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Abstract 

This paper considers a conventional linear programming model of ‘𝑛’ variables and ‘𝑚’ constraints. In the proposed 

method, we deal with 𝑛1 number of variables, where 𝑛1 ≤ 𝑛 and use a strategic move to reduce the feasible convex 

search space before embarking on the simplex method. The feasible space reduction process can be repeated, if desired. 

 

Key words: Linear programming model, Simplex method, Feasible space reduction, Reduced number of variables. 

 

 

1. Introduction 
Many solution procedures have been developed for linear programming (LP) models. For 

example, see Dantzig (1963), Khachiyan (1980), Karmarkar (1984), and many variants of these 

approaches have been discussed in Forrest and Goldfrab (1992), Gay et al. (1998), Roos et al. 

(2006), Munapo and Kumar (2013), Small (1983), Vanderbei (2001, 2008), Zadeh (2009). Many 

other approaches have been suggested by Wright (1997, 1998), Ye (2011) and Zoutendijk (1960). 

Munapo and Kumar (2013) considered a LP model with non-negative coefficients, and developed 
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an iterative procedure to solve a large-scale LP model by transforming the given ‘𝑛’ variable LP 

to a ‘2’ variable LP. Computational experiments indicated that their approach performed better 

with regard to a large number of randomly generated large-scale LP problems. Later Munapo et 

al. (2014) reconsidered the same model and developed an iterative hybrid approach that uses the 

conventional simplex iterations to generate at least three consecutive extreme points improving 

the value of the objective function. These three extreme points were used to generate an interior 

point from which one moves in the direction of the normal to the given objective function hyper-

plane. The search is concluded when an optimal solution has been identified by the usual simplex 

optimality conditions. 

 

In these two papers, Munapo and Kumar (2013) and Munapo et al. (2014), the large-scale LP has 

been assumed to have non-negative coefficients and a challenge has existed to extend these ideas 

to a general LP model without non-negative restrictions on coefficients. This paper aims to 

address this challenge. 

 

The paper has been organized in 5 sections. Some essential ideas needed for developing the 

proposed approach have been discussed in Section 2, and the method has been presented in 

Section 3. Three numerical illustrations have been presented in Section 4, and finally the paper 

has been concluded in Section 5. 

 

2. The LP Model and a Brief Review of Earlier Considerations  

2.1 The LP Model 
In this paper, we consider a conventional LP model given as (1): 

 

Maximize  Z = 𝐶𝑋 

Subject to:  𝐴𝑋 ≤ 𝐵 

where  

𝐴 =  [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] , 𝐵 = [
𝑏1

⋮
𝑏𝑚

] , 𝐶 = [𝑐1 … 𝑐𝑛], 𝑋 = [

𝑥1

⋮
𝑥𝑛

] 

𝑥𝑗 ≥ 0 for all 𝑗                                                                                                                                (1) 

 

2.2 A Brief Review of Approaches Dealing with a LP Model with Non-Negative 

Coefficients  
The restricted LP model considered in Munapo and Kumar (2013) and Munapo et al. (2014) is 

given as (2): 

 

Maximize  Z = 𝐶𝑋 

Subject to:  𝐴𝑋 ≤ 𝐵 

where  

𝐴 =  [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] , 𝐵 = [
𝑏1

⋮
𝑏𝑚

] , 𝐶 = [𝑐1 … 𝑐𝑛], 𝑋 = [

𝑥1

⋮
𝑥𝑛

] 

𝑎𝑖𝑗 ≥ 0 for all (𝑖, 𝑗), 𝑖 = 1,2,… ,𝑚 and 𝑗 = 1,2,… , 𝑛; 

𝑏𝑖 ≥ 0 for all 𝑖, 𝑐𝑗 ≥ 0 and 𝑥𝑗 ≥ 0 for all 𝑗                                                                                   (2) 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                          

Vol. 2, No. 4, 213–230, 2017 

https://dx.doi.org/10.33889/IJMEMS.2017.2.4-017 

215 

Note the difference between the LP models (1) and (2); in model (2), all coefficients are non-

negative. We briefly review strategies and limitations with regard to LP model (2) and develop 

new strategies to solve the LP model (1), which is free from non-negative restrictions on the 

coefficients. 

 

Munapo and Kumar (2013) solved the LP model (2) by transforming the ‘𝑛 -dimensional’ 

problem to a ‘2-dimensional’ problem, with a meaningful interpretation of the solution of the 

transformed 2-dimensional problem in the context of the given ‘𝑛 -dimensional’ problem. They 

defined two unknowns and found their optimal values by solving the 2-dimensional LP problem. 

These two values moved a starting search point 𝑃𝑖 on the surface of a constraint to an improved 

point  𝑃𝑖+1, which is also on the surface of another constraint. The purpose of moving from the 

point 𝑃𝑖 to 𝑃𝑖+1was to improve the value of the objective function as much as possible. Thus, the 

value of the objective function at the point 𝑃𝑖+1 is greater than the value of the objective function 

at the point 𝑃𝑖. However, if optimality conditions are not satisfied at the point 𝑃𝑖+1, then this point 

𝑃𝑖+1 takes the role of the point 𝑃𝑖 and the search for a new improved point  𝑃𝑖+1 starts again. This 

was an iterative process, details of which are given in Munapo and Kumar (2013). One of the 

directions among the two was moving in the direction of the normal of the objective hyper-plane. 

