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1 Introduction

A key question in the design of health care systems worldwide is whether the government or the

private sector should provide care. In the US, the choice between public and private provision has

become a top policy issue for the Department of Veterans Affairs (VA). Seeking to improve veteran

access to health care, policymakers have debated whether the VA should expand the capacity of its

system—the Veterans Health Administration—or shift health care delivery to private providers.

An extensive descriptive literature (e.g., Blank, Burau, and Kuhlmann 2017; Reid 2010) has

compared health care outcomes in public vs. private systems. More generally, economists long have

debated the appropriate size and role of the public sector in the economy, highlighting theoretical

arguments about competitive pressure, ownership structure, and differences in the objectives and

constraints in the public vs. private sectors (Alchian 1965; Stigler 1965; Hart, Shleifer, and Vishny

1997). Nevertheless, rigorous empirical evaluations of the performance of public vs. private health

care providers have been rare. Public and private providers usually serve different patient populations,

either by statute or by patient selection.

In this paper, we focus on “dually eligible” veterans aged 65 and older who can receive health

care at both VA facilities and private hospitals that accept Medicare. We use the ambulance design

proposed by Doyle et al. (2015) to study the causal effect of receiving emergency care at the VA

vs. a non-VA facility. Our approach compares veterans sharing key characteristics—zip code of

residence, prior VA and non-VA utilization, and location of pick-up (e.g., their home residence vs.

a nursing home)—who receive the same dispatched level of ambulance service (i.e., advanced vs.

basic life support) from different ambulance companies. Our main analytic sample includes 401,319

911-dispatched ambulance rides from 2001 to 2014 for veterans with prior attachment to the VA and

in a zip code served by at least two ambulance companies. As in Doyle et al. (2015), we show that the

leave-out share of dually eligible veterans transported to the VA by the assigned ambulance company

is a strong predictor of hospital assignment. Under the plausible assumption that ambulances are

quasi-randomly assigned within zip codes and in cells of key characteristics, this design allows us to

study the effect of VA vs. non-VA emergency care on health outcomes.

We find that in the high-mortality population of elderly veterans with emergencies, there is a VA

advantage—a 46% reduction in 28-mortality relative to baseline (4.5 p.p., with a 95% confidence

interval of 1.1 to 8.0 p.p). We show that our instrumental variables (IV) estimates of the VA effect are

robust to including a long list of characteristics of both the index patient and other patients transported
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by the same ambulance company. The latter set of ambulance co-rider controls can account for

unobserved selection patterns across ambulance companies (Altonji and Mansfield 2018). The IV

estimates are larger in magnitude than the corresponding OLS estimates, which center around 2.4

p.p., with tight confidence intervals. A possible explanation for this difference is that VA “always-

takers” (patients taken to the VA even by ambulance companies with the lowest VA rates) have worse

health than VA “never-takers” (those taken to private hospitals even by ambulance companies with

the highest VA rates). This selection pattern has been suggested by the medical literature; we examine

it in greater detail below (Agha et al. 2000).

An important question for interpreting the survival benefits of VA care is whether these effects

fade over longer horizons—as would happen if VA emergency care only temporarily displaces the

mortality of fragile patients under “harvesting” (Schwartz 2000). To address this, we use an insight

from Abadie (2002) to estimate the weekly potential death rates in the year after the initial ambulance

ride among compliers of the quasi-experiment, i.e., patients whose destination hospital is determined

by the ambulance company. With this tool, we disentangle the short-term vs. long-term effects of the

VA in the setting of competing risks. Despite a high long-term mortality rate (close to one in three

veterans will be dead within one year of the ambulance ride), we find that the mortality impact of pre-

senting at the VA is concentrated in the first week, suggesting VA survival gains from care addressing

temporary emergency conditions. We find no evidence of harvesting; the survival gains appear to be

long-lasting. Relying on intuition from Kitagawa (2015), we also use this potential outcomes frame-

work to develop a sharper test of IV validity than the tests typical in the applied literature.1 Finally,

we use this framework to document and account for widening differences between OLS and IV es-

timates of the VA advantage over longer time horizons. We show that this suggests systematically

larger long-run mortality hazards for VA always-takers than for VA never-takers, constituting strong

evidence that veterans who select into the VA are indeed sicker.

The key potential threat to our research design is that veterans taken to the VA are healthier than

veterans taken to non-VA hospitals. While this runs counter to the selection we demonstrate above, it

could arise if ambulance company assignment within a given zip code correlates with patient health.

We present three additional pieces of evidence to address this concern. First, we show balance in

1Specifically, we use the fact that, under IV validity, all indicators for potential outcomes must occur with positive prob-
ability among compliers (Balke and Pearl 1997; Kitagawa 2015). In the survival setting, this implies that the incremental
mortality risk must be positive for compliers every week after the ambulance ride, both among those assigned to VA and
non-VA hospitals. This prediction may fail if monotonicity violations may arise, for example, because ambulance compa-
nies with higher VA propensities are less likely to send veterans with certain potential mortality outcomes to the VA. Chan,
Gentzkow, and Yu (2019) show that this approach may detect violations in IV validity that remain hidden under standard
“judges design” tests of monotonicity (e.g., Arnold, Dobbie, and Yang 2018).
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characteristics of patients assigned to companies with different propensities of taking patients to the

VA. Second, we conduct an extensive analysis along the lines suggested by Altonji, Elder, and Taber

(2005), evaluating the stability of our estimates as we add controls to the models, including controls

that measure the characteristics of other patients transported by the company. Third, in heterogeneity

analyses, we show that the VA advantage is highly stable across VA and non-VA hospital characteris-

tics that may be related to patient selection.

In the final section of the paper, we evaluate the mechanisms behind the VA advantage. First,

we assess heterogeneity in the VA advantage according to patient and hospital characteristics. This

heterogeneity could imply VA specialization in care needed most by veterans; it could also imply an

advantage with medically vulnerable patients with continuity of care at the VA. Second, along the

lines of Doyle et al. (2015), VA hospitals could achieve better outcomes by spending more. On the

other hand, given starkly different financial incentives in the public vs. private sector, the VA may uti-

lize and report different sets of procedures relative to non-VA hospitals. Third, the VA advantage may

reflect better access to patient information and coordination of care, particularly in high-uncertainty

and high-stakes environments such as emergency care. This last mechanism is consistent with lit-

erature that highlights integration of care and health information technology (IT) as distinguishing

features of the VA (Jha et al. 2009; McCarthy and Blumenthal 2006).

In the first class of mechanisms, we find evidence for moderate selection on gains. Compliers

in our quasi-experiment—veterans with more prior VA utilization who are medically needier and so-

cioeconomically disadvantaged—tend to have higher treatment effects. However, we do not find that

the VA worsens health outcomes in any set of patients or any location. While the VA hospitals differ

from non-VA hospitals in their characteristics (e.g., they are more likely to be teaching hospitals),

we also find a consistent VA advantage regardless of VA or non-VA hospital characteristics. This

evidence suggests a widespread VA advantage, though disadvantaged veterans with complex medical

needs particularly benefit from the VA.

