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Abstract 

In this study, a sliding window system is revisited and evaluated interval-valued reliability in case of upper and lower 

form with the help of universal generating function technique and using an algorithm, how to compute the reliability of 

sliding window system. Computation of probability by interval-valued is most uses but universal generating function 

method given improved results within it. An example is also taken at the end to demonstrate the system. 
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1. Introduction 
Reliability is of utmost importance in human life and plays a key role in engineering systems. In 

recent years, engineers and mathematicians of several countries have investigated new research in 

reliability theory. The reliability theory became a focal point as far as studies of systems are 

concerned because of automations complexity and sensitivity of modern day engineering systems. 

Ushakov (1986, 1994) discussed reliability engineering that plays a key role in real life. The 

author reviewed and discussed the system reliability and applied it in engineering systems also 

introduced some basic techniques which are applicable in cutting-edge results, covers 

probabilistic reliability and statistical reliability etc., presented various techniques & applications 

of reliability theory in real life systems. Levitin (2001) considered a redundancy optimization 

system for a multi-state system, which has a fixed amount of resource for its work performance 

and resource generator from the subsystem. The suggested algorithm evaluated the optimal 

system structure and system availability. The system productivity, availability and cost were 

evaluated from performance based on each element. The main goal of the study was to minimize 

the cost investment, total demand and to present the demand curve on the basis of system 

probability. Genetic algorithm was used to solve the problem based on universal generating 

function (UGF), to compute the system availability, optimal structure function while working 

element of the subsystem had a maximum performance rate under given demand distribution. 

Levitin (2002) proposed a linear multi-state sliding window system, which generalized the multi-

state consecutive k-out-of-r-from-n:F system. The considered system consists of n linearly 

ordered multi-state elements. Each element could have two states: total failure or completely 

working. In that work, the author discussed that system fails if the total sum of the r consecutive 

elements performance rate is lower than total allocated weight. Also evaluated various 

characteristics of the linear multi-state sliding window system with the suggested algorithm to 
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find the order of elements and maximum system reliability. Levitin (2003a) introduced a two 

state linear multi-state sliding window system, which consists of n linearly ordered multi-state 

elements. The system performance rate was based on given performance weight. The system fails 

if the quantity of the performance rates is less than total demand. The author presented an 

algorithm for calculating the reliability of a sliding window system (SWS) to the common supply 

failures (CSF) and common supply groups (CSG). In that system it also described a method for 

comparing optimal element distributions of the CSG system reliability. The proposed study 

computed optimization result with the help of UGF technique and Genetic algorithm. Levitin 

(2003b) proposed multi-state a system that generalized the consecutive k-out-of-r-from-n:F 

system. The considered linear multi-state sliding window system consisted of n ordered multi-

state elements and each element could have two states. In this study author evaluated the system 

reliability, mean time to failure (MTTF) and cost of the proposed system using extended 

universal moment generating function. Levitin (2005) reviewed and studied that the binary 

system can have two possible states either working or failed but the multi-state system (MSS) has 

various working (performance states) and many failure modes. The author discussed the binary 

and multi-state system reliability estimation, optimization and stated the applications in various 

engineering fields on the basis of the UGF technique.  

 

Utkin and Kozine (2005) considered a non-repairable system and obtained interval-valued 

reliability and its factors. Gennat and Tibken (2008) analysed the sensitivity of the proposed model 

using interval arithmetic and computed inner and outer approximation for the desired set of possible 

measures. Ram and Singh (2010) studied a complex system to characterize system reliability in 

terms of probability, MTTF, and expected cost. They defined two types of repair, general, and 

exponential. The proposed system studied incorporating “preemptive‐repeat repair discipline” and 

applying Gumbel‐Hougaard family copula, supplementary variable technique and Laplace 

transformation to evaluate the transition state probabilities and MTTF. Li et al. (2011) considered 

an MSS and computed the interval-valued reliability, state probabilities of multi-state elements 

and the precise values of the state performance. They proposed method to determine the 

reliability of MSS when the available data of elements is insufficient. Authors analyzed the 

interval-valued state probabilities of elements based on the Bayesian approach and the imprecise 

Dirichlet model. An UGF algorithm is proposed for obtaining the interval-valued reliability of 

MSS. Destercke and Sallak (2013) evaluated reliability of MSS with epistemic uncertainties 

using UGF technique. They discussed various solutions and techniques to compute MSS 

reliability measures. In this work, the authors provided extension of the UGF method 

incorporating epistemic uncertainties. They compared the extension with UGF technique on the 

basis of interval arithmetic operations performed on interval-valued probabilities. Guo et al. 

(2013) described a new method to determine the system reliability of a machine element when 

data of the probability density functions of stress and strength are available. Researchers 

introduced UGF and discussed the discrete interval-value for random variable. From two discrete 

interval-valued random variables, they computed the experimental data of stress and strength. For 

computing the upper and lower bounds of reliability the considered stress-strength interference 

system have been computed using UGF and probability density functions. Ram (2013) studied a 

survey on system reliability approaches. In the recent year reliability theory becomes the most 

searching and testing theory. Researchers have proposed various theories and methods of 

reliability evaluation such as; Bayes approach, coherent systems approach, copula approach, 

coverage factor approach, designed experiments, distributed system, genetic algorithm, nano and 

network system approach, etc. in various fields of engineering and physical sciences. Chachi and 

Hesamian (2015) presented various methods in reliability theory assuming that all measures of 
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lifetime density function are definite. They observed that many time measures cannot predict 

errors in a machine during an experiment and one’s judgment in unexpected situations. Authors 

also discussed interval-valued measures using random variable for coherent system and computed 

the system reliability. Their study also included an idea of cumulative distribution function and 

probability density function of the random variable on the basis of interval-valued. Wang et al. 

(2016) presented interval analysis for cold-standby system and evaluated reliability optimization 

under parameter uncertainty. They discussed properties of statistical parameters to compute 

probabilistic properties and used interval value to denote the system optimization problems. 

Kumar et al. (2016) evaluated the interval-valued reliability of the proposed system 2-out-4 

system based on state performance of elements and using universal generating function 

technique. Xu et al. (2016) studied a dynamic diagnosis method based on interval-valued 

algorithm and computed reliability and sensitivity indices of proposed updating strategy. Kozine 

and Krymsky (2017) computed interval-valued reliability of the considered system and used 

optimal central theory and also solved non-linear optimization problems. 

 

In the above discussion, in previous years many researchers computed the reliability and others 

measures of SWS using UGF techniques and many more. In this paper, the interval-valued 

reliability of SWS in upper and lower form of the element and with the help of algorithms and 

obtain the reliability of the proposed system have been evaluated. 

 

 

 

Nomenclature 
R= Reliability of the system. 

F= Unreliability of the system. 

c, d and t= intervals numbers. 

iU = universal generating function of element i. 

iG =interval continuous sequence of state performance of i element. 

ik = state performance of i element. 

ip = state performance probability of element i. 

p =upper probability of system. 

p =lower probability of system. 

f = operator function. 

j= multi-state elements. 

r= consecutive element of the system.   

 

 

 

2. Definitions 

2.1 Sliding Window System 
The SWS is a kind of consecutive k-out-of-r-from-n system, consisting of n ordered units and the 

system fails if at least k out of each r consecutive units fail. Each unit can have two states namely 

completely working or totally failed.  
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2.2 Interval-Valued Based on Universal Generating Function 
The interval-valued of state performance can be defined as Pan et al. (2016) 
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The universal generating function U of interval-valued given as 
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3. Some Basic Operations of Interval Arithmetic 

Jaulin et al. (2001) discussed an interval number such as    ccc , , where  cc   and 0c . 

Suppose c, d and t be the interval number and operations are used as    ccc , and    ddd ,

)0,0(  dc
 
given as 

 

(i)      dcdcdc  , . 

(ii)     ,c d c d c d      . 

(iii)    . ,c d cd cd 
   

        max , max , , max ,c d c d c d 
 

 

        min , min , , min ,c d c d c d 
 

. 

(iv) Distributed law for ( 0, 0, and 0)c d t    

            c d t c d c t   . 

 

 

 

4. Algorithm for Obtain the Reliability of SWS (Levitin, 2005) 

Step (i) Compute the u-function of the element, allocate   00,

10,
g

rF U z z  . 

Step (ii) Restate the value for 1,2,...,j k . 

Step (iii) Obtain      1j r j r jU z U z U z   . 

Step (iv) Remove failure terms of the condition rj   and sum the values   1f j rU z    to F. 

Step (v) Evaluate the reliability of SWS such as 1R F  . 
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5. Illustration  
Consider SWS with n=4, r=2 and W=3 as shown in Figure 1. and each element of the system 

have of two states: working or failed. Let us suppose state performance of the element from 1 to 4 

are 1,2,3,4, respectively. 

 

 

 
 

Figure 1. Block diagram of SWS with n=4, r=2 and w=3 

 

 

 

Now, the u-function of the SWS is     01i

ij ij ijU z p z p z   ; where, i= j=1,2,3,4, here ijP  is 

the probability and 
iz  is the performance rate and 

0z  non- performance rate. 

 

Now, the u-functions of the SWS in form of individual elements  4,3,2,1i  are defined 

    0
11

1
111 1 zpzpzU  , 

    0
21

2
212 1 zpzpzU  , 

    0
31

3
313 1 zpzpzU  , 

    0
41

4
414 1 zpzpzU  . 

 

 

Now by the definition of interval-valued given as 

      01
1111

1
111111 zzqqzppzU  , 

      01
2121

2
212112 zzqqzppzU  , 

      01
3131

3
313113 zzqqzppzU  , 

      01
4141

4
414114 zzqqzppzU  . 

 

From algorithm of SWS, one obtain an initial element of the u-function are given as 

For j=1 

 

0 1 1( ) ( ( ), ( ))U z U z U z   

  ),()( 01
1111

1
1111

)0,0(,0
0 zzqqzppzzU   

                  0,001
1111

1,00
1111 zzqqzpp  . 
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For j=2 

1 0 2( ) ( ( ), ( ))U z U z U z
 

              
       0, 0,1 0, 0,0 2 0

11 11 11 11 21 11 21 21(( ) ( ) )p p z q q z p p z q q z   
 

              
     0, 1,2 0, 1,0

11 21 11 21 11 21 11 21( )p p p p z p q p q z   

                      0,(0,2) 0,(0,0)

21 11 21 11 11 21 11 21( ) )p q p q z q q q q z                                                         (1) 

 

Here, according to the algorithm 4 step (iv) of condition wj  , unreliability F  and  zU1  
can 

be written as 

   211121111121112121112111 )( qqqqqpqpqpqpF                                                                  (2) 

and 

   2,1,0
211121111 )( zppppzU  . 

 

For j=3 

))(),(()( 312 zUzUzU 
 

            
  ))()()(( 0

3131

3

3131

2,1,0

21112111 zqqzppzpppp 
 

            
   1, 2,3 1, 2,0

11 21 31 11 21 31 11 21 31 11 21 31( ) ( )p p p p p p z p p q p p q z                                                (3) 

 

Now using the equations (2) and (3) and combining the failure terms are given as

)( 312111312111 qppqppF  . 

 

For j=4 

    zUzUzU 423 ,)( 
 

           
  ))()(()( 0

4141
4

4141
3,2,1

312111312111 zqqzppzpppppp 
 

           
   0,3,2

4131211141312111
4,3,2

4131211141312111 )()( zqpppqpppzpppppppp                  (4) 

 

and 

   211121111121112121112111 )( qqqqqpqpqpqpF  )( 312111312111 qppqpp
. 

 

Hence, from equations (4), reliability R of the system expressed as 

)()( 41312111413121114131211141312111 qpppqpppppppppppR                                              (5) 

 

 

Now taking internal valued and we get, 

11 21 3111 21 31
0.97, 0.978, 0.957, 0.962, 0.948, 0.958,p p p p p p     

41
0.92,p 

41 4141
0.935, 0.08, 0.06p q q   . 
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Hence putting all these values in equation (5), we get the reliability of the SWS as

 8968.0,88.0R . 

 

 

6. Conclusion 
Evaluation of the interval-valued reliability of any systems has many methods or techniques such 

as supplementary, fuzzy and Markov chain techniques etc. UGF technique gives improve results 

in case of interval-valued. The present work obtains interval-valued reliability in lower and upper 

case using UGF technique and the computed reliability of the proposed system is

 8968.0,88.0R . 
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