0.0295 

min UR(t) s.t. C ≤ C3
* = $28 v2, v2, v3, v5, v5 $28 0.007563 

min C s.t. UR(t) ≤ UR1
* = 0.05 v2, v2, v4, v4, v4 $16.8 0.049712 

min C s.t. UR(t) ≤ UR2
* = 0.009 v2, v4, v5, v5, v5 $28 0.008925 

min C s.t. UR(t) ≤ UR3
* = 0.004 v2, v3, v5, v5, v5 $30.8 0.003966 
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6. Conclusion and Future Work 
Disk drives from different cloud service providers are often characterized with different reliability 

performance and cost. Different combinations of available disk choices thus lead to different 

overall cloud storage system reliability and cost. This paper models and solves three types of cloud 

disk provider selection problems for cloud-RAID storage systems subject to the FLC, including an 

unconstrained problem minimizing the overall system unreliability, and two constrained problems 

balancing the overall system reliability and cost. The reliability of the considered cloud-RAID 

system is analyzed using an extended BDD-based method that has no restriction on time-to-failure 

distribution types for disks. The solution methodology and proposed optimizations are 

demonstrated through examples and four case studies. 

 

One direction of our future work is to extend the proposed methodology to optimize multi-state 

cloud-RAID storage systems subject to performance degradation and the FLC (Mandava et al., 

2019). We are also interested in studying the performance dependent coverage model for reliability 

analysis and optimization of cloud-RAID systems. 
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