In this paper, we once again make use this direction. 

 

Later, Munapo et al. (2014) developed a hybrid strategy to solve the LP model (2). They 

proposed that from an interior feasible point IP0, one moves in the direction of the normal to the 

objective function as far as possible within the feasible region. Let this new position be denoted 

IP1, which will either be an extreme point of the feasible region, or alternatively it may be a 

boundary point of the convex region of the LP structure defined by (2).  Since the location of the 

new point is known, one can easily find the value of the objective function at that point. Let us 

denote the corresponding value of the objection function at this point by 𝑍𝐼𝑃1.  
If IP1 is not an 

optimal solution, an additional condition:  

 

𝑍 = ∑ 𝑐𝑗𝑥𝑗 ≥ 𝑍𝐼𝑃1

𝑗=𝑛
𝑗=1                                                                                                                     (3) 

 

is added to the LP model (2), which reduces the feasible region. Once again, it is an iterative 

process. Details are given in Munapo et al. (2014).  

 

In this paper, we propose to use this reduction in the feasible convex space and also eliminate 

requirement of non-negative conditions on various coefficients in a given LP model (Munapo and 

Kumar, 2013). 

 

2.3 Difficulties and Limitations 
(1) In the above two papers, it was assumed that all the coefficients of the given LP model were 

non-negative. However, in many real-life applications of the LP models, this condition may not 

be satisfied. Therefore, a need exists to develop a method for the general LP model. 

 

(2) The transformation from ‘𝑛 -variable’ to a ‘2-variable’ approach has a tendency to converge 

to the optimal solution. The convergence can be slow, but an approximate solution is very quick. 

Thus, the transformation approach has an advantage, not to be seen in any other LP approach, 

which can identify a quick approximate solution to the LP. 
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(3) The interior point in the hybrid approach Munapo et al. (2014) was generated by using three 

consecutive extreme points obtained by the simplex method. This interior point will be confined 

in the convex space generated by those three extreme points.  Since the simplex search moves 

along the boundary of the convex feasible space generated by the LP constraints, the convex 

space formed by three extreme points will be such that two of its boundaries will be along the 

boundary of the feasible convex space. If we call these three consecutive extreme points as points 

1, 2 and 3, the plane joining points 1 and 3 will be through the feasible regions of the given LP 

model (2). Thus, the move in the direction of the normal to the objective function will increase 

the value in the objective function only if the normal direction remains in the feasible region of 

the LP model (2) and passes through the plane joining the points 1 and 3. Hence a better strategy 

is required. 

 

This paper overcomes all these limitations and considers a general LP model without any non-

negative restriction on various coefficients. Details of the proposed approach are discussed in 

Section 3. 

 

3. Development of the Method for a Conventional LP Model (1) 
Let the number of variables and the number of constraints in the LP model (1) be denoted by ‘𝑛’ 

and ‘𝑚’ respectively. Without any loss of generality, let us consider 𝑛1 of the 𝑛 variables (𝑛1 <
𝑛) to have positive coefficients in the objective function, and the remaining (𝑛 − 𝑛1) coefficients 

in the objective function to have negative values. We further assume, for ease of presentation, that 

the positive coefficients are associated with the first 𝑛1 variables and that the negative 

coefficients are associated with the remaining variables (𝑛1 + 1, 𝑛1 + 2,… , 𝑛). Furthermore, it is 

assumed that the variables (𝑛1 + 1, 𝑛1 + 2, …, 𝑛2) are such that one of the elements 𝑎𝑖𝑗 <

0  for at least one 𝑖, 𝑖 = 1, 2, … ,𝑚 in the corresponding constraint columns 𝐴𝑗. The columns 𝐴𝑗 

for the variables (𝑛2 + 1, 𝑛2 + 2 , …, 𝑛) are such that 𝑎𝑖𝑗 ≥ 0 for all 𝑖.  Thus, without any loss of 

generality, the LP model (1), can be expressed as given by (4). 

 

Maximize  Z = ∑ 𝑐𝑗𝑥𝑗
𝑛1
𝑗=1 − ∑ 𝑐𝑗𝑥𝑗

𝑛2
𝑛1+1 − ∑ 𝑐𝑗𝑥𝑗

𝑛
𝑛2+1  

Subject to:  ∑ 𝐴𝑗𝑥𝑗
𝑛1
𝑗=1 + (∑ 𝐴𝑗

𝑛2
𝑗=𝑛1+1 𝑥𝑗) + (∑ 𝐴𝑗𝑥𝑗

𝑛
𝑛2+1 ) ≤ 𝐵 

where  

𝐴 =  [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] = [𝐴1 𝐴2 … 𝐴𝑛], 𝐵 = [
𝑏1

⋮
𝑏𝑚

],  

𝐶 = [𝑐1 … 𝑐𝑛1, …𝑐𝑛2+1
…𝑐𝑛],                              𝑋 = [

𝑥1

⋮
𝑥𝑛

] 

𝑥𝑗 ≥ 0 for all 𝑗, 𝑐𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑛1, 𝑐𝑗 ≤ 0 for 𝑗 = 𝑛1 + 1,… , 𝑛2, 𝑛2 + 1, …, 𝑛. 

𝐴𝑗 ≥ 0 for 𝑗 =  𝑛2, 𝑛2 + 1, …, 𝑛.                                                                                                    (4) 

 

From (4), a sub-problem is developed as given by (5). 

Maximize  Z = ∑ 𝑐𝑗𝑥𝑗
𝑛1
𝑗=1  

Subject to:  𝐴𝑛1
𝑋𝑛1

≤ 𝐵, ∑ 𝑐𝑗
𝑛1
𝑗=1 𝑥𝑗 ≥ 0 
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where  

𝐴𝑛1
= [

𝑎11 ⋯ 𝑎1𝑛1

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛1

] , 𝐵 = [
𝑏1

⋮
𝑏𝑚

] , 𝐶 = [𝑐1 … 𝑐𝑛1], 𝑋𝑛1
= [

𝑥1

⋮
𝑥𝑛1

] 

𝑥𝑗 ≥ 0 for  𝑗 = 1, 2, … , 𝑛1.                                                                                                             (5) 

 

Note that in the sub-problem (5), all objective function coefficients are non-negative; hence the 

non-negative requirement with respect to objective coefficients is satisfied for the model (5). A 

move in the direction of the normal to the objective function of model (5) will be confined to the 

positive quadrant in the 𝑛1-dimensional space.  Also note that when we deal with model (5) 

instead of model (1), we are dealing with less number of variables. 

 

Let us use the symbol CR to denote the convex region defined by the linear constraints of the LP 

model (2). In the hybrid approach, one finds the interior point by averaging three successive 

extreme points obtained by the usual simplex iterations.  These three extreme points will also 

form a convex region. Let CR1 be the first convex region obtained from the first set of three 

extreme points.  It may also be noted that subsequent extreme points will be based on other three 

extreme points, therefore, in a similar way, denote these subsequent convex regions by 𝐶𝑅𝑖 , 𝑖 =1, 

2, … All these convex regions may not have any relationship among them, but they all share a 

common relationship with the CR, that is, each 𝐶𝑅𝑖 is a sub-space of 𝐶𝑅. The direction of the 

normal, which is a function of the given coefficients of the objective function, will increase the 

value of the objective function only if it can cross through the hyper-plane that shares the 

boundary with the feasible region on either side. This is possible by searching at least three 

extreme points, which are all adjacent to the current extreme point in different directions. 

 

Thus, instead of finding three consecutive extreme points by the usual simplex iterations from the 

current location, we find ‘r’ number of extreme points from the same location, where 𝑟 ≥ 3. Note 

that these extreme points from the same location in ‘r’ random directions can be obtained in much 

less computational effort. Also the normal will be facing the boundary which is feasible on either 

side. 

 

3.1 A Few Observations with Regard to the Sub-Problem (5) 
Observation 1: Since the coefficients 𝑐𝑗 in problem (5) are non-negative, the normal direction to 

the hyper-plane representing the objective function of the sub-problem (5) will be confined to the 

positive quadrant in the 𝑛1-dimensional space defined by (5).  It is a similar situation that existed 

in earlier papers Munapo and Kumar (2013) and Munapo et al. (2014). 

 

Observation 2: Consider that a feasible extreme point of the convex region defined by the 

given LP (5) is a known extreme point. If that point is not optimal, the non-optimality may be 

reflected by a large number of non-basic variables; each such variable reflecting non-optimality 

can generate a feasible extreme point of the convex region of (5). A random selection of ‘r’ 

variables can generate ‘r’ extreme points in different directions. An average of the selected 

extreme points will give rise to an interior point from where the direction of the normal will 

always be in the positive quadrant increasing the value of the objective function. Thus, instead of 

successive extreme points (like in the simplex approach), it is better to generate two or more 

extreme points, which are adjacent to the same feasible extreme point. Selection of these entering 

variables is random among those which qualify for an entry to the basis. Also note that the 
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computational effort required to generate the interior point in the above manner will require much 

less computational effort. 

 

Observation 3: A known result in LP is that a LP is unbounded if minimum positive ratio does 

not exist and 𝑐𝑗 > 0. A similar but an inverse property of a LP could be that if a variable 𝑥𝑗 is 

such that 𝐴𝑗 ≥ 0 and 𝑐𝑗 ≤ 0, then the optimal value of the variable 𝑥𝑗 = 0. In other words the 

variable will consume resources without giving any positive return. Thus, such a variable will 

never qualify to enter the basis. Let us label this variable as a ‘permanent non-basic’ variable, 

and can then be removed from the LP model. Therefore, some variables in the model (1) may 

qualify to be a ‘permanent non-basic’ variable. 

 

Observation 4: Rounding the Interior Point to an Integer Point for Convenience 
Since in a LP model (5), the requirement of non-negative coefficients on the constraints set is not 

imposed, these coefficients may be positive or negative quantities, hence rounding up as well as 

rounding down will have to be checked for feasibility. Thus, rounding in this general model may 

not be desirable.  Alternatively, the rounded values must be checked for feasibility with respect to 

all constraints. 

 

Observation 5: Maximizing the Value of the Objective Function  
Let the location of a known interior point be 𝐼𝑃𝑘  and let the value of the objective function at this 

point also be known, which may be denoted by 𝑍𝐼𝑃𝑘
. In order to achieve maximum increase in the 

value of the objective function, it is proposed to move from this location in the normal direction 

of the given objective hyper-plane. Thus, the new location is given by (6). Note that 𝐶𝑇𝑛𝑖  is the 

normal direction of the given objective function of model (5). 

 

𝐼𝑃𝑘 +  𝛼𝐶𝑇𝑛𝑖 ,                                    𝛼 ≥ 0.                                                                                        (6) 

 

The scalar 𝛼 ≥ 0  has to be calculated as the largest value such that 𝑍 = 𝐶𝑇𝑛1𝑋𝑛1
 is maximized 

subject to:  

 

𝐴(𝑚𝑋𝑛𝑖)(𝐼𝑃𝑘 + 𝛼𝐶𝑇𝑛𝑖) ≤ 𝐵, 𝐼𝑃𝑘 + 𝛼𝐶𝑇𝑛𝑖 ≥ 0   or equivalently as shown in (7). 

 

Maximize  Z = 𝐶(𝐼𝑃𝑘 + 𝛼𝐶𝑇𝑛𝑖) 

Subject to: 

𝛼𝐴(𝑚𝑋𝑛𝑖)𝐶
𝑇𝑛𝑖 ≤ 𝐵 − 𝐴(𝑚𝑋𝑛𝑖)𝐼𝑃𝑘, 𝛼𝐶𝑇𝑛𝑖 ≥ −𝐼𝑃𝑘                                                                          (7) 

 

The problem (7) is a one-variable LP, where the value of 𝛼 is given by: 

𝑚𝑖𝑛
𝑖  (

𝐵−𝐴(𝑚𝑋𝑛𝑖)
𝐼𝑃𝑘

𝐴𝐶
𝑇𝑛𝑖

)
        and        𝛼𝐶𝑇𝑛𝑖 ≥ −𝐼𝑃𝑘                                                                            (8) 

 

Once the value of 𝛼 is known the new point with improved value of the objective function is a 

known point. The new improved feasible location may be an extreme point or may be a point on 

the boundary of a constraint of the given LP model (5). It is denoted by 𝐼𝑃𝑘+1and it can be 

determined from (9). 

 

𝐼𝑃𝑘+1 = 𝐼𝑃𝑘 + 𝛼𝐶𝑇𝑛𝑖                                                                                                                       (9) 
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The new LP with reduced feasible space is given by (10). It is developed by adding the constraint 

(9) and the process can be repeated. 

 

Maximize  Z = 𝐶𝑇𝑛1𝑋𝑛1
 =IPk+1 

Subject to:  𝐴𝑚𝑋𝑛𝑖
𝑋𝑛1

≤ 𝐵 

𝑍 ≥ 𝑍𝐼𝑃𝑘+1
,                       𝑋 ≥ 0                                                                                                     (10) 

 

Here 𝑋𝑛1
= 𝐼𝑃𝑘+1. 

 

Note that if 𝛼 as obtained from (8) is equal to zero, it means that one has reached to the end of the 

feasible space in the normal direction of the objective function. If an optimal solution has not 

been identified, the LP model given by (10) involves less number of variables, and the feasible 

space is also reduced. The LP (10) can be solved using any package. 

 

Observation 6: The new point 𝑋 = 𝐼𝑃𝑘+1 will always be the extreme point of the convex space 

defined by (10). In other words, the problem defined by (10) has a feasible region. 

 

Proof: Note that the point defined by (9) will remain feasible to model (10) as all constraints of 

(5) are satisfied at this point and the additional constraint in the LP model (10) is also satisfied. 

Furthermore, it may be noted that at this point at least one of the constraints in the LP model (5) 

is active and the additional constraint in the model (10) is also active. Thus, it is an extreme point 

at the intersection of at least two active constraints of the model (10). 

 

Observation 7: Once an optimal solution to the LP (5) is established, that solution can be used 

to establish the optimal solution to the model (2) by the application of column generation rule for 

the rest of the variables with negative coefficients in the objective function and also refer to 

information recycling discussed by Kumar (2005, 2006). 

 

Observation 8: Given an ‘m’ constraint ‘𝑛’ variable LP model to be solved, call it Problem 1. 

Let us construct another LP comprised of 𝑛1 variables where 𝑛1 ≤ 𝑛, call it Problem 2. If a 

variable 𝑥𝑗  belongs to both Problems 1 and 2 and has the same objective and constraint 

coefficients, then a basic feasible solution of the Problem 2 is also a basic feasible solution. 

 

The proof is immediate as all variables not belonging to Problem 2 have an acceptable 

interpretation as non-basic variables with respect to the LP model (1). All constraints will remain 

satisfied. 

 

Observation 9: For a given ‘𝑚’ constraint ‘𝑛’ variable LP model, the optimal solution of the 

LP comprised of ‘m’ constraints and 𝑛1 variables where 𝑛1 ≤ 𝑛 will form a lower bound on the 

optimal value of the given LP. The proof is obvious as any other additional given variable not 

among the 𝑛1 variables can either increase the value of the objective function or remain non-basic 

at zero value. 

 

3.2 An Algorithm for Solving a LP Model (1) with Less Number of Variables and 

Reduced Feasible Space 
From the above discussion, one can generate an algorithm for solving a conventional large-scale 

LP by considering reduced feasible space and with less number of variables. The method is 
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comprised in two parts. Part 1 finds an optimal solution to the reduced LP model (5) and in Part 

2, we find the optimality with respect to the given LP model (1). 

 

Part 1 

Step 1: Given a LP model (1). Check the objective function for positive coefficients. If all 𝑐𝑗’s 

are non-negative, the number 𝑛1 = 𝑛 and (𝑛 -𝑛2)=0. Go to Step 2. 

 

If some of these coefficients are negative quantities, rearrange the given LP model in the structure 

of LP model (4), i.e. separating positive and negative coefficients of the objective function and 

rearrange the constraints accordingly to develop a sub-LP model of the form (4) and from that 

develop the LP model (5). Go to Step 2. 

 

Step 2: Obtain an initial feasible point IP0  of the LP, which is given by 𝑋 = |

𝑥1

⋮
𝑥𝑛1

| = |
0
⋮
0
|.  

 

If the number of entering variables are more than a pre-assigned value  ‘𝑟 ≥ 3’, create at random 

‘r’ feasible extreme points, which lead to an improved value of the objective function. 

 

From these ‘r’ extreme points develop an interior point by averaging their values. Call this point 

𝐼𝑃1. 
 

Step 3: Move from the initial point IP1 in the direction of the normal of the objective function 

within the feasible space as far as possible. Let this new feasible point be denoted by IP2, and the 

value of the objective function at this point is denoted by 𝑍𝐼𝑃2
. 

 

Step 4: Formulate a new LP problem (10): 

Maximize  Z = 𝐶𝑋𝑛1
 

Subject to:  𝐴𝑋𝑛1
≤ 𝐵 

𝐶𝑋𝑛1
 ≥ 𝑍𝐼𝑃2

, 𝑋𝑛1
≥ 0, where 𝐼𝑃2 = 𝐼𝑃1 + 𝛼𝐶𝑇𝑛1 . 

 

Step 5: Using any of the existing LP software, find an optimal solution to the LP in Step 4. 

 

Step 6: Conclude the search process when the optimality conditions are satisfied, print the 

optimal solution to model (5). 

 

Part 2  
Consider the original LP model and select a variable 𝑥𝑗 for which 𝑐𝑗 < 0 for  𝑗 =  𝑛1 + 1,… , 𝑛.  

 

Step 7: Since 𝑐𝑗 ≤ 0, use column generation and find 𝑍𝑗 − 𝑐𝑗 = 𝐶𝐵𝐵−1𝐴𝑗 − 𝑐𝑗.  If 𝑍𝑗 − 𝑐𝑗 <

0, carry out the usual simplex iteration and if 𝑍𝑗 − 𝑐𝑗 ≥ 0,  go to Step 8. 

 

Step 8: Substitute  𝑗 = 𝑗 + 1 ,  if 𝑗 < 𝑛, go to Step 7, else go to Step 9.  
 

Step 9: Print the optimal solution to the given LP model (1). 
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4. Numerical Illustrations 

Example 1: A Trivial Illustration  
𝑀𝑎𝑥  𝑧 = 𝑥1 + 𝑥2  

Subject to:  𝑥1 ≤ 1, 𝑥2 ≤ 1, 2𝑥1 − 𝑥2 ≤ 1, 𝑥1, 𝑥2 ≥ 0                                                                (11) 

 

This trivial problem has an optimal solution: 𝑥1 = 1, 𝑥2 = 1, 𝑧 = 2. See Fig. 1 for the solution. 

Since it is a two-variable problem, let us assign r = 2. 

 

 
 

Fig. 1. Schematic presentation of the LP model (11) 

 

An initial extreme point is EP0 which is the origin from where two possible extreme points that 

can be reached are: (𝑥1, 𝑥2) = (0.5, 0) and (0, 1). The interior point 𝐼𝑃0 generated by these two 

points is given by (0.25, 0.5). The value of the objective function at this point is 𝑧𝐼𝑃0
=0.75. The 

improved point 𝐼𝑃1 can be obtained by solving the problem: 

 

𝑀𝑎𝑥 𝑧 = 𝐶(𝐼𝑃0 + 𝛼𝐶𝑇) = 0.75 + 2𝛼 

Subject to 𝛼 [
1 0
0 1
2 −1

] [
1
1
] ≤ [

1
1
1
] − [

1 0
0 1
2 −1

] [
0.25
0.5

] 

𝛼 [
1
1
1
] ≤ [

0.75
0.5
1

] 

Hence 𝛼 = 0.5, 𝐼𝑃1 = 𝐼𝑃0 + 𝛼𝐶𝑇=[
0.75
1

]  and  𝑍𝐼𝑃1
= 1.75 
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The modified LP with reduced space would be given by:  

 

𝑀𝑎𝑥  𝑧 = 𝑥1 + 𝑥2  

Subject to:  𝑥1 ≤ 1, 𝑥2 ≤ 1, 2𝑥1 − 𝑥2 ≤ 1, 𝑥1 + 𝑥2 ≥ 1.75, 𝑥1, 𝑥2 ≥ 0                                     (12) 

 

For solution of (12), see Fig. 2. 

 
 

Fig. 2. Schematic presentation of the reduced feasible region after one move 

in the normal direction with respect to model (12) 

 

The additional constraint reduces the feasible space, and the feasible solution to (12) is given in 

Table 1. 

 
 𝒙𝟏 𝒙𝟐 S3 S4 S5 S6 RHS 

S3 0 0 1 0 -1/3 1/3 1/12 

S4 0 0 0 1 1/3 2/3 1/6 

X1 1 0 0 0 1/3 -1/3 11/12 

X2 0 1 0 0 -1/3 -2/3 5/6 

Zj-Cj 0 0 0 0 0 -1 1.75 

 

Table 1. Feasible solution of the LP model (12) 

 

For the optimal solution, variable 𝑠6 enters the basis, pivot element will be (𝑠4, 𝑠6) in Table 1, 

which results in an optimal solution. 
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Example 2 
Consider the following Klee and Minty (1972) Cube  

The Klee-Minty cube in ‘𝑛’ dimension is given by: 

 

𝑀𝑎𝑥  𝑧 = ∑10𝑛−𝑗𝑥𝑗

𝑛

𝑗=1

 

Subject to:  2∑ 10(𝑖−𝑗)𝑖−1
𝑗=1 𝑥𝑗 + 𝑥𝑖 ≤ 100𝑖−1, 𝑥𝑗 ≥ 0, 𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2, … , 𝑛 . 

 

For 𝑛 = 3, it will be:  

𝑀𝑎𝑥 𝑧 = 100 𝑥1 + 10 𝑥2 + 𝑥3 

Subject to:  𝑥1 ≤ 1, 20𝑥1 + 𝑥2 ≤ 100, 200𝑥1 + 20 𝑥2 + 𝑥3 ≤ 10,000,  𝑥1,𝑥2,𝑥3 ≥ 0           (13) 

 

In general, the simplex method can solve the Klee-Minty model in (2𝑛 − 1) iterations and for 𝑛 = 

3, it will require 7 iterations. The optimal solution can be easily verified as:  𝑥3 = 10,000, 𝑥1 = 𝑥2 

= 0 and z =10,000. Now, we apply the proposed method discussed in this paper. The initial 

extreme point EP0  = (𝑥1,  𝑥2, 𝑥3 ) = (0, 0, 0). Let 𝑟 = 3. 

 

Since 𝑟 = 3, the three possible extreme points from the initial point that can be reached are given 

by:  

 

(1, 0, 0), (0, 100, 0) and (0, 0, 10000). 

 

The interior point generated by these three points will be given by: 

 

𝐼𝑃0 = (
1

3
,
100

3
,
10000

3
) 

 

and the value of the objective function at this point will be given by:  

 

𝑍𝐼𝑃0
=

11100

3
= 3700                                                                                                                    (14) 

 

To find the value of α, we have  

𝐴 = |
1 0 0
20 1 0
200 20 1

| , 𝐵 = |
1

100
10,000

| , 𝐶𝑇 = |
100
10
1

| , 𝐼𝑃1 = |

𝑥1

𝑥2

𝑥3

| = |
|

1

3
100

3
10000

3

|
|. 

We therefore obtain 

 

𝐴 𝐼𝑃0 = |

1

3

40
7400

| , 𝐴 𝐶𝑇 = |
100
2010
20201

| , 𝐵 − 𝐴 𝐼𝑃0 = |
0.67
60

2,600
|. 

 

Resulting in 𝛼 = min |
100𝛼 ≤ 0.67
2010𝛼 ≤ 60

20201𝛼 ≤ 2600
| = min(. 0067, .0298, .1287) =  .0067. 
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Therefore, the improved interior point is 

𝐼𝑃2 = 𝐼𝑃1 + 𝛼𝐶𝑇 = |

1/3
100/3

10000/3
| + 0.0067 |

100
10
1

| = |
1.0
33.4

3333.34
|. 

 

 

The new constraint to be added will be  

 

100𝑥1 + 10𝑥2 + 𝑥3 ≥ 𝑍𝐼𝑃1
= 3767.34                                                                          (15) 

 

Thus, the modified problem becomes:  

 

𝑀𝑎𝑥 𝑧 = 100 𝑥1 + 10 𝑥2 + 𝑥3 

Subject to:   𝑥1 ≤ 1, 20𝑥1 + 𝑥2 ≤ 100, 200𝑥1 + 20 𝑥2 + 𝑥3 ≤ 10,000,
100𝑥1 + 10𝑥2 + 𝑥3 ≥ 3767.34  

𝑥1,𝑥2,𝑥3 ≥ 0                                                                                                                                  (16) 

 

The feasible solution to (16) can be obtained by any method, and it is given in Table 2. 

 
i\j X1 X2 X3 S1 S2 S3 S4 RHS 

s1 1 0 0 1 0 0 0 1 

x2 20 1 0 0 1 0 0 100 

S3 -100 0 0 0 -10 1 1 5332.66 

X3 -100 0 1 0 -10 0 -1 2767.34 

Z – cj 0 0 0 0 0 0 -1 3767.34 

 

Table 2. Feasible solution to problem (16) 

 

For the optimal solution, one more pivot operation has to be performed on the element (𝑠3, 𝑠4) in 

Table 2, which will lead to the optimal solution. 

 

Example 3 
Consider a LP model as given by (17). 

18240301021223

36211621103001

28022540210100

12320015021412

22132020002040

30011024232303

30150200400054

32110040033022

24024130428101

Subject to

3222324352

121110987654321

121110987654321

121110987654321

121110987654321

121110987654321

121110987654321

121110987654321

121110987654321

121110987654321

121110987654321





















xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxxMax

 

𝑥1, 𝑥2, … , 𝑥12 ≥ 0                                                                                                                         (17) 
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Using a LP package, the optimal solution to the above LP is given by 𝑍 = 46.64, 

 

𝑥2 = 4.72, 𝑥4 = 3.12, 𝑥5 = 2.08, 𝑥9 = 3.2 

𝑥1 = 𝑥3 = 𝑥6 = 𝑥7 = 𝑥8 = 𝑥10 = 𝑥11 = 𝑥12 = 0. 

 

Now we apply the method developed in this paper. Note that variables with positive coefficients 

in the objective function are given by:  

 

(
987654321 ,,,,,,,, xxxxxxxxx ) and negative coefficients variables are: (

121110 ,, xxx ).  

 

The value of n1 =9. A sub-problem of 9-variables or less can be developed. Let us consider all 

these 9 variables to form a LP model similar to (5).  This is given by (18). 

 

18301021223

36621103001

28540210100

12015021412

22020002040

30024232303

30200400054

32040033022

24130428101

Subject to

22324352

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321





















xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxxMax

 
with variables 𝑥𝑗 ≥ 0 for  𝑗 = 1, 2, … , 9.                                                                                      (18) 

 

For the LP model (18), we have:  

A = 

|

|

|

 1 0 −1
 2 2  0
 4 5  0

 8  5 −2
 3  3  0
 0  0  4

4 3  1
0 4  0
0 0  2

3 0  3
0 4  0
2 1  4

 2 3 −2
−2 0   0 
  1 2  0

  4 2 0
 0 −2 0
  5 1 0

0 0  1
1 0  0
3 2  2

 0 1  2
 3 0   1
 1 −2   0 

0 4  5
1 2  6

−1 0  3

|

|

|

,                  





































18

36

28

12

22

30

30

32

24

B ,  

𝐶 = [2 5 3 4 2 3 2 1 2], 
and 

 𝑋𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9]. 
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The initial extreme point is 

𝐸𝑃0 = 

[
 
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

𝑥6
𝑥7

𝑥8

𝑥9]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

. 

 

Let r = 3. From this initial extreme point, we generate three extreme points with respect to 

variables 𝑥2, 𝑥3 and 𝑥4. These points, expressed in variables (𝑥1, 𝑥2, …, 𝑥9) are given by: 

 

𝐸𝑃𝑥2
= 

[
 
 
 
 
 
 
 
 

0
5.2
0
0
0
0
0
0
0 ]

 
 
 
 
 
 
 
 

, 𝐸𝑃𝑥3
=

[
 
 
 
 
 
 
 
 
0
0
3
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

 and  𝐸𝑃𝑥4
=

[
 
 
 
 
 
 
 
 
0
0
0
3
0
0
0
0
0]
 
 
 
 
 
 
 
 

        resulting in 𝐼𝑃0 =

[
 
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

𝑥6
𝑥7

𝑥8

𝑥9]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

0
1.8
1
1
0
0
0
0
0 ]

 
 
 
 
 
 
 
 

. 

 

The objective value at this point is  =     16)4(13.15.8.1
0

IPZ . 

 

Since 
TC is the normal direction of the given objective function, we need to find the value of α. 

 

We find 0AIP      

[
 
 
 
 
 
 
 
 
1 0 −1
2 2 0
4 5 0

8 5 −2
3 3 0
0 0 4

4 3 1
0 4 0
0 0 2

3 0 3
0 4 0
2 1 4

2 3 −2
−2 0 0
1 2 0

4 2 0
0 −2 0
5 1 0

0 0 1
1 0 0
3 2 2

0 1 2
3 0 1
1 −2 0

0 4 5
1 2 6

−1 0 3]
 
 
 
 
 
 
 
 

   .   

[
 
 
 
 
 
 
 
 

0
1.8
1
1
0
0
0
0
0 ]

 
 
 
 
 
 
 
 

         =          

[
 
 
 
 
 
 
 
 

7
6.6
9
5

5.2
6.8
1
3

6.6]
 
 
 
 
 
 
 
 

 

 

TAC

[
 
 
 
 
 
 
 
 

   

1 0 −1
2 2 0
4 5 0

8 5 −2
3 3 0
0 0 4

4 3 1
0 4 0
0 0 2

3 0 3
0 4 0
2 1 4

2 3 −2
−2 0 0
1 2 0

4 2 0
0 −2 0
5 1 0

0 0 1
1 0 0
3 2 2

0 1 2
3 0 1
1 −2 0

0 4 5
1 2 6

−1 0 3]
 
 
 
 
 
 
 
 

    .     

[
 
 
 
 
 
 
 
 
2
5
3
4
2
3
2
1
2]
 
 
 
 
 
 
 
 

        =         

[
 
 
 
 
 
 
 
 
48
36
49
33
10
40
25
33
26]
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𝐵 − 𝐴𝑃0 =   

[
 
 
 
 
 
 
 
 
24
32
30
30
22
12
28
36
18]

 
 
 
 
 
 
 
 

    −      

[
 
 
 
 
 
 
 
 

7
6.6
9
5

5.2
6.8
1
3

6.8]
 
 
 
 
 
 
 
 

     =      

[
 
 
 
 
 
 
 
 

17
25.4
21
25

16.8
5.2
27
33

11.2]
 
 
 
 
 
 
 
 

. 

 

Since 13.0

43.0

00.1

08.1

13.0

68.1

76.0

43.0

71.0

35.0

26/2.11

33/33

25/27

40/2.5

10/8.16

33/25

49/21

36/4.25

48/17

min 























































































 


T

k

AC

IPB
 . 

 

 

Using equation (8) and moving in the normal direction of the objective hyper-plane, the improved 

interior point is: 

 

𝐼𝑃1 = 𝐼𝑃0 + 𝛼𝐶𝑇 =

[
 
 
 
 
 
 
 
 

0
1.8
1
1
0
0
0
0
0 ]

 
 
 
 
 
 
 
 

+ 0.13

[
 
 
 
 
 
 
 
 
2
5
3
4
2
3
2
1
2]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0.26
2.45
1.39
1.52
0.26
0.39
0.26
0.13
0.26]

 
 
 
 
 
 
 
 

. 

 

.88.26

)26.0(2)13.0(1)26.0(2)39.0(3)26.0(2)52.1(4)39.1(3)45.2(5)26.0(2
1



IPZ

 

Thus, a basic feasible solution to (18) is required in presence of the additional constraint given by 

(19). 

 

)(88.2622324352
1987654321 IPZxxxxxxxxxZ                           (19) 

 

The 9-variable problem (18) was solved using the LIPS LP package and the results were, as 

expected, the same as for the given 12-variable problem (17). These results were: 
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𝑥2 = 4.72, 𝑥4 = 3.12, 𝑥5 = 2.08, 𝑥9 = 3.2 and 𝑥1 = 𝑥3 = 𝑥6 = 𝑥7 = 𝑥8 = 0, 𝑍𝑜𝑝𝑡 = 46.64,  
although the result is optimal, but to establish the optimality of (17), we need inverse of the basic 

matrix of the 9 variable problem. From the LIPS LP package, the B-1 and set of basic variables 

were obtained as given in Table 3. 

 
Basic S13 S14 S15 S16 S17 S18 S19 S20 S21 RHS 

S17 2/75 0 -4/3 0 1 68/75 0 0 .89 9.36 

S14 -31/150 1 -1/6 0 0 -229/150 0 0 .18 6.96 

X4 .12 0 0 0 0 0.08 0 0 -.04 3.12 

S16 .02 0 0.5 1 0 -1.82 0 0 -.34 1752 

X2 4/75 0 1/3 0 0 -14/75 0 0 -.24 4.72 

X5 -13/150 0 -1/6 0 0 83/150 0 0 .14 2.08 

S19 113/150 0 11/6 0 0 -433/150 1 0 -3.14 9.92 

S20 .44 0 2 0 0 -3.04 0 1 -3.48 7.44 

X9 -2/15 0 -1/3 0 0 7/15 0 0 0.6 3.2 

Zj – cj 23/75 0 2/3 0 0 107/75 0 0 0.12 46.64 

 

Table 3. Basic variables, solution and B-1 matrix 

 

 

From Table 3, one can, for optimality, get values of  

 

𝑧𝑥10
− 𝑐10 =

167

75
, 𝑧𝑥11

− 𝑐11 =
604

75
, 𝑧𝑥12

− 𝑐12 =
614

75
  which confirms optimality of the given 

problem (17). 

 

5. Concluding Remarks 
(a) The above method is suitable for a conventional LP model of type (1). Advantages, if any, 

can be assessed only by developing and using an appropriate software to find computational 

efficiencies with respect to larger problems. 

(b) From the initial point, a linear move in the normal direction is desirable if it increases the 

objective function value, the move can reduce number of simplex iterations. 
 

(c) The proposed method is likely to converge to the solution faster than the simplex method by 

utilising movements in the normal direction to the objective function. A few iterations of 

moving in the normal direction give an approximate solution, which is not provided by any 

other method. 
 

(d) Instead of dealing with the given problem of dimension mX(n+m), in the proposed method 

we are dealing with n1X(n1 +m) problem, thus reducing pivoting computations in each 

iteration. 
 

(e) Apply the ideas developed in this paper to solve a conventional integer and mix integer 

programming model discussed in Kumar and Munapo (2012), Nyamugure et al. (2017). 
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