We evaluate the second explanation by examining VA and Medicare spending, using information

on actual spending by taxpayers and veterans. Spending following VA care is lower by $2,598, or

about 21%, at 28 days. This suggests that the VA is more productive, achieving better outcomes

at lower cost. We generate these results on actual spending from the perspective of taxpayers and

patients. Alternatively, if we measure resource utilization by applying fixed prices to reported pro-

cedures in both VA and non-VA settings (Finkelstein, Gentzkow, and Williams 2016), the reduction

in spending following transport to a VA hospital doubles. We find striking differences in reported
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utilization of specific services between the two settings. Some portion of these differences likely re-

flects “upcoding”—in which cases are more likely to be coded as complex (Dafny 2005; Geruso and

Layton 2020)—in the Medicare setting relative to the VA. Yet many services that are reimbursed little

by Medicare (e.g., telephone calls) are much more likely to be documented in the provision of care

for veterans arriving at the VA. Thus, it is also plausible that actual care substantively differs between

the two settings, where differences in payment systems may imply differences in objectives.

The third explanation centers on the idea that coordination and continuity of care in an integrated

delivery system may improve health outcomes—an explanation consistent with the larger impacts

of the VA on medically needy patients and those with greater prior attachment. Unfortunately, as

is the case with the previous literature, we cannot show direct quasi-experimental evidence of this

joint mechanism among veterans who use the VA: The VA’s transition to integrated care predates the

period for which data are available for analysis, and veterans with no prior attachment with the VA are

seldom transported to the VA. Instead, we study this indirectly among veterans who only use non-VA

hospitals in the setting of two policy reforms to stimulate health IT and integrated care in the private

sector.

Specifically, through a parallel ambulance quasi-experiment, we ask whether these patients ben-

efit from being assigned to their most-visited prior (non-VA) hospital (i.e., their “modal” hospital)

relative to the following reforms: the Health Information Technology for Economic and Clinical

Health (HITECH) Act of 2009 and legislation to spur participation in “Accountable Care Organi-

zations” (ACOs) beginning in 2011 (Blumenthal 2010; Greaney 2011). We find that the modal-

hospital survival benefit increases from a negligible effect before the policy reforms to about 1.9

p.p.—approximately one-half of the VA survival benefit—after 2010. We also find tentative evidence

linking the increase in the modal-hospital survival benefit to hospital-specific dates of health IT adop-

tion and, to a lesser degree, ACO participation.

Our findings contribute to three sets of related literature. First, the public vs. private provision

of health care is a central question for the field of comparative health policy (Blank, Burau, and

Kuhlmann 2017). The literature in this field has been mainly descriptive, comparing health care

systems across the world.2 Comparing the performance of health care systems across countries is

intrinsically difficult for obvious reasons: Countries differ in both their populations and other health

determinants. Evidence comparing public vs. private health care provision within the same country

2As an example of the amount of material devoted to such comparative studies, the European Observatory on Health
Systems and Policies (www.euro.who.int) produces policy commentary and “health system reviews” on the health care
systems of individual countries.
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has also been scarce. To our knowledge, a recent working paper by Frakes, Gruber, and Justicz (2020)

may be the only other quasi-experimental examination of this important question.3 Studying military

mothers who give birth in two different hospitals due to a move in between deliveries, they find higher

spending but lower rates of complications in private hospitals.

Second, an important literature has sought to measure the quality of care in the VA, which bud-

geted $84 billion for medical care in 2020 (Department of Veterans Affairs 2020).4 Following a

well-known reorganization and investment in health IT in the mid-1990s (McCarthy and Blumenthal

2006), this literature has documented favorable VA quality, compared to care outside of the VA, in

terms of process measures and health outcomes (e.g., Jha et al. 2003). The question of performance

in the VA health care system has become particularly relevant in recent years, as the Department

considers ways to improve access to care for veterans and as Congress has sought to increase private

health care delivery for veterans (113th Congress 2014; 115th Congress 2018). So far, however, this

literature has mainly compared outcomes of veterans receiving care in the VA system to those of

non-veterans outside of the VA.

A third and extensive literature studies why health care in the US appears to be a low-productivity

outlier among developed countries, spending more as a percentage of GDP than any country but with

poor outcomes relative to this spending (Garber and Skinner 2008). Experts have drawn attention to

fragmentation in the US health care system, potentially increasing spending and worsening outcomes

(Agha, Frandsen, and Rebitzer 2019; Cebul et al. 2008; Cutler 2010). Policymakers have responded

by incentivizing the adoption of health IT and integrated care, but whether such policies improve

health outcomes remains an open empirical question.5 Our results are consistent with a productivity

advantage (better outcomes at lower cost) at the VA, the nation’s largest integrated health care system.

We find striking differences in reported services in VA vs. non-VA settings: VA hospitals are much

more likely to report utilization of low-cost services that improve coordination and continuity of care;

3A related but distinct question of the impact of competition on government-provided health care is addressed in several
important papers studying the British setting (e.g., Bloom et al. 2015; Gaynor, Moreno-Serra, and Propper 2013; Gaynor,
Propper, and Seiler 2016). Within this strand of research, Cooper, Gibbons, and Skellern (2018) and Kelly and Stoye (2020)
also study the impact of private competition on public performance; both papers also document the selection of healthier
patients to private hospitals.

4Spending continues to grow. The 2019 enacted budget allocated $77 billion for VA medical care, and the 2021 pro-
posed budget requests $94 billion for medical care. For the last ten years, spending on medical care has nearly doubled
(Department of Veterans Affairs 2020).

5A recent empirical literature documents modest reductions in spending and improvements in patient satisfaction among
providers forming ACOs (McWilliams et al. 2016; McWilliams et al. 2014; Trombley et al. 2019). Finally, a mixed literature
on health IT adoption has shown health improvements in some cases (e.g., Miller and Tucker 2011) but null results in general
(e.g., Agha 2014). To our knowledge, our paper is the first to assess the complementarity between health IT and continuity
of care.
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non-VA hospitals are much more likely to report highly intense services. We also find suggestive

evidence that government regulations to incentivize private hospitals to adopt health IT and integrate

care may have improved outcomes among veterans with continuity of care at these hospitals.

The remainder of this paper proceeds as follows. Section 2 describes the setting and data. Section

3 presents our main analysis of the VA survival benefit. Section 4 discusses our survival analysis over

time. Section 5 presents evidence on mechanisms driving the VA survival benefit. Section 6 discusses

policy implications and concludes.

2 Setting and Data

2.1 US Health Care and the Veterans Health Administration

The US health care system is marked by a high level of complexity involving multiple private and

public (federal, state, and local) parties. The US spends more on health care per capita than any other

country—50% greater than the second-highest country, Norway—but has lower life expectancy than

most other high-income countries (Rice et al. 2013). Compared to other high-income countries, the

private sector plays a greater role in the US health care system.

Nonetheless, veterans in the US have access to an important system of public provision: the

Veterans Health Administration of the US Department of Veterans Affairs (VA). The VA provides

health care for 9 million veteran enrollees, a number that has grown dramatically in recent decades

(Chan, Duggan, and Guo 2021). The VA is the nation’s largest integrated health care delivery system,

including 170 medical centers and more than 1,000 outpatient sites of care, with a budget of $84

billion in 2020 for medical care (Department of Veterans Affairs 2020).

Key institutional features distinguish the VA from private providers in the US. The VA has a well-

defined patient population—enrolled veterans—while most patients in the private US health care

system receive care from multiple, unaffiliated providers (Agha, Frandsen, and Rebitzer 2019; Cebul

et al. 2008). Relatedly, financing in the VA is allocated primarily according to the needs of enrolled

veterans (Wasserman et al. 2005); in contrast, private providers receive financing primarily through

fee-for-service contracts tied to the cost of services and inpatient hospitalizations (Rice et al. 2013).

