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Abstract 

In the analysis of clustered survival data, shared frailty models are often used when observations in the same group 

share common unknown risk factors or frailty. There is dependence in the event times belonging to the same group, 

while event times from different groups are conditionally independent given their covariates. In such models, the 

known effect on survival time is described using the baseline distribution and regression coefficients while the 

unknown effect is described through a frailty distribution. In this paper, the Gompertz, log-logistic, and generalized 

exponential distributions are studied as baseline distributions, under a shared frailty effect described by the generalized 

gamma distribution. Their hazard functions have been compared and their applicability under different settings and 

performance with generalized gamma frailty has been explored. These models are fitted to three real life datasets using 

Bayesian estimation methods and compared using the Bayesian Information Criteria (AIC, BIC, and DIC) and the 

Bayes Factor.  

 

Keywords- Gompertz hazard, Log-logistic hazard, Generalized exponential hazard, Bayesian information criteria, 

Bayes factor. 

 

 

 

1. Introduction 
In survival studies, there are often observations that need to be grouped together on the basis of 

the study centre, hospital, city, etc. In all such cases, individuals belonging to the same group or 

cluster are exposed to the same environmental factors. Such factors are unknown and are depicted 

in the models as a common unknown risk or shared frailty of a group. This causes a dependence 

in survival times of a group while observations of different groups are conditionally independent. 

In shared frailty models, the effect on survival times due to known covariates or treatment effects 

is described using a baseline distribution and regression coefficients while effect due to unknown 

risk factors or randomness in the data is described using a frailty distribution. 

 

The baseline distribution describes the overall common risk to all individuals in the study. The 

distribution of event times in survival studies is generally discussed in terms of the hazard 

function. The hazard function is the instantaneous probability of failure over time and hence the 

form of the baseline hazard function, ℎ0(𝑡) is of considerable importance. It may be increasing, 

decreasing or constant over time and thus, different distributions are applicable in different 

studies. 

 

The frailty distribution in the shared frailty model is helpful in describing a dependence structure 

where the observations within the clusters are correlated as they share a common frailty, while 

clusters among themselves are conditionally independent given the covariates. In grouped data, it 

is expected that there will be high heterogeneity among clusters. However, as the factors affecting 
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frailty are unknown, it would be more appropriate to describe the frailty effect using a flexible 

distribution whose probability density function (PDF) can take various shapes. The generalized 

gamma distribution (GGD) includes many distributions as its particular cases viz. Weibull, 

Gamma, exponential, and log-normal distributions (Khodabin and Ahmadabadi, 2010) and hence 

it is a convenient choice to model frailty (Sidhu et al., 2018). 

 

Earlier work done on the generalized gamma shared frailty model (Balakrishnan and Peng, 2006; 

Chen et al., 2013) shows how this distribution can estimate the heterogeneity among clusters 

more efficiently than other distributions. However, there are computational problems due to the 

integral in the unconditional likelihood not being in a closed form, making it an unfavourable 

choice to model frailty. Bayesian estimation of the parameters of the model (Sidhu et al., 2018) 

can make estimation easier and faster as prior information can be incorporated in the model or the 

problems of multiple modes or non-convergence can be diagnosed quicker. 

 

In this article, the applicability of the model under three different baseline distributions viz. 

Gompertz, log-logistic, and generalized exponential, have been explored. The distributions are 

widely applicable in survival studies for different types of datasets and have been modelled with a 

gamma frailty, inverse Gaussian frailty, and log-normal frailty (Manton et al., 1986; Klein et al., 

1999; Wienke et al., 2003, 2005; Locatelli et al., 2004; Hens et al., 2009; Hanagal and Dabade, 

2013; Hanagal and Sharma, 2013) among other distributions, but have not yet been used in 

conjunction with the generalized gamma frailty effect. 

 

In Section 2, the generalized gamma shared frailty model with non-informative right censoring is 

described. This is followed by a discussion on some basic properties of the baseline hazard 

functions of Gompertz, log-logistic, and generalized exponential distributions in Section 3. In 

Section 4, an outline of the estimation procedure is given and these models are compared using 

real life datasets in Section 5. 

 

2. Shared Frailty Model with Censoring 
Consider G groups of survival times with ni observations (i = 1, 2… G) per cluster. For the jth 

individual in the ith cluster, the survival time, censoring indicator, and the vector of s known 

covariates are denoted by tij, δij, and Xij respectively. 

 

The survival times considered in this paper are right censored, that is, tij is the true survival time 

(Tij) when the event is observed and is the censoring time (Cij) when the event is not observed due 

to any reason such as loss in follow-up or failure to complete the study. In other words, 

 

𝛿𝑖𝑗 =  {
1,    if 𝑡𝑖𝑗 =  𝑇𝑖𝑗, that is, event is observed 

0,    if 𝑡𝑖𝑗 =  𝐶𝑖𝑗, that is, event is censored.
 

 

Associated with each cluster is the shared frailty effect zi, which acts multiplicatively on the 

hazard function, increasing or decreasing the hazard for the jth individual in the ith cluster. The 

conditional hazard function for j = 1, 2… ni, i = 1, 2… G, is given by 

 

ℎ(𝑡𝑖𝑗|𝑧𝑖 , 𝑿𝒊𝒋) = 𝑧𝑖  ℎ0(𝑡𝑖𝑗)𝑒𝑿𝑖𝑗
′ 𝜷,                                                                                                    (1) 
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where β is a vector of s regression coefficients corresponding to the known covariates in the 

study. 

 

The corresponding conditional survival function is written as  

𝑆(𝑡𝑖𝑗|𝑧𝑖 , 𝑿𝒊𝒋) = 𝒆−𝑧𝑖 𝐻0(𝑡𝑖𝑗)𝑒
𝑿𝒊𝒋

′ 𝜷

 ,                                                                                                   (2) 

 

where 𝐻0(𝑡𝑖𝑗) is the cumulative hazard function. 

 

Under the assumption that the event times and censoring times are independent and that the 

censoring in the study is non-informative, the conditional likelihood for the frailty model is given 

as 

 

𝐿 =  ∏ ∏ [ℎ(𝑡𝑖𝑗|𝑧𝑖 , 𝑿𝒊𝒋)]
𝛿𝑖𝑗𝑛𝑖

𝑗=1
𝐺
𝑖=1 𝑆(𝑡𝑖𝑗|𝑧𝑖 , 𝑿𝒊𝒋). 

 

Integrating L over the entire range of the frailty variable Z, the unconditional likelihood function 

L, is obtained as 

 

𝑳 =  ∫ ∫ … ∫ ∏ ∏ [ℎ(𝑡𝑖𝑗|𝑧𝑖 , 𝑿𝒊𝒋)]
𝛿𝑖𝑗𝑛𝑖

𝑗=1
𝐺
𝑖=1 𝑆(𝑡𝑖𝑗|𝑧𝑖 , 𝑿𝒊𝒋) 𝑓(𝑧𝑖 )𝑑𝑧𝑖                                               (3) 

 

where 𝑓(. ) denotes the PDF of the generalized gamma frailty distribution (GGD (b, d, k)) given 

by  

 

𝑓(𝑧: 𝑏, 𝑑, 𝑘) =  
𝑑

Γ(𝑘)𝑏
(

𝑧

𝑏
)

𝑑𝑘−1
𝑒

(
𝑧

𝑏
)

𝑑

,   𝑧, 𝑏, 𝑑, 𝑘 > 0.                                                                      (4) 

 

Note that d and k are the shape parameters and b is the scale parameter of the GGD. To make the 

parameters of the model identifiable, we set the mean of the frailty parameter equal to 1. Hence,  

 

𝐸(𝑧) =  
𝑏 Γ (𝑘 +  

1
𝑑

)

Γ(𝑘)
 ⇒ 𝑏 =  

Γ(𝑘)

Γ (𝑘 + 
1
𝑑

)
. 

 

This gives 

 

𝑉(𝑧) =  
Γ(𝑘)Γ (𝑘 +  

2
𝑑

)

Γ (𝑘 +  
1
𝑑

)
2 − 1. 

 

3. Baseline Distributions 

3.1 Gompertz Distribution 
The Gompertz distribution has been widely used in survival studies, especially in demographical 

or biological areas. In actuarial studies, it has been used to describe an exponentially increasing 

mortality with age. Its PDF, hazard function, and cumulative hazard function are given by 
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𝑓(𝑡) =  𝜔𝑒𝛼𝑡𝑒−
𝜔
𝛼

[𝑒𝛼𝑡−1], 𝜔 > 0, 𝑡 > 0, 
ℎ(𝑡) =  𝜔𝑒𝛼𝑡, 

𝐻(𝑡) =
𝜔

𝛼
[𝑒𝛼𝑡 − 1]. 

 

The hazard function for this distribution increases from ω at t = 0 to ∞ as t → ∞ for α > 0 and is 

applicable in studies where the hazard is increasing at an exponential rate with respect to time. 

For α < 0, the distribution has a decreasing hazard which converges to – ω/α as time increases. 

This implies that a certain proportion of the population never experiences the event. While this 

may be useful in certain cases like cure rate models, but in this paper, α > 0 has been considered.  

 

Although, the Gompertz distribution provides a close fit to adult mortality in developed countries, 

this distribution cannot be used where the risk of failure is fairly constant as t → ∞. Such 

phenomenon is experienced often in clinical trials relating to the treatment of a disease or in 

reliability studies of machines.  

 

 

 
 

Figure 1. Hazard function plots for Gompertz, log-logistic, and generalized exponential 

distribution for ω = 1.25 and varying shape parameter α 
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3.2 Log-Logistic Distribution 
The two parameter log-logistic (LL) distribution has a fairly flexible hazard function as compared 

to the Gompertz distribution as shown by Figure 1. The PDF, hazard function, and cumulative 

hazard function are given by 

 

𝑓(𝑡) =  
𝛼𝜔(𝜔𝑡)𝛼−1

[1 +  (𝜔𝑡)𝛼  ]2
 , 𝛼, 𝜔, 𝑡 > 0, 

ℎ(𝑡) =  
𝛼𝜔(𝜔𝑡)𝛼−1 

1 +  (𝜔𝑡)𝛼  
, 

𝐻(𝑡) = log[1 +  (𝜔𝑡)𝛼] . 
 

Its hazard function is either decreasing or hump shaped as the shape parameter α varies. It fits 

datasets that have a hazard rate that is either initially high or increases rapidly at the beginning of 

the study to a finite maximum and later gradually reduces as t → ∞. 

 

Even though it is one of the closest alternatives to the Weibull distribution, this distribution 

cannot be used in cases where the dataset has an increasing hazard throughout the study period. 

 

3.3 Generalized Exponential Distribution  
The generalized exponential (GE) distribution has been considered as the third baseline 

distribution in this article due to its simplicity in analysing data with an increasing, decreasing or 

flat hazard rate. The corresponding PDF, hazard function, and cumulative hazard function are 

given by 

 

𝑓(𝑡) =  𝛼𝜔𝑒−𝜔𝑡[1 − 𝑒−𝜔𝑡]𝛼−1 , 𝛼, 𝜔, 𝑡 > 0, 

ℎ(𝑡) =  
𝛼𝜔𝑒−𝜔𝑡[1 − 𝑒−𝜔𝑡]𝛼−1 

1 − [1 − 𝑒−𝜔𝑡]𝛼 
, 

𝐻(𝑡) = − log[1 − (1 − 𝑒−𝜔𝑡)𝛼]. 
 

The hazard function for GE distribution varies when the shape parameter α changes. At α = 1, the 

hazard is constant and equal to ω, while it increases from 0 to ω for α > 1 and decreases from ∞ 

to ω for α < 1. The main advantage of using this distribution to model the baseline hazard is that 

it incorporates a case of a constant hazard with respect to time, which may be true for the 

common effect in some survival studies. 

 

4. Estimation Procedure 

4.1 Likelihood Function 
After replacing the conditional hazard and conditional survival functions (expressions (1) and (2) 

respectively) in the likelihood function given by (3), and using Gauss Laguerre quadrature rule, L 

reduces to  

 

𝑳 =  ∏ {(∏ [ℎ0(𝑡𝑖𝑗)𝜂𝑖𝑗]
𝛿𝑖𝑗𝑛𝑖

𝑗=1 ) 𝐼𝑖}.  𝐺
𝑖=1                                                                                           (5) 

 

The integral Ii is approximated as  
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𝐼𝑖 ≈  
1

𝐴𝑖
𝐷𝑖+1 ∑ 𝑤𝑛𝑢𝑛

𝐷𝑖
𝑛 𝑓 (

𝑢𝑛

𝐴𝑖
)                                                                                                        (6) 

 

where, 𝜂𝑖𝑗 = 𝑒𝑿𝒊𝒋
′ 𝜷 , 𝐷𝑖 =  ∑ 𝛿𝑖𝑗

𝑛𝑖
𝑗=1  and 𝐴𝑖 =  ∑ 𝐻0(𝑡𝑖𝑗)𝜂𝑖𝑗

𝑛𝑖
𝑗=1 .  

 

The ℎ0(𝑡𝑖𝑗) and 𝐻0(𝑡𝑖𝑗) are defined in sub-sections 3.1, 3.2, and 3.3 for the three models, that is, 

Gompertz, log-logistic, and generalized exponential baseline, under a generalized gamma frailty 

distribution. In the sequel, these models shall be referred to as Models I, II, and III respectively. 

 

4.2 MCMC Algorithm for Bayesian Estimates 
In the Bayesian method of estimation, the parameters of the model are considered to be random 

variables. The dataset in the form of the likelihood function 𝑳(𝑥|𝜃), is clubbed with the prior 

information (prior density) 𝑝(𝜃), available about the parameter. This gives the posterior density 

𝜋(𝜃|𝑥), where 

 

𝜋(𝜃|𝑥) ∝  𝑳(𝑥|𝜃)𝑝(𝜃). 
 

Since we generally have limited information about the parameters of the model, prior 

distributions are taken to be flat by using distributions with high variances. The Normal 

distribution, N (0, 1000) is used for regression coefficients while Gamma (0.001, 0.001) is used 

for all other non-negative parameters.  

 

Assuming that all parameters of the model are independently distributed and using the likelihood 

function given by (5) in conjunction with prior densities, we obtain the conditional posterior 

densities of each parameter as  

 

𝜋(𝛼|𝜔, 𝜷, 𝑑, 𝑘) ∝ ∏ {(∏[ℎ0(𝑡𝑖𝑗)]
𝛿𝑖𝑗

𝑛𝑖

𝑗=1

) 𝐼𝑖} 𝑝(𝛼),

𝐺

𝑖=1

 

𝜋(𝜔|𝛼, 𝜷, 𝑑, 𝑘) ∝ ∏ {(∏[ℎ0(𝑡𝑖𝑗)]
𝛿𝑖𝑗

𝑛𝑖

𝑗=1

) 𝐼𝑖} 𝑝(𝜔),

𝐺

𝑖=1

 

𝜋(𝑑|𝛼, 𝜔, 𝜷, 𝑘) ∝ ∏ 𝐼𝑖𝑝(𝑑),

𝐺

𝑖=1

 

𝜋(𝑘|𝛼, 𝜔, 𝜷, 𝑑) ∝ ∏ 𝐼𝑖𝑝(𝑘),

𝐺

𝑖=1

 

𝜋(𝛽𝑟|𝛼, 𝜔, 𝜷𝒓, 𝑘) ∝ ∏ {(∏[𝜂𝑖𝑗]
𝛿𝑖𝑗

𝑛𝑖

𝑗=1

) 𝐼𝑖} 𝑝(𝛽𝑟).  

𝐺

𝑖=1

 

 

Here 𝜷𝒓 = (𝛽1, 𝛽2, . . , 𝛽𝑟−1, 𝛽𝑟+1, . . 𝛽𝑠) and 𝑝(. ) are the prior densities of the model parameters. 
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In order to obtain the estimates of the parameters, a sample is drawn using the Metropolis-

Hastings Algorithm (Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970) from 

each posterior density and conclusions are drawn.  

 

Detailed derivation of the expression in sub-section 4.1 and the algorithm for estimation in sub-

section 4.2 have been given in Sidhu et al. (2018). 

 

4.3 Model Comparison 
In the presence of numerous choices to model datasets, it becomes important to be able to 

compare different models to choose the one that provides the best fit. For this purpose, the Akaike 

Information Criteria (Akaike, 1974), Bayesian Information Criteria (Schwarz, 1978), Deviance 

Information Criteria (Spiegelhalter et al., 2002), and Bayes Factor are used.  

 

For p number of parameters in the model and n number of observations in the dataset, the Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information 

Criteria (DIC) are defined as 

 

𝐴𝐼𝐶 = −2 log 𝐿(𝑥|𝜽̂) + 2𝑝, 

𝐵𝐼𝐶 = −2 log 𝐿(𝑥|𝜽̂) + log(𝑛) 𝑝, 

𝐷𝐼𝐶 = −2 log 𝐿(𝑥|𝜽̂) + 2𝑝𝐷 . 
 

where  

 

𝑝𝐷 =  𝐸[−2𝑙𝑜𝑔𝐿(𝑥|𝜽)] −  [−2𝑙𝑜𝑔𝐿(𝑥|𝜽̂)]. 
 

The models with lower values of AIC, BIC, and DIC are preferred. Generally, these three 

methods give concurrent results. However, AIC penalizes the number of parameters less strongly 

than BIC and may not be preferable.  

 

DIC incorporates the effective number of parameters 𝑝𝐷 and is frequently used when the 

estimates are obtained using the output from a Markov chain. However, DIC suffers from 

theoretical drawbacks and may not be a suitable choice (Spiegelhalter et al., 2014).  

 

The Bayes factor (BF) as a model choice criterion is defined as  

 

𝐵𝐹10 =
𝑃(𝑥|𝑀1)

𝑃(𝑥|𝑀0)
 

 

where 

 

𝑃(𝑥|𝑀𝑖) =  ∫ 𝑃(𝑥|𝜽, 𝑀𝑖)𝜋(𝜽| 𝑀𝑖) 𝑑𝜽 . 

 

Although, (2 𝑙𝑜𝑔 𝐵𝐹10) is approximately equal to the difference in the BIC values for the models, 

we use the method given by Kass and Raftery (1995), to compute 𝑃(𝑥|𝑀) from the MCMC 

sample obtained for each of the parameters in the model.  
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𝑃(𝑥|𝑀) ≈ (
∑ 𝐿(𝑥|𝜽(𝑖))−1𝑁

𝑖=1

𝑁
)

−1

 

 

where 𝜽(𝑖) is posterior sample of size N obtained using the Metropolis-Hastings algorithm from 

posterior densities in sub-section 4.2, for the vector of parameters 𝜃 = (𝛼, 𝜔, 𝜷, 𝑑, 𝑘) for the 

model M.  

 

A value of more than 10 for (2 log 𝐵𝐹10) indicates an extremely strong positive evidence to 

favour 𝑀1 over 𝑀0 while a value between 0 and 2 is insufficient evidence to favour either model 

(Kass and Raftery, 1995). A value between 2 - 6 or 6 - 10 indicates a mild or a moderately strong 

evidence respectively, to prefer the numerator model. 

 

5. Applications 
To demonstrate the use of Models I, II, and III, the Metropolis-Hastings algorithm is applied to 

the Catheter Infection (CI) dataset by McGilchrist and Aisbett (1991), chronic granulotomous 

disease (CGD) dataset by Fleming and Harrington (2011), and the tumorigenesis study on rats 

(RATS) by Mantel et al. (1977). 

 

CI dataset contains recurrent infection times from the use of catheters for 38 patients using a 

portable dialysis machine. The two infection times per patient are grouped together in a cluster. 

Other information available is the censoring status of each infection time, patient’s age, gender (0 

- male, 1 - female), and disease (Glomerulo Nephritis (GN), Acute Nephritis (AN), and 

Polycystic Kidney Disease (PKD)).  

 

CGD dataset contains time to first serious infection from the use of gamma interferon in chronic 

granulotomous disease. There are 128 observations recorded at 13 centres along with their 

treatment status (placebo or rIFN-g), sex (0 - female, 1 - male), age, pattern of inheritance (0 - X-

linked, 1 - Autosomal Recessive), use of corticosteroids (0 - Used, 1 - Did not use), and use of 

prophylactic antibiotics (0 - Used, 1 - Did not use). We group the dataset on the basis of the 

institute of treatment, although this data can be grouped together on the basis of multiple other 

factors like institution category, recurrent times, or pattern of inheritance. 

 

RATS dataset consists of times to appearance of the tumor in three rats (one treatment and two 

control) that belong to the same litter. The original dataset had grouping on the basis of gender as 

well, but the male population was heavily censored. Hence, we consider only the 50 female litters 

for analysis in this article. The data available are treatment status (0 - control, 1 - Treatment) and 

censoring indicator. 
 

Table 1. Predicted hazard function plots for the datasets modelled on a Weibull baseline under a shared 

gamma frailty 
 

Dataset CI  CGD RATS 

α 1.16 0.96 3.93 

𝜎𝐹𝑅
2

 0.2820 0.1238 0.4888  

 

To illustrate how different these datasets are, we obtain preliminary estimates of the parameters 

using “frailtypack” package in R (Rondeau et al., 2012). The built-in function “frailtyPenal” is 
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used where Weibull distribution is taken to model the baseline hazard and the shared frailty is 

assumed to follow gamma distribution. Table 1 shows the estimated value of α, the shape 

parameter of the Weibull distribution and 𝜎𝐹𝑅
2 , the variance of the frailty term. For the Weibull 

distribution, α > 1 indicates an increasing hazard while α < 1 points to a decreasing hazard with 

respect to time. As per Table 1, the estimated frailty variance signifies a low to moderate degree 

of heterogeneity among the clusters. Figure 2. shows the predicted hazard function for the three 

datasets. 

 

 
 

Figure 2. Predicted hazard function plots for the datasets modelled on a Weibull baseline under a shared 

gamma frailty 

 

As per Figure 2, the hazard functions for CI data and RATS data are both increasing with respect 

to time, hence GE and Gompertz distributions can be used to model the baseline effect. CGD data 

indicates a decreasing hazard with time and ideally log-logistic baseline should give the best fit. 

In order to find the most appropriate baseline for these three datasets, they are fitted to Models I, 

II, and III using the estimation procedure mentioned in Section 4. 

 

 
Table 2. Parameter estimates (credible intervals) of CI dataset under the generalized gamma shared frailty 

model 
 

Baseline 
Model I 

Gompertz 

Mode II 

LL 
Model III 

GE 

α 0.0032 1.598 1.595 

β1 

(Age) 

0.0093 

(-0.0178, 0.0442) 

0.0146 

(-0.0057,0.0397) 

0.0073 

(-0.0198,0.0353) 

β2 

(Gender) 

-1.787 

(-2.814, -0.8454) 

-1.2660 

(-2.009, -0.7155) 

-1.889 

(-2.782,-1.006) 

β3 

(GN) 

0.2977 

(-0.873,1.335) 

0.1708 

( -0.554, 0.9953) 

0.2298 

(-0.8304,1.2363) 

β4 

(AN) 

0.6979 

(-0.4713,1.8834) 

0.4095 

(-0.4480,1.3316) 

0.6062 

(-0.4675, 1.6151) 

β5 
(PKD) 

-0.5774 
(-2.714,1.1854) 

-0.7581 
(-1.9990,0.6649) 

-0.7449 
(-2.340,0.8435) 

𝜎𝐹𝑅
2  

0.5465 

(0.0560,1.8355) 

0.1325 

(0.0116,0.5396) 

0.4065 

(0.0531,1.1790) 

AIC 
BIC 

DIC 

700.92 
721.89 

655.50 

695.66 
716.64 

668.84 

681.51 

702.49 

669.26 
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Table 2 lists the estimated parameters and the credible intervals of the covariates for CI dataset. 

The value of 𝛼̂, shows that the population hazard increases with time. Gender is a significant 

factor affecting hazard as its credible interval does not contain zero. Negative value for  β2̂ 

indicates a lower hazard for the female population.  

 

 
Table 3. Parameter estimates (credible intervals) of CGD dataset under the generalized gamma shared 

frailty model 
 

Baseline 
Model I 

Gompertz 
Mode II 

LL 

Model III 
GE 

α 0.001 1.0140 0.9080 

β1 

(Treatment) 

-1.116 

(-1.679,-0.6316) 

-1.0040 

(-1.5760,-0.5075) 

-1.0510 

(-1.6197,-0.5180) 

β2 
(Sex) 

1.0880 
(0.399,1.9349) 

1.2650 
(0.4722,2.1237) 

1.0250 
(-0.0122,2.0490) 

β3 

(Age) 

-0.0355 

(-0.0665,-0.0072) 

-0.0290 

(-0.0539,-0.0013) 

-0.0337 

(-0.0671,-0.0027) 

β4 
(Inherit) 

0.8008 
(0.2111,1.3690) 

0.8023 
(0.2679,1.3519) 

0.6940 
(0.0165,1.3086) 

β5  

(Steroids) 

1.594 

(0.5615,2.7660) 

1.526 

(0.2675,2.7350) 

1.489 

(-0.1157,2.6469) 

β6  
(Propylac) 

-0.5649 
(-1.3170,0.1767) 

-0.4338 
(-1.0990,0.2220) 

-0.5850 
(-1.3800,0.7190) 

𝜎𝐹𝑅
2  

0.2525 

(0.0129,1.1271) 

0.2117 

(0.0065,0.7212) 

0.2097 

(0.0100,0.7190) 

AIC 

BIC 
DIC 

171.76 

204.89 
121.64 

170.29 

203.42 

115.19 

207.20 

240.34 

99.89 

 

 

Table 3, presents the results from CGD dataset fitted to the three models. As per the results, the 

factors treatment, age, and inherit significantly affect the hazard rate. While the hazard is lower 

for individuals under treatment and older in age, there is an increased hazard rate for individuals 

with Autosomal Recessive Inheritance. Additionally, Models I and II also indicate a significantly 

higher risk for the female patients and those not using corticosteroids. As there is a difference in 

the results of these models, it becomes important to look at the results of the model comparison. 

Both AIC and BIC indicate that Model II is the best model for the dataset, hence the two factors 

sex and steroids should also be considered as significant factors affecting survival times. 

 

 
Table 4. Parameter estimates (credible intervals) of RATS dataset under the generalized gamma shared 

frailty model 
 

Baseline 
Model I 

Gompertz 

Mode II 

LL 
Model III 

GE 

α 0.0529 4.018 6.536 

β1 

(Treatment) 

1.0220 

(0.3741,1.7337) 

1.0550 

(0.3240,1.6295) 

1.0950 

(0.3691,1.5710) 

𝜎𝐹𝑅
2  

0.5940 
(0.0774,2.1016) 

0.25320 
(0.02250,1.2438) 

0.4618 
(0.0200,0.7866) 

AIC 
BIC 

DIC 

498.57 
513.63 

487.50 

487.511 
502.56 

488.20 

487.16 

501.02 

482.63 
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As per the results reported in Table 4 for RATS dataset, the treatment given significantly 

increases the hazard rate thus implying an increased risk of tumors with the treatment. 

 

The best model as per AIC and BIC values for CI and RATS datasets (Tables 2 and 4) is the GE 

baseline while LL baseline is best for CGD dataset (Table 3). DIC values however, do not give us 

the same conclusions. Also, none of the AIC, BIC, or DIC values indicate whether one model is 

significantly better than the other. For this reason, Table 5 listing the values of (2logBF) for a pair 

of models is considered. The table lists only positive values as the reciprocal model is the 

negative of the value listed, that is, (2logBF01) = -(2logBF10). 

 

 

 

 
Table 5. 2logBF10 values for comparing M1/M0 

 

Dataset 
                     Numerator 

Denominator 
Gompertz LL GE 

C
I 

D
at

a Gompertz 

LL 
GE 

- 

6.62 
* 

* 

- 
* 

3.24 

9.87 

- 

C
G

D
 

D
at

a Gompertz 

LL 
GE 

- 

* 
65.33 

68.58 

- 

133.91 

* 

* 
- 

R
A

T
S

 

D
at

a Gompertz 

LL 
GE 

- 

3.46 
* 

* 

- 
* 

0.06 

3.52 

- 

 * Indicates a negative value for (2logBF10)  

 - Combinations where numerator and denominator model is same, model comparison invalid 
 

 
 

 

 

The values in Table 5 indicate that, for CI data, the GE and Gompertz baseline provides a 

significantly better fit than the LL baseline as the corresponding values are greater than 6 (6.62 

and 9.87). However, GE baseline is only slightly better than the Gompertz baseline as the 

corresponding value (3.24) falls between 2 to 6.  

 

For CGD dataset, all positive values are greater than 10 indicating a marked difference in the fit 

provided by the three baselines with LL being the best model with value of 68.58 when compared 

with Gompertz and 133.91 when compared with GE. GE provides the worst fit among the three 

with Gompertz being favourable among GE and Gompertz with a value of 65.33.  

 

For RATS dataset however, GE and Gompertz baselines provide a slightly better fit than LL 

baseline with corresponding values of 3.52 and 3.46. However, both GE and Gompertz provide a 

comparable fit (value falling between 0 and 2) with GE/Gompertz = 0.06. 

 

When the variance of the shared frailty term (𝜎𝐹𝑅
2 ) under gamma distribution (Table 1) is 

compared with the best models suggested under the generalized gamma distribution (Models in 

bold font in Tables 2-4), it appears that the variance tends to be underestimated under gamma 

frailty. The models under different frailty distributions can also be compared using similar 

methodology to lend credence to an improved variance estimation under the generalized gamma 
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distribution when using Bayesian methods, as has been performed earlier for the estimation under 

classical inference (Balakrishnan and Peng, 2006; Chen et al., 2013). Heterogeneity among the 

clusters indicates a source of variation in the hazard that has not been accounted for in the study. 

Since this can impact the results of the study, it is important for researchers to be able to diagnose 

the source of variation in order to have more meaningful results. 

 

6. Conclusions 
In this paper, the use of the Gompertz, log-logistic and generalized exponential distribution to 

model the baseline hazard under a generalized gamma shared frailty effect has been studied. 

Bayesian estimation is possible for all models and has been illustrated with three real life 

applications. Model comparison is performed using the Akaike Information Criteria, Bayesian 

Information Criteria, Deviance Information Criteria, and Bayes Factor and the best model is 

suggested for each dataset. The variance of the frailty term is also found to be underestimated 

when the shared frailty effect follows the gamma distribution. 
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