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Abstract 

This paper reflects the advantage of a new approach of using Hermite orthogonal basis elements to solve nonlinear 

differential equations. This method is based on a successive integration technique. To illustrate the method and to 

establish the efficiency of the method, it is applied to certain linear and nonlinear differential equations. The obtained 

numerical results show that the proposed method is a powerful numerical technique to solve nonlinear differential 

equations. 
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1. Introduction 
In recent years, when the nature of differential equations become more and more sophisticated, 

collocation methods are treated as powerful tools to solve such equations. Various collocation 

methods have been examined by a number of Russian researchers in the case of linear 

integro-differential and differential equations. Russell and Shampin (1972); Boor and Swartz 

(1973) studied collocation with piecewise polynomials for nonlinear boundary value problems in 

ordinary differential equations. Boor and Swartz (1973) found optimal global estimates and 

established super convergence at certain points. Ronto (1971) utilized collocation based on 

polynomials for a system of first-order linear differential equations. Many authors depend on the 

Chebyshev collocation method to solve linear differential equations (Sezer and Kaynak, 1996; 

Akyuz̈ and Sezer, 2003; Dolapci, 2004), integro-differential equations (Akyuz̈ and Sezer, 1999), 

nonlinear differential equations (Akyuz̈-Daşcıog̈lu and Çerdik-Yaslan, 2011), partial differential 

equations (Keşan, 2003). Tau-collocation method (Lanczos, 1938; Liu, 1988; Sam and Liu, 2004) 

is another collocation method used by many researchers. Rawashdeh (2006) has applied the 

collocation spline method to solve a type of semi-differential equations. Even though Bernstein 

polynomial bases are not orthogonal, they are also used widely to solve many differential and 

integro-differential equations of physical importance (Bhattacharya and Mandal, 2008; Yousefi 

and Behroozifar, 2010). In Gürbüz et al. (2014), authors have applied the Laguerre collocation 

method to solve Fredholm integro-differential equations. Conte and Paternoster (2009) introduces 

multistep collocation methods for the numerical integration of Volterra Integral Equations, which 

depend on the numerical solution in a fixed number of previous time steps. In Funaro (1992), 

author devoted the chapters on analysis of approximate solution techniques, known as spectral 

collocation methods, for differential equations based on classical orthogonal polynomials. 

 

Hermite polynomials are extensively used for numerical computation (Kalateh Bojdi et al., 2013; 

Brill, 2002; Dyksen and Lynch, 2000; Fazeli et al., 2012; Yalçinbaş et al., 2011). One of the 

advantages in using Hermite polynomials as a tool for functions expansion is that it gives a good 

representation of smooth functions provided that the function is infinitely differentiable (Andrews, 

https://dx.doi.org/
mailto:baishyachandrali@gmail.com
https://www.researchgate.net/profile/Burcu_Guerbuez?_sg=LAR3IBzpmaJMg45tc9M4NV1X4-rOT5G4RthUY4XihmLduKticb3ycZJ13SVG5wiafIRu4MY.YkWJCzx76vTm8xNjIklc5zG1vcaZpHSbW800Yd4uY92-G5fmiAXkZBfODlSBoZZ2jfOBP3kWsUZKS7oOCzKh9Q
https://www.sciencedirect.com/science/article/pii/S0016003211001128#!


International Journal of Mathematical, Engineering and Management Sciences                      

Vol. 4, No. 1, 182–190, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.1-016 

183 

1985; Dyksen and Lynch, 2000). 

 

In this paper, we have applied the Hermite collocation method with a new approach of successive 

integration. Here we assume the derivative term as a series of Hermite orthogonal polynomials and 

then by successive integrations obtain the expressions for various terms present in the differential 

equation again in terms of Hermite polynomials. On substitution of these terms in the given 

equation and then using suitable collocation points, we obtain a system of equations. 

 

2. Description of the Proposed Method 
In this section, we have discussed the preliminaries of Hermite polynomial and the details of the 

proposed method to solve linear and nonlinear differential equations. 

 

2.1 Hermite Polynomials 
Definition 2.1 Hermite polynomial of order n is denoted and defined by 

 

 Hn(x)= ∑
[
n

2
]

r=0

(-1)
r
n!

r!(n-2r)!
(2x)n-2r, 

where,  

 [n/2]= {

n

2
,  if  n  is  even

n-1

2
,  if  n  is  odd

. 

 

Definition 2.2  

Rodrigues formula: Using the generating function, we obtain the Rodrigues formula as,  

 

 Hn(x)=(-1)nex2 d
n

dxn
e-x2

. 

 
Definition 2.3  

Orthogonal Property 

 

 ∫
∞

-∞
e-x2

Hn(x)Hm(x)dx= {
0,          if  m≠n

√π  2
n
  n!,      if  m=n

. 

 

2.2 Hermite Collocation Method 
In this section, Hermite polynomial together with collocation method is used to solve the ordinary 

differential equation. Consider the general nth order ordinary differential equation is of the form 

 

y(n)(t)=f(t,y,y',y'',…y(n-1))                                                                  (1) 

 

With the initial conditions 

y(i)(t0)=αi,    i=0,1,2,3,...(n-1)                                                              (2) 

where αi ‘s are constants. 

 

Let us assume that, 

y(n)(t)≈BT  H(t)= ∑n
i=0 ciHi(t)                                                              (3) 
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where, 

BT=(c0,c1,…..cn) 
 

H(t)=(H0(t),……Hn(t)). 
 

Now, Hermite polynomial coefficients to be determined. Integrating Eq (3) with respect to t from 

t0  to  t, n times yields. 

 

𝑦(𝑛−1)(𝑡) = 𝑦(𝑡0) + ∫
𝑡

𝑡0
𝐵𝑇  𝐻(𝑡)  𝑑𝑡

𝑦(𝑛−2)(𝑡) = 𝑦(𝑡0) + 𝑦′(𝑡0) + ∫
𝑡

𝑡0
∫

𝑡

𝑡0
𝐵𝑇  𝐻(𝑡)  𝑑𝑡

⋮

𝑦′(𝑡) = ∑𝑛−1
𝑖=0 𝑦(𝑖)(𝑡0) + ∫

𝑡

𝑡0
∫

𝑡

𝑡0
. . . ∫

𝑡

𝑡0
𝐵𝑇  𝐻(𝑡)  𝑑𝑡

𝑦(𝑡) = ∑𝑛
𝑖=0 𝑦(𝑖)(𝑡0) + ∫

𝑡

𝑡0
∫

𝑡

𝑡0
. . . ∫

𝑡

𝑡0
𝐵𝑇  𝐻(𝑡)  𝑑𝑡

                           (4) 

 

Substituting Eqn. (4) in Eqn. (1) and collocating at the collocation points ti=
i

n
, where i=0,1,,n and n 

is any positive integer, we obtain a system of linear or nonlinear equations depending on the 

linearity or nonlinearity of the given equation 1. Solving this system of equations we obtain the 

Hermite polynomial coefficients BT which yields the solution. 

 

3.Numerical Experiments 
Example 3.1 Consider the first order nonlinear ordinary differential equation 

y'=-y2                                                                                        (5) 

With initial condition y(0)=1. 

The exact solution is y(t)=
1

1+t
. 

 
Solution Let us assume the solution in the form, 

                      y'(t)= ∑

4

i=o

ciHi(t) 

 

This yields  

 

y'(t)=c0+c12t+c2(4t2-2)+c3(8t3-12t)+c4(16t4-48t2+12)                                  (6) 

 

Where ci,    i=0,1,...4 , are Hermite polynomials coefficients to be determined. Applying the 

above-described procedure we obtain:  

 

y(t)=c4 (
16t5

5
-16t3+12t) +c3(2t4-6t2)+c2 (

4t3

3
-2t) +c1t2+c0t+1                             (7) 

 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                      

Vol. 4, No. 1, 182–190, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.1-016 

185 

Substituting Eqn. (6) and Eqn. (7) in Eqn. (5), we get 

 

c4(16t4-48t2+12)+c3(8t3-12t)+c2(4t2-2)+c12t+c0

+ (c4 (
16t5

5
-16t3+12t) +c3(2t4-6t2)+c2 (

4t3

3
-2t) +c1t2+c0t+1) =0

                     (8) 

 

Collocating the obtained equation Eq (8) using following collocation points t0=0, t1=
1

4
,  

t2=
2

4
,t3=

3

4
  and  t4=1, we get  

 

 12c4-2c2+c0+1=0, 
 

(
881c4

320
-

47c3

128
-

23c2

48
+

c1

16
+

c0

4
+1)

2

+
145c4

16
-

23c3

8
-

7c2

4
+

c1

2
+c0=0, 

 

(
41c4

10
-

11c3

8
-

5c2

6
+

c1

4
+

c0

2
+1)

2
+c4-5c3-c2+c1+c0=0, 

 

(
963c4

320
-

351c3

128
-

15c2

16
+

9c1

16
+

3c0

4
+1)

2
-

159c4

16
-

45c3

8
+

c2

4
+

3c1

2
+c0=0, 

 

-20c4+ (-
4c4

5
-4c3-

2c2

3
+c1+c0+1)

2

-4c3+2c2+2c1+c0=0. 

 

Solving these we obtained the Hermite polynomial coefficients as c4=-0.034805220783117 , 

c3=0.2215300759198,       c2=-1.019318388919264,               c1=2.299777282850779  and 

c0=-2.620974076983504. Substituting these we obtain the solution of Eqn.(5) as  

 

y(t)=1- 0.03480 (
16t5

5
-16t3+12t) + 0.22153(2t4-6t2)-1.019318 (

4t3

3
- 2t) 

          + 2.29977728t2- 2.62097t. 
 

Comparison between numerical and exact solutions are shown in Table 1. 

 

 

 

 
Table 1. Numerical comparison of the exact solution and the solution obtained by the present method 

 

t Numerical solution Exact solution 

2 0.833379477 0.8333333333 

0.4 0.714256065 0.714285714 

0.6 0.625097978 0.625000000 

0.8 0.555533211 0.555555555 

1.0 0.500072671 0.500000000 
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Example 3.2 Consider the third order linear ordinary differential equation 

 

y(3)+3y''+3y'+y=0                                                                   (9) 

With initial conditions y(0)=7,    y'(0)=-7  and  y''(0)=11 

The exact solution is y(t)=7e-t+2t2e-t 
 
Solution Let us assume the approximate solution in terms of Hermite polynomial as 

 

y'''(t)= ∑3
i=0 ciHi(t)                                                                           (10) 

 

This gives  

 

y'''(t)=c0+c12t+c2(4t2-2)+c3(8t3-12t)                                                     (11) 

 

Substituting (11) and the expressions obtained after successive integration, in (9) we get 

 

3 (c3(2t4-6t2)+c2 (
4t3

3
-2t) +c1t2+c0t+11) +

c1t4

12
+c3(8t3-12t)+c3 (

t6

15
-
t4

2
) +c2 (

t5

15
-
t3

3
) 

+3 (c3 (
2t5

5
-2t3) +c2 (

t4

3
-t2) +

c1t3

3
+

c0t2

2
+11t-7) +

c0t3

6
+c2(4t2-2)+

11t2

2
+2c1t-7t+c0+7=0. 

 
Now collocate the above equation using following collocation points 

t0=0,t1=
1

3
,  t2=

2

3
,t3=1, then we get  

 

-2c2+c0+19=0, 

 

-
1

43740
(256010c3+163608c2-45405c1-95040c0-1236870)=0, 

 

-
1

4370
(256010c3+163608c2-45405c1-95040c0-1236870)=0, 

 

-
1

4370
(256010c3+163608c2-45405c1-95040c0-1236870)=0. 

 

Solving this system of equations, we get Hermite polynomial coefficients as c0=-29.441666, 

c1=19.78715, c2=-5.220833 and c3=0.7473913. These in tern yield the solution of (9) as 

 

y(t)=0.7473913 (
t6

15
-
t4

2
) -5.220833 (

t5

15
-
t3

3
) +1.648929166666667t4 

           -4.906944333333334t3+
11t2

2
-7t+7. 

 

Table 2 gives a comparison of solution obtained by present method and exact solution. 
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Table 2. Numerical comparison of the exact solution and the present method 
 

t Numerical solution Exact solution 

0.2 5.79659885 5.796613731 

0.4 4.906619309 4.906742736 

0.6 4.236530149 4.236825830 

0.8 3.720013081 3.720443822 

1.0 3.3103374081 3.3109149711 

 

 

Example 3.3 Lotka–Volterra equations, also known as predator-prey equations, are a pair of 

first-order nonlinear differential equations, frequently used to describe the dynamics of biological 

systems in which two species interact, one as a predator and the other as prey. The populations 

change through time according to the pair of equations 

 
𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦; 

𝑑𝑦

𝑑𝑡
= −𝛾𝑥 + 𝛿𝑥𝑦                                                   (12) 

 

with initial condition x(0)=x0 , y(0)=y
0

, where x  is the prey population, y is the predator 

population, α is the natural growth rate of prey in the predation absence, β is the predator’s effect 

on the prey-population, γ is the natural predator’s death rate in the absence of prey to eat and δ is 

The prey’s effect on the predator-population.  

 

Solution  Let us assume that solution in terms of Hermite polynomial as, 

 

x'(t)= ∑5
i=0 ciHi(t)                                                                           (13) 

 

y'(t)= ∑5
i=0 biHi(t)                                                                           (14) 

 

On integration it gives  

x(t)=
16c5t6

3
+

16c4t5

5
+2c3t4-40c5t4+

4c2t3

3
-16c4t3+c1t2-6c3t2+60c5t2+c0t-2c2t+12           (15) 

 

y(t)=
16b5t6

3
+

16b4t5

5
+2b3t4-40b5t4+

4b2t3

3
-16b4t3+b1t2-6b3t2+60b5t2+b0t-2b2t+12b4t+9   (16) 

 

Substituting (13) to (16) in (12) and using the collocation points ti=
i

4
,    i=0(1)4, we obtain a 

system of eight equations. For numerical results we consider initial condition as x(0)=4,y(0)=9 

and the values of the parameters α=0.1 , β=0.0014 , γ=0.08 , δ=0.0012 .This yields the 

acceptable values as follows: 

 

c0=0.350441;c1=0.0172145;  c2=0.000420786;  c3=6.996557110825257×10
-6

;

c4=8.514562757418547×10
-8

; c5=8.859331033843632×10
-10

; 

b0=-0.677878;  b1=0.0273787; b2=-0.000539367; 

b3=07.206093098874797×10
-6

 ;  b4=-7.019638609809134×10
-8

; b5=0. 
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A comparative analysis of the results obtained by exact solution, the proposed method and Laplace 

Adomian Decomposition method(LADM) (Paul et al., 2016) is given Table 3. 

 

 
 

Table 3. Numerical comparison of exact solution and present method when 

x(0)=4,y(4)=9,α=0.1,β=0.0014,γ=0.08 and δ=0.0012 
 

 Exact Hermite LADM 

t x(t) y(t) x(t) y(t) x(t) y(t) 

1.  4.36734648 8.34983166 4.36734648 8.34983164 4.36423471 8.34470435 

2.  
4.77260007 7.75022106 4.77260006 7.75022109 4.76588351 7.74074456 

3.  5.21966481 7.19734593 5.21966476 7.19734530 5.20875110 7.18416528 

4.  5.71285281 6.6876798 5.71285233 6.68767319 5.69703097 6.67132682 

5.  6.25692620 6.2179702 6.25692347 6.21793873 6.23534323 6.19887998 

6.  6.85714350 5.78521821 6.85713245 5.78511393 6.82877602 5.76374307 

7.  7.51931075 5.38665958 7.51927506 5.38638194 7.48293069 5.36308097 

8.  8.24983784 5.01974814 8.24974008 5.01911007 8.20397089 4.99428600 

9.  9.05580068 4.68213978 9.05556406 4.68082281 8.99867598 4.65496056 

10.  9.94500969 4.37167823 9.94448951 4.36917493 9.87449896 4.34290125 

11.  10.92608546 4.08638201 10.92502657 4.08192446 10.83962917 4.05608454 

12.  12.00854112 3.82443260 12.00651797 3.81690581 11.90305989 3.79265371 

13.  13.20287427 3.58416389 13.19920745 3.57200274 13.07466132 3.55090713 

14.  14.52066904 3.36405263 14.51431162 3.34512145 14.36525868 3.32928773 

15.  15.97470369 3.16271017 15.96409515 3.13416361 15.78671596 3.12637363 

 

 

 

 
 

3. Conclusion 
This paper introduces a different approach to solving nonlinear differential equations using 

Hermite orthogonal basis elements. It is observed that this numerical technique has a high accuracy 

rate while compared with the exact solution or solutions obtained by other methods. In Example 3.3 

it is seen that the present method gives a better approximation for a system of nonlinear differential 

equations compared to LADM. In the future, there is a scope of using the method for solving 

fractional differential equations. 
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