Finally, compared to non-VA providers, the VA functions as an integrated system. It directly

employs all of its physicians and health care workers, while most physicians outside of the VA are

independent of the hospitals at which they work and can affiliate with multiple hospitals. Care in the

VA is also integrated across clinical settings (e.g., inpatient, emergency department, and outpatient)
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and across specialties of care. Since the mid-1990s, when the VA implemented one of the first and

most widely used electronic health record (EHR) systems in the US, VA providers can communicate

and access records across different settings. In comparison, prior to the Affordable Care Act (ACA),

only 1.5% of private US hospitals maintained a comprehensive EHR system (Jha et al. 2009). In the

wake of the ACA, federal policies have attempted to spur care coordination and health IT adoption in

the private sector (Blumenthal 2010; Greaney 2011). Nevertheless, most private hospitals that have

adopted health IT still do not share records with each other (Holmgren, Patel, and Adler-Milstein

2017).

2.2 Comparing VA and Non-VA Care

Over the past decade, lawmakers have enacted major reforms that allow veterans to receive VA-

funded care at private facilities (113th Congress 2014; 115th Congress 2018).6 These reforms shift

the VA’s role to that of an insurer for veterans (similar to the role of Medicare for the elderly), with

accompanying functions of authorizing care, processing claims, and detecting waste and fraud.

Related to these initiatives, the quality of care in the VA has been a longstanding subject of interest

to policymakers and researchers. The health services literature has documented that the VA provides

care of the same or higher quality than that of the private sector, as measured by a wide variety of

process measures and health outcomes.7 However, these comparisons are potentially confounded by

differences, due to eligibility and self-selection, between the populations that utilize care in the VA

and in non-VA facilities. Indeed, the vast majority of existing research has compared the care of

veterans in the VA with the care of non-veterans in non-VA facilities.8

We use two key ideas to extend the literature on comparisons between VA and non-VA care.

First, we focus on dually eligible veterans who are aged 65 and older. These veterans can receive

care in the VA and at non-VA hospitals accepting Medicare (Hynes et al. 2007). A large and growing

proportion of dually eligible veterans uses care in both VA and non-VA settings (Liu et al. 2018).

6There have been additional well-funded efforts to shift care further into the private sector (Gordon 2019; Kefe 2018;
Rein et al. 2018; Shulkin 2018). According to an official recommendation to the congressionally established Commission
on Care, some have even proposed that “if veteran choice dictates it over time, the long term goal of the transformation is
the total transition to community care” (Blom 2016).

7See Shekelle et al. (2010), Trivedi et al. (2011), and O’Hanlon et al. (2017) for systematic reviews. The literature
includes dozens of studies on hundreds of quality of care process measures, as well as several studies on health outcomes.

8Two studies are noteworthy for having better identification. Nuti et al. (2016) compare outcomes for veterans in VA
hospitals with outcomes for non-veterans in non-VA hospitals but restrict comparisons between VA and non-VA hospitals
in the same metropolitan statistical areas. In an older study, Wright et al. (1999) look at 47,598 dually eligible veterans
with myocardial infarction. These studies find no difference or slightly better mortality outcomes in VA hospitals. Of note,
a related literature suggests that veterans generally have poorer health than non-veterans (e.g., Agha et al. 2000).
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Patient cost-sharing is significantly lower for VA care than under Medicare: For most VA enrollees,

care is essentially free in the VA setting; in contrast, the average Medicare beneficiary spends more

than 40% of Social Security income on out-of-pocket health care costs (Cubanski et al. 2018; Hynes

et al. 2021).

Second, we build on the ambulance design strategy of Doyle et al. (2015) to sidestep concerns

about the endogenous selection of where to obtain care. Specifically, we study veterans who arrive

at a hospital via a 911-dispatched ambulance, comparing veterans from the same zip code who could

have been transported by different ambulance companies with different propensities to transport pa-

tients to a VA hospital. Importantly, Doyle et al. (2015) document plausibly quasi-random variation

in the assignment of patients to ambulance companies due to rotational arrangements, direct compe-

tition, and the locations of available ambulance units at the time of the 911 call (Chiang, David, and

Housman 2006; Ragone 2012). Ambulance companies also exhibit different tendencies to transport

patients to various hospitals, based on their ownership, headquarter location, and other characteris-

tics (Skura 2001). We further describe our quasi-experimental design and assess its assumptions in

Section 3.

2.3 Data

We use data from two main sources—Medicare claims and VA administrative data—for the universe

of enrolled veterans in the VA from 2000 to 2014. We observe all Medicare claims for any dually

enrolled veteran. These claims data include the beneficiary’s zip code and demographic information

(age, race, and gender), as well as a record of medical services, each defined by an encounter date,

Current Procedural Terminology (CPT) code(s), diagnostic (International Classification of Diseases,

Ninth Revision, or ICD-9) codes, and provider identity. On the VA side, we have a complete record

of clinical encounters in the electronic health record system that we transform into a corresponding

set of encounter dates, CPT codes, ICD-9 codes, and provider identities.9

We begin by selecting ambulance ride events for dually eligible veterans, as recorded in the Medi-

care claims.10 We restrict attention to “lights and sirens” emergency ambulance rides originating from

911 dispatch calls.11 As in Doyle et al. (2015), we extract the date of the ambulance ride and the iden-

9The VA system includes patient home address information. However, we use the zip code information from the
Medicare claims records as our source of home location since this information is updated frequently and has been widely
used in previous studies, including Doyle et al. (2015).

10VA policy is that patients with outside insurance should have ambulance services paid for by that insurance. In our
dually eligible population, therefore, ambulance rides will be recorded in the Medicare claims.

11We select ambulance rides with Healthcare Common Procedure Coding System (HCPCS) codes A0322, A0328,
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tity of the ambulance company, based on its tax identification number (TIN). We use the ambulance

company identity to develop our instrumental variable for the propensity of the ambulance company

to deliver patients to the VA or to non-VA hospitals. We also extract information on interventions

provided by the ambulance (e.g., intravenous fluids, intubation), the level of care (advanced life sup-

port or basic life support), the pick-up location (e.g., private residence, nursing home, skilled nursing

facility, accident), and the ambulance diagnosis (ICD-9) codes assigned by the ambulance personnel.

We then link these ambulance rides to emergency department (ED) visits at VA and non-VA

hospitals. Transport to the VA constitutes our treatment of interest. For each patient, we collect

information on medical conditions and outpatient, ED, and inpatient utilization over the prior year, as

recorded in the Medicare claims and VA records. We use the ICD-codes for past medical conditions

to identify 31 Elixhauser indices (Elixhauser et al. 1998) of comorbidities, noting the source of each

condition (i.e., from visits to the VA, to non-VA facilities, or both). These comorbidities range from

common conditions such as hypertension to rarer ones such as lymphoma.

Our primary outcome measure is mortality. We obtain information on the date of death from three

sources: VA clinical records and Medicare claims, the Veterans Benefits Administration (VBA), the

Social Security Administration (SSA). The latter two sources are particularly reliable. They determine

whether the veteran will receive payments from either the VBA or the SSA, and they draw on reports

from family, funeral directors, post offices, financial institutions, other federal agencies, and state

vital records agencies.

To construct our main analytical sample of 401,319 ambulance rides, we make the following

restrictions (see Appendix Table A.1). First, we remove patients who live in zip codes more than 20

miles away from either the nearest VA hospital or the nearest non-VA hospital. We also drop patients

who traveled more than 50 miles from their zip code to the hospital. Second, we require that patients

live in zip codes served by at least two ambulance companies with at least 20 rides, at least 5% of

rides transported to a VA hospital, and at least 5% transported to a non-VA hospital. Finally, for our

baseline analysis of VA vs. non-VA care, we drop veterans with no VA primary, ED, or inpatient care

in the prior year, since ambulances transport fewer than 1% of these veterans to the VA.12

Table 1 describes the characteristics of the veterans and their emergency episodes at different

A0330, A0362, A0368, A0370, A0427, A0429, A0433, or Q3019. We restrict to modifiers “RH,” “SH,” “NH,” and “EH,”
corresponding to rides to a hospital from a residential location, a scene of an accident or acute event, a skilled nursing
facility, and an extended care facility, respectively.

12In a secondary analysis of continuity of care outside of the VA, in Section 5, we study an analogous sample of
1,414,217 ambulance rides of veterans who did not use VA care in the previous year and live in zip codes with at least two
non-VA hospitals within 20 miles. Appendix Table A.13 describes the selection process for this sample.
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steps of creating the main analytical sample. The average 28-day mortality rate is stable across steps

and relatively high, between 26.9 and 27.2 p.p., reflecting the illness acuity of elderly veterans who

arrive by 911-dispatched ambulance. Similarly, the proportion of ambulance rides on a weekend day

is remarkably stable and close to two-sevenths, reflecting the unplanned nature of these health events

(Card, Dobkin, and Maestas 2009). The major impact of our sample restrictions is to increase the

share of rides going to a VA hospital. Notably, rides transporting veterans with both VA and non-VA

ED visits in the prior year comprise about a third of the rides transporting veterans with any ED visit

in that year. In some steps, such as restricting to zip codes close to VA and non-VA hospitals, the

sample becomes more concentrated in urban areas with shorter distances to nearby VA and non-VA

hospitals. Black veterans also comprise a larger share of the sample. Patient characteristics otherwise

remain stable across sample restriction steps.

3 Benchmark Analysis

3.1 Quasi-Experiment

Following Doyle et al. (2015), our empirical strategy relies on the assignment of ambulances to pa-

tients in emergencies and the role of ambulance companies in determining the hospital that provides

emergency care to these patients. Doyle et al. (2015) show that several companies typically serve the

same narrow geographic area. The assignment of a particular company may be quasi-experimentally

determined such that the identity of the assigned ambulance company is plausibly unrelated to patient

characteristics. Furthermore, ambulance companies exhibit “preferences” for delivering patients to

certain hospitals due to their ownership or the location of their operations.

We define conditioning sets within which ambulance assignment may be as good as random.

First, we condition on the origin zip code 𝑧 (𝑖) of ambulance ride 𝑖, so that we compare patients from

the same zip code but transported by different ambulance companies. Second, we categorize the

ambulance by whether it offers advanced life support (ALS) or basic life support (BLS) based on

ambulance Healthcare Common Procedure Coding System (HCPCS) codes. We further categorize

rides by the pickup site category (e.g., residential address, nursing home, scene of an accident), the

day of the week, and month-year interactions (e.g., January 2010). Finally, we condition on measures

of the patient’s primary care, ED, and inpatient utilization at VA and non-VA facilities over the past

year.13 For simplicity, we refer to the joint set of controls for ambulance type, site of pickup, date of

13The latter set of prior utilization measures may capture ambulance service areas within large zip codes, which may in

10



pickup, and prior utilization as X0
𝑖
.

Unlike Doyle et al. (2015), we do not include patient demographics, prior medical conditions, or

ambulance diagnoses in the set of baseline controls. Instead, we “hold out” these variables—many

of which are highly predictive of mortality—and show that they are balanced across local ambulance

companies with differing propensities to send patients to the VA, conditional on
(
𝑧(𝑖),X0

𝑖

)
.

Our treatment of interest is delivery to a VA hospital, which we denote by the indicator 𝐷𝑖 ∈ {0,1}

for ambulance ride 𝑖. Transfers are rare in our sample.14 Company 𝑗 (𝑖) ∈ J𝑧 (𝑖) provides ride 𝑖 and is

drawn from the set of companies J𝑧 serving zip code 𝑧.15 Associated with each ride and company is

a potential treatment indicator 𝐷𝑖 ( 𝑗); thus 𝐷𝑖 = 𝐷𝑖 ( 𝑗 (𝑖)). Our main outcome is the 28-day mortality

of the patient, denoted by 𝑌𝑖 ∈ {0,1}. The associated potential outcomes 𝑌𝑖 (𝑑), 𝑑 ∈ {0,1}, depend on

whether the patient was transported to a VA hospital (𝑑 = 1) or not (𝑑 = 0), with 𝑌𝑖 = 𝑌𝑖 (𝐷𝑖).

Under the assumptions that different ambulance companies have systematically different tenden-

cies to transport patients to the VA, and that the assignment of 𝑗 (𝑖) is as good as random, conditional

on
(
𝑧 (𝑖) ,X0

𝑖

)
, we can use the identity of the ambulance company to construct a valid instrumental

variable for 𝐷𝑖 . More formally, we consider the following conditions for IV validity (Imbens and

Angrist 1994):

Condition 1 (IV Validity). For a random sample of ambulance rides 𝑖 provided by ambulance com-

panies 𝑗 , the following conditions hold:

(i) Relevance: 𝐸
[
𝐷𝑖 ( 𝑗)

��𝑧 (𝑖) ,X0
𝑖

]
is a nontrivial function of 𝑗 ∈ J𝑧 (𝑖) .

(ii) Independence and Exclusion: The vector of potential outcomes, (𝑌𝑖 (0) ,𝑌𝑖 (1) , 𝐷𝑖 ( 𝑗)), is inde-

pendent of the assigned ambulance company, 𝑗 (𝑖) ∈ J𝑧 (𝑖) , conditional on
(
𝑧 (𝑖) ,X0

𝑖

)
.

(iii) Monotonicity: Conditional on
(
𝑧 (𝑖) ,X0

𝑖

)
, for any 𝑗 and 𝑗 ′, 𝐷𝑖 ( 𝑗) ≥ 𝐷𝑖 ( 𝑗 ′) for all 𝑖, or 𝐷𝑖 ( 𝑗) ≤

𝐷𝑖 ( 𝑗 ′) for all 𝑖.

The compliers in this quasi-experiment are rides with dually eligible veterans who could be

swayed to a VA or non-VA hospital, depending on the identity of the ambulance company. Be-

cause VA hospitals typically only treat veterans, these compliers are patients who may state to an

turn account for correlations between prior use of VA vs. non-VA care and the identity of ambulance companies.
14Of the 132,535 rides that go to the VA, 828 (0.6%) have a non-VA hospital ED visit on the subsequent day. Of the

268,784 rides to a non-VA hospital, 2,191 (0.8%) have an ED visit at a VA hospital the next day. Of 79,684 VA admissions,
418 (0.5%) were transferred to a non-VA hospital within seven days of the ambulance ride. Of 157,682 non-VA admissions,
1,774 (1.1%) were transferred to a VA facility within seven days.

15We define an “ambulance company” by the interaction between the tax identification number (TIN) and the health
referral region (HRR) associated with the ride. This definition accounts for a few large corporations with a single TIN that
serve multiple regions.
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ambulance (but possibly not to all ambulances) that they are veterans and would be open to care at

the VA. By definition, they exclude veterans who would insist on being taken to a VA hospital or a

hospital outside of the VA. Nonetheless, in the following subsection, we estimate a sizeable share of

compliers, consistent with the high percentage of veterans in the baseline sample with both VA and

non-VA ED visits in the prior year (Table 1). We also estimate and report complier characteristics in

Section 5.1. As expected, compliers are more likely to have had previous ED visits at the VA; almost

three in ten compliers have had ED visits in both VA and non-VA hospitals in the prior year.

Our research design adopts the same structure as studies which exploit the random assignment

of judges (who vary in terms of leniency) for the purpose of identifying the impact of some court-

determined treatment (e.g., Kling 2006, Dahl, Kostol, and Mogstad 2014). As is standard in this

judges-design literature, to deal with finite samples, we construct a leave-out (or jackknife) instru-

mental variable that reflects the propensity of the ambulance company 𝑗 (𝑖) assigned to ride 𝑖 to trans-

port other patients to the VA. We compute this as the average fraction of other patients picked up by

company 𝑗 (𝑖) and transported to the VA. Specifically, for ambulance ride 𝑖 transporting patient 𝑘 (𝑖)

we define the leave-out probability 𝑍𝑖 of transport to the VA:

𝑍𝑖 =
1

𝐾 𝑗 (𝑖) −1

∑︁
𝑖′∈I𝑗 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

𝑁𝑘 (𝑖′ ) , 𝑗 (𝑖)
, (1)

where 𝐾 𝑗 is the total number of patients transported by company 𝑗 , 𝑁𝑘, 𝑗 is the total number of rides

taken by patient 𝑘 with company 𝑗 , and I𝑗 is the set of rides transported by ambulance company 𝑗 .

We estimate 𝑍𝑖 using the sample of dually eligible veteran ambulance rides (Column 1 of Table 1).

Under Condition 1, an IV estimate based on 𝑍𝑖 , conditioning on
(
𝑧 (𝑖) ,X0

𝑖

)
, recovers a local

average treatment effect (LATE) of the VA on mortality among compliers. For comparison, we also

consider the observational “treatment effect” of going to the VA on mortality of patients taken to a

hospital by a 911-dispatched ambulance, controlling for
(
𝑧 (𝑖) ,X0

𝑖

)
:

𝑌𝑖 = 𝛽𝐷𝑖 +X0
𝑖 𝛿0 + Z0,𝑧 (𝑖) + Y0,𝑖 . (2)

where Z0,𝑧 represents an unrestricted fixed effect for rides originating in zip code 𝑧. As in Doyle et

al. (2015), zip code fixed effects imply that both our observational and quasi-experimental concepts

of the VA treatment effect involve comparisons between veterans who live in the same zip code.

Estimating Equation (2) by OLS yields 𝛽𝑂𝐿𝑆 , while instrumenting 𝐷𝑖 with 𝑍𝑖 yields 𝛽𝐼𝑉 .
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The gap between 𝛽𝑂𝐿𝑆 and 𝛽𝐼𝑉 may stem from differences in the potential outcomes between

never-takers (i.e., patients who go to a non-VA facility regardless of the ambulance company) and

always-takers (i.e., patients who go to the VA regardless of the ambulance company) or from differ-

ences in treatment effects between compliers and non-compliers. In the setting of a VA advantage, if

sicker veterans select into VA hospitals (e.g., Agha et al. 2000), then 𝛽𝑂𝐿𝑆 may be smaller than 𝛽𝐼𝑉 .

We explore this gap more directly in Section 4.

3.2 First Stage, Balance, and Reduced Form

We begin our empirical analysis by demonstrating instrument relevance, Condition 1(i), with the

following first-stage regression:

𝐷𝑖 = 𝜋1𝑍𝑖 +X0
𝑖 𝛿1 + Z1,𝑧 (𝑖) + Y1,𝑖 . (3)

The coefficient 𝜋1 reflects the impact of ambulance company preferences on the probability that

the ride goes to the VA, conditional on our baseline controls for ambulance type, pickup site, zip

code, date categories, and veteran prior utilization. Figure 1, Panel A, shows a binned scatter plot of

residualized 𝐷𝑖 on the y-axis and residualized 𝑍𝑖 on the x-axis and reports �̂�1 = 0.882 (s.e. 0.034).

The first-stage relationship between 𝐷𝑖 and 𝑍𝑖 is very predictive and close to linear.

To assess independence, Condition 1(ii), we test whether 𝑍𝑖 is correlated with patient charac-

teristics that predict mortality. Specifically, we construct an estimate of predicted mortality 𝑌𝑖 using

“hold-out” patient characteristics of patient demographics and 31 Elixhauser indices for prior medical

conditions.16 We then fit models for 𝑌𝑖 based on the same right-hand-side specification as in Equation

(3). Panel B of Figure 1 shows (with hollow dots) no relationship between 𝑌𝑖 and 𝑍𝑖 , controlling for(
𝑧 (𝑖) ,X0

𝑖

)
.17 In contrast, the same panel shows (with solid dots) that the reduced-form relationship

between actual mortality, 𝑌𝑖 , and 𝑍𝑖 is significantly negative, under the same controls. Specifically,

for the reduced-form relationship,

𝑌𝑖 = 𝜋2𝑍𝑖 +X0
𝑖 𝛿2 + Z2,𝑧 (𝑖) + Y2,𝑖 , (4)

16Patient demographics include age, gender, and race and ethnicity. We capture age by two-year age bins from 65 years
to 100 years. We capture race and ethnicity by three dummies for white, Black, and Hispanic; the omitted category is
Asian/other. We use the 31 Elixhauser indices described in Elixhauser et al. (1998), interacting each index with the source
of the comorbidity record. There are three possible sources: VA only, Medicare claims only, and VA and Medicare claims.
This results in 3×31 = 93 dummies. Appendix Table A.3 further describes hold-out patient characteristics.

17In Appendix Figure A.1, we present a simulation exercise that suggests that we have the power to reject a data gener-
ating process in which more than 2-3 percent of patients are perfectly sorted by their predicted mortality to ambulances by
the ambulance’s propensity to transport to the VA.
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we find �̂�2 = −0.040 (s.e. 0.016). This suggests that quasi-random assignment to an ambulance

company more likely to transport to the VA results in an intention-to-treat reduction in mortality.

Under independence, we may quantify the share of compliers in our sample. As shown in Figure

1 (Panel A), 24% of rides assigned values of 𝑍𝑖 in the lowest vigintile still go to the VA. We may

consider veterans in these rides as “always-takers.” On the other hand, 58% of rides that are assigned

values of 𝑍𝑖 in the highest vigintile still go to a non-VA hospital. We may consider veterans in these

rides as “never-takers.” The remaining share of rides, or 18%, characterizes the share of compliers.18

The exclusion assumption in Condition 1(ii) asserts that ambulance companies do not affect out-

comes other than through their effect on whether a patient arrives at a VA or non-VA hospital. Our

notation also implicitly assumes that each complier has a well-defined non-VA hospital that is sta-

ble across ambulance companies. In Appendix A.1.1, we evaluate the robustness of our results to

potential violations of the exclusion condition. Specifically, we assess and find no evidence of any

correlation between 𝑍𝑖 and ambulance treatments captured in summary charges or between 𝑍𝑖 and

ambulance propensities to deliver patients to different non-VA hospitals. We also exploit the mor-

tality outcomes of patients with no prior VA utilization. These patients are dropped from our main

analytic sample because they have almost no chance of going to the VA, but they ride with the same

ambulance companies as patients in our sample. Controlling for an ambulance’s mortality outcomes

among these out-of-sample patients may mimic controlling for exclusion violations. In all of these

analyses, we find that our main IV estimate below is qualitatively unchanged, suggesting that our

results are robust to violations of exclusion.19

To assess the monotonicity assumption given by Condition 1(iii), we follow the standard practice

in the judges-design literature to show that the first-stage relationship between 𝐷𝑖 and 𝑍𝑖 remains pos-

itive for subgroups of patients defined by different observable characteristics (e.g., Arnold, Dobbie,

and Yang 2018; Bhuller et al. 2020). We detail these analyses in Appendix A.1.2. Section 4 presents a

stronger test of monotonicity (and IV validity) based on potential outcomes. Following the reasoning

18Interestingly, this share of compliers appears roughly similar to that in Doyle et al. (2015). Characterizing compliers in
Doyle et al. (2015) is less straightforward because the treatment of hospital spending is a continuous variable. Nonetheless,
if we characterize a treatment as a one-standard-deviation increase in spending (0.2 log points), this is slightly more than
the difference between the first and fourth quartile of their instrument (Table 1 in their paper). We could then interpret
their first-stage coefficient of 0.17 (Table 2 in their paper) as a complier share. While we note that compliers in our setting
need to reveal that they are a veteran (to at least one ambulance), which may reduce the share of compliers, our sample of
veterans is substantially more disadvantaged, which may imply a higher complier share (Card, Fenizia, and Silver 2018).

19Following Kolesar et al. (2015), the analyses in Appendix A.1.1 correspond to the weaker assumption that our in-
strument is uncorrelated with other ambulance-specific treatments impacting our outcome. Specifically, under this weaker
version of exclusion, we require that ambulance companies with higher values of 𝐸

[
𝐷𝑖 ( 𝑗)

��𝑧 (𝑖) ,X0
𝑖

]
do not also (i) apply

observed treatments during the ambulance ride that affect mortality, (ii) deliver patients to higher- or lower-quality non-VA
alternatives, or (iii) have direct mortality effects on patients in a way that can systematically explain our results.
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in Kitagawa (2015), this test amounts to showing a positive density for the potential outcome of death

in a given week among compliers.

3.3 Mortality Effect

With this background, we now move to our main results on patient mortality. In Table 2, we show

both OLS and IV estimation results for Equation (2). Panel A of the table shows 𝛽𝑂𝐿𝑆 from Equation

(2), while Panel B shows 𝛽𝐼𝑉 = �̂�2/�̂�1 from the first-stage and reduced-form regressions in Equations

(3) and (4). Column 1 shows our baseline specification, controlling for zip code and the variables in

X0
𝑖
. The OLS estimate is 𝛽𝑂𝐿𝑆 = −0.024 (s.e. 0.001), while the IV estimate is 𝛽𝐼𝑉 = −0.045 (s.e.

0.018).20 Relative to the mean 28-day mortality of 9.7 p.p., both estimates imply a sizeable reduction

in mortality for compliers taken to the VA.

In the next section, we will put our IV estimate in context with Doyle et al. (2015), which ex-

amines mortality outcomes following ambulance rides at the one-year mark. We find a one-year

mortality effect similar in magnitude to the Doyle et al. (2015) effect of being treated at a hospital

with higher spending by one standard deviation. However, in Section 5.2, we show that the VA saves

lives while also substantially reducing spending.

The other columns in Table 2 show OLS and IV estimates as we include additional controls to the

models: (i) patient demographics (age, race, gender), (ii) ambulance diagnostic (ICD-9) codes, (iii)

Elixhauser comorbidity indicators, and (iv) ambulance and co-rider controls, which are all described

in Appendix Table A.3. Following the reasoning in Altonji and Mansfield (2018), the latter co-

rider controls can capture patient selection at the ambulance company level beyond the observable

characteristics of the index patient by using characteristics of other rides and patients under the same

ambulance company. Specifically, these controls address the concern that sicker patients may be

allocated to ambulance companies that systematically differ in their propensity to transport patients

to the VA.

Reassuringly, both 𝛽𝑂𝐿𝑆 and 𝛽𝐼𝑉 remain stable as we add additional controls. Figure 2 illustrates

this stability as we add controls in a more granular fashion; Appendix Figure A.3 shows the stability

of the IV estimates as we permute the order in which we add controls. The stability of both the

OLS and IV estimates suggests a lack of selection based on a wide range of observable patient and

co-rider characteristics. If anything, the inclusion of co-rider controls (shown as control sets 11 and

20Appendix Figure A.2 shows the IV estimate visually by plotting the predicted first-stage probability of treatment from
Equation (3) on the x-axis and the predicted reduced-form effect on mortality from Equation (4) on the y-axis. The slope of
this visual IV relationship corresponds to 𝛽𝐼𝑉 = −0.045.
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12 in Figure 2) slightly increases the magnitude of 𝛽𝐼𝑉 , though the difference is not statistically

significant. Under the reasoning of Altonji, Elder, and Taber (2005), this stability suggests limited

scope for selection on unobservable characteristics that predict potential 28-day mortality. However,

IV estimates are larger than OLS estimates, suggesting either that never-takers are healthier than

always-takers (i.e., selection runs counter to treatment effects on mortality) or that the LATE is larger

than the unconditional average treatment effect (ATE).21 We investigate these possibilities in the next

section and in Section 5.1.

4 Survival Analysis

In this section, we develop and apply a survival analysis framework to understand the dynamics of

potential survival outcomes following the ambulance ride. We use this framework to draw several

insights. First, we determine the time course of VA effects on mortality. Second, we use this frame-

work to extend our validation of Condition 1, beyond our standard analysis in Section 3.2. Third, we

investigate the implications of heterogeneity in mortality risks between compliers and non-compliers

of our ambulance quasi-experiment.

4.1 Approach

Consider a set of potential survival outcomes 𝑆𝑖 (𝑡;𝑑) ∈ {0,1} under VA care (𝑑 = 1) and non-VA

care (𝑑 = 0) for each week 𝑡 ∈ {1, . . . ,52} following the ambulance ride.22 By definition, if 𝑆𝑖 (𝑡;𝑑) <

𝑆𝑖 (𝑡 −1;𝑑), then the patient in ambulance ride 𝑖 would die in the 𝑡th week following the ambulance

ride if exposed to treatment 𝑑. Of course, potential survival outcomes must weakly decrease over

time, i.e., 𝑆𝑖 (𝑡;𝑑) ≤ 𝑆𝑖 (𝑡 −1;𝑑) for all 𝑖, 𝑑, and 𝑡.

As with mortality outcomes, for each ambulance ride 𝑖, we can only observe the set of survival

outcomes corresponding to 𝑑 = 𝐷𝑖: 𝑆𝑖 (𝑡) = 𝐷𝑖𝑆𝑖 (𝑡;1) + (1−𝐷𝑖) 𝑆𝑖 (𝑡;0). However, appealing to

Abadie (2002), we can recover the expected survival outcomes for the set of compliers C whose

hospital choice depends on which ambulance company picks them up. In particular, under Con-

dition 1, we can estimate 𝑠𝐼𝑉 (𝑡;1) ≡ 𝐸 [ 𝑆𝑖 (𝑡;1) | 𝑖 ∈ C] by two-stage least squares using the first-

21We note that a Hausman test for equality of the two estimates has a t-statistic of only 1.0, so based on this evidence
alone, the gap between OLS and IV could be simply due to sampling error. In the next section, however, we show a dynamic
pattern of IV and OLS estimates, over the year after the initial ambulance ride, that points more definitively to systematic
differences. That is, using additional data over time, we infer with high confidence that the causal VA advantage is larger
than the (precisely estimated) OLS effect.

22We adopt the convention that a mortality event within the first seven days occurs in week 1. Thus, a mortality event
within 28 days occurs by the end of week 4.
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stage Equation (3) and a reduced-form equation similar to Equation (4) but with dependent variable

𝑆𝑖 (𝑡)𝐷𝑖 . Similarly, we can estimate 𝑠𝐼𝑉 (𝑡;0) ≡ 𝐸 [ 𝑆𝑖 (𝑡;0) | 𝑖 ∈ C] using the same first-stage model

but replacing the reduced-form outcome variable in Equation (4) with 𝑆𝑖 (𝑡) (𝐷𝑖 −1). Note that, by

construction, the IV estimand of the VA treatment effect on 28-day mortality in Section 3 satisfies

𝛽𝐼𝑉 = 𝑠𝐼𝑉 (4;1) − 𝑠𝐼𝑉 (4;0) .

Given the potential survival outcomes, we can then estimate potential hazard rates for mortality

under either VA or non-VA assignment:

ℎ𝐼𝑉 (𝑡;𝑑) ≡ 𝐸 [1− 𝑆𝑖 (𝑡 +1;𝑑) | 𝑆𝑖 (𝑡;𝑑) = 1, 𝑖 ∈ C]

=
𝑠𝐼𝑉 (𝑡;𝑑) − 𝑠𝐼𝑉 (𝑡 +1;𝑑)

𝑠𝐼𝑉 (𝑡;𝑑) , (5)

for 𝑑 ∈ {0,1} and 𝑡 ∈ {1, . . . ,52} , corresponding to weekly mortality hazard rates up to one year after

the initial ambulance ride. Under Condition 1, differences between {ℎ𝐼𝑉 (𝑡;1)}𝑡 and {ℎ𝐼𝑉 (𝑡;0)}𝑡 can

be interpreted as the causal effect of VA assignment, among compliers, on the set of mortality hazard

rates.23

As in Section 3, we calculate risk-adjusted OLS survival functions and mortality hazard rates,

conditional on 𝐷𝑖 . We estimate 𝑠𝑂𝐿𝑆 (𝑡;𝑑) ≡ 𝐸 [ 𝑆𝑖 (𝑡;𝑑) |𝐷𝑖 = 𝑑] = 𝐸 [ 𝑆𝑖 (𝑡) |𝐷𝑖 = 𝑑] by OLS, re-

placing the outcome variable in Equation (2) with 𝑆𝑖 (𝑡)𝐷𝑖 for 𝑠𝑂𝐿𝑆 (𝑡;1) and with 𝑆𝑖 (𝑡) (𝐷𝑖 −1)

for 𝑠𝑂𝐿𝑆 (𝑡;0). Our OLS estimand of the VA effect on 28-mortality, 𝛽𝑂𝐿𝑆 , is similarly equal to

𝑠𝑂𝐿𝑆 (4;1) − 𝑠𝑂𝐿𝑆 (4;0). Corresponding mortality hazard rates can also be calculated based on ob-

served risk-adjusted survival:

ℎ𝑂𝐿𝑆 (𝑡;𝑑) ≡ 𝐸 [1− 𝑆𝑖 (𝑡 +1;𝑑) | 𝑆𝑖 (𝑡;𝑑) , 𝐷𝑖 = 𝑑]

=
𝑠𝑂𝐿𝑆 (𝑡;𝑑) − 𝑠𝑂𝐿𝑆 (𝑡 +1;𝑑)

𝑠𝑂𝐿𝑆 (𝑡;𝑑)
. (6)

Compared to the potential survival functions and mortality hazards, the OLS analogs also incorporate

outcomes for the always-takers and never-takers whose choice of hospital is unaffected by the specific

ambulance company that picked them up. Specifically, 𝑠𝑂𝐿𝑆 (𝑡;1) and ℎ𝑂𝐿𝑆 (𝑡;1) reflect survival

outcomes for a combination of always-takers and compliers, while 𝑠𝑂𝐿𝑆 (𝑡;0) and ℎ𝑂𝐿𝑆 (𝑡;0) reflect

survival outcomes for a combination of never-takers and compliers.

23We emphasize that any gap between ℎ𝐼𝑉 (𝑡,1) and ℎ𝐼𝑉 (𝑡,0) at a later time horizon (e.g., 𝑡 = 12) could arise because
treatments at the VA affected the population of compliers who survive to week 𝑡 − 1 and are therefore at risk of death in
week 𝑡, or because of a treatment effect on the week 𝑡 hazard, holding the population fixed.
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4.2 Time Course of Mortality Effects

Since we examine potential survival outcomes one year after an ambulance ride, we restrict the anal-

ysis in this section to ambulance rides of patients with no prior ride within one year.24 Figure 3 shows

the estimated potential survival curves and potential hazard rates in weeks 0 to 52 for compliers as-

signed to the VA and those assigned to a non-VA hospital. The potential survival curves, shown in

Panel A, reveal a high risk of mortality among compliers. Mortality at 28 days among compliers

assigned to a non-VA hospital is greater than the sample mean of 9.7 p.p., and cumulative mortality at

one year is approximately 30 p.p. However, despite the substantial mortality risk over the subsequent

year, the gap in survival between VA- and non-VA-assigned compliers (i.e., the mortality treatment

effect) is fully realized at 28 days and remains stable for the rest of the year.

In Panel B, we examine the implied hazard rates and show that the differences in mortality are

concentrated in the first week following the ambulance ride. Thereafter, though the hazard rates for

both VA- and non-VA-assigned compliers remain relatively high, they are indistinguishable from each

other. This similarity suggests that the VA advantage results entirely from events within the first week

following the ambulance ride.

The potential hazard profiles in Figure 3 suggest that mortality risks for the compliers comprise

two separate risks: (i) a relatively high short-term risk component that the VA reduces, and (ii) a

relatively stable long-term risk component that remains the same for compliers in the VA and in non-

VA hospitals. If the latter risk reflects underlying patient health and is independent of the risk that

led to the ambulance call, then we would expect the long-run weekly mortality rate (after, e.g., three

months) to be the same for veterans quasi-randomly between VA and non-VA hospitals. We formalize

this as a test in Section 4.3.

The potential hazard rates allow us to assess whether excess mortality at non-VA hospitals in-

volves “harvesting,” or mortality displacement, in which deaths for patients at the VA are simply

delayed (Honore and Lleras-Muney 2006; Schwartz 2000). Under this hypothesis, survival gains

from VA care observed at 28 days are temporary and will fade in the long term. Such mortality

displacement would imply that the hazard of dying increases among VA-assigned compliers after a

24This restriction attributes survival for a given patient in a given week to the “upstream” ambulance ride, rather than
attributing the survival event to both upstream and downstream ambulance rides. This changes (decreases) the sample in
Appendix Table A.1 to 254,782 rides and 188,299 patients. In Appendix Figure A.15, we show that this restriction (or
any other restriction on prior rides) does not lead to qualitative differences in our estimated OLS or IV treatment effects on
mortality over time. Regardless of the number of days within which we require no prior ride, the IV estimates are larger
than 4 p.p. at 28 days and are stable within the year following the ambulance ride. The OLS estimates are between 2.0
and 2.5 p.p. at 28 days and essentially disappear by one year after the ambulance ride. We evaluate the implications of the
long-term difference between IV and OLS treatment effects in Section 4.4.
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time. We find no evidence of this in the potential hazard rates in Panel B of Figure 3. In Appendix

A.2, we formally test that ℎ𝐼𝑉 (𝑡;1) ≤ ℎ𝐼𝑉 (𝑡;0) for all 𝑡 and cannot reject this null hypothesis of no

harvesting.25 This suggests that the VA prevents rather than displaces deaths, leading to a persistent

survival benefit, as shown by the stable gap between potential survival curves in Panel A.

Finally, we can use the results in this section to put the magnitude of the VA advantage in context

with the results in Doyle et al. (2015). Doyle et al. (2015) find that transport to a hospital with

higher log spending by one standard deviation decreases one-year mortality by 3.7 p.p., about 10%

of average one-year mortality in their sample. In the sample of ambulance rides with no prior ride

within a year, our estimates imply that the VA reduces mortality by 2.2 p.p., about 7.7% of average

one-year mortality in our sample. The lower relative impact on mortality at one year, compared to the

benchmark impact on 28-day mortality, is a consequence of much higher cumulative mortality at one

year and the concentrated impact on mortality in the first week following the ambulance ride.

4.3 Extended IV Validity

We can also use the estimated potential survival outcomes to test the validity of our IV strategy based

on ambulance assignment. Under Condition 1, the density of any characteristic, including charac-

teristics defined by potential outcomes, must be positive among compliers of the quasi-experiment

(Balke and Pearl 1997; Imbens and Rubin 1997):

Pr ( 𝑋𝑖 = 𝑥,𝑌𝑖 = 𝑦 | 𝑖 ∈ C) ≥ 0, (7)

for all possible characteristics 𝑥 ∈ X and all possible potential outcomes 𝑦 ∈ Y. Kitagawa (2015)

proposes a formal test of this implication, and Chan, Gentzkow, and Yu (2019) show that applying

this test to potential outcomes can provide a stronger test of the conditions for IV validity, particularly

the monotonicity assumption in Condition 1(iii).26

In our setting, we partition survival potential outcomes into weeks of potential mortality for 52

weeks following the ambulance ride, for both VA- and non-VA-assigned compliers. Since survival

25Our test builds on the suggestion of Wolak (1987) to form a test statistic based on a quadratic form that represents the
deviations of the data from the predictions of a constrained model that imposes the inequality restrictions. We use a simple
bootstrap procedure to derive critical values of the test.

26Specifically, testing Equation (7) with respect to potential outcomes 𝑦 ∈ Y may be more likely to detect violations of
Condition 1 than standard tests of monotonicity, focusing on patient characteristics, that we employ in Appendix A.1.2. The
intuition behind this is that testing Equation (7) with respect to potential outcomes will reveal violations in Condition 1 that
relate not only to observed patient characteristics but also to unobserved patient characteristics correlated with potential
outcomes. Violations in quasi-random assignment or monotonicity may be more detectable with potential outcomes if
agents’ utility depends on potential outcomes.
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can only decrease over time, the potential mortality hazard rates for any week must be positive (i.e.,

ℎ𝐼𝑉 (𝑡;𝑑) ≥ 0 for all 𝑡 ∈ {0, . . . ,51}, 𝑑 ∈ {0,1}). This prediction may be violated if patients’ potential

mortality in some week 𝑡 is correlated with their assigned ambulance’s propensity to go to the VA (a

violation of independence). It may also be violated if there exist “defiers” (i.e., patients that are less

likely to go to the VA when assigned to ambulances that transport more often to the VA overall) with a

higher risk of death in some week 𝑡 (a violation in monotonicity). In Appendix A.2, we formally test

the joint inequality constraint that ℎ𝐼𝑉 (𝑡;𝑑) ≥ 0 for all 𝑡 ∈ {0, . . . ,51}, 𝑑 ∈ {0,1}, and cannot reject

this null hypothesis, with a bootstrap-based p-value of 1.00.

If the short-term and longer-term mortality risks facing veterans are independent (as is typically

assumed in a competing risks model) and treatment at the VA only affects the short-term risk com-

ponent, then Condition 1 also implies that ℎ𝐼𝑉 (𝑡;1) = ℎ𝐼𝑉 (𝑡;0) for 𝑡 ≥ 𝑡, for some 𝑡 after the acute

ambulance episode. Specifically, if the short-term risk component disappears after some time 𝑡, and if

the assignment of compliers to VA and non-VA hospitals is as good as random, then the death rates of

the two groups of compliers should be the same after 𝑡. Visually, it appears that the potential hazard

rates of the compliers are very similar in weeks 𝑡 ∈ {1, . . . ,51}. Consistent with this impression, in

Appendix A.2, we show that we cannot reject that ℎ𝐼𝑉 (𝑡;1) = ℎ𝐼𝑉 (𝑡;0) for all weeks 𝑡 ≥ 1, with a

bootstrap-based p-value of 0.31.

4.4 Selection and Differential Mortality Risks

Finally, we take a closer look at death rates during the year after the ambulance ride to better under-

stand the differences between our main OLS and IV estimates of the VA advantage. As shown in

Panel A of Figure 4, we find that, remarkably, OLS survival curves cross, at about nine to ten months

after the ambulance ride. This crossing reflects a reversal in the sign of the OLS-estimated VA treat-

ment effect: While patients arriving at the VA experience an immediate survival benefit, the survival

benefit eventually reverses. Patients arriving at the VA are more likely to die within a year.

Consistent with this observed survival pattern, Panel B of Figure 4 reveals a cross-over in the

observed hazard rates of death for patients taken to VA vs. non-VA hospitals. In the first week after

the ambulance ride, the death rate is lower for patients at the VA, though the gap between the VA

and non-VA hazards is smaller than the corresponding potential-outcomes gap for compliers shown

in Figure 3. After that, the hazard rate is consistently higher for patients at the VA than for those at

a non-VA hospital (i.e., ℎ𝑂𝐿𝑆 (𝑡;1) > ℎ𝑂𝐿𝑆 (𝑡;0) for 𝑡 ≥ 1). This gap suggests differences in baseline

risk between always-takers and never-takers that the short-term VA advantage initially offsets but that
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reemerge soon after the first week. These differences in baseline mortality hazards accumulate over

time to generate large differences in long-term survival.

To identify differences in the baseline mortality risk between VA-assigned compliers and always-

takers, we compare ℎ𝐼𝑉 (𝑡;1) and ℎ𝑂𝐿𝑆 (𝑡;1); to identify differences between non-VA-assigned com-

pliers and never-takers, we compare ℎ𝐼𝑉 (𝑡;0) and ℎ𝑂𝐿𝑆 (𝑡;0). In Appendix A.2, we show that we

cannot reject the null hypothesis that ℎ𝐼𝑉 (𝑡;1) = ℎ𝑂𝐿𝑆 (𝑡;1) for 𝑡 ≥ 1. However, we can strongly

reject the null hypothesis that ℎ𝐼𝑉 (𝑡;0) = ℎ𝑂𝐿𝑆 (𝑡;0) for 𝑡 ≥ 1. The average value of ℎ𝐼𝑉 (𝑡;0), for

𝑡 ≥ 1, is significantly larger than the corresponding average value of ℎ𝑂𝐿𝑆 (𝑡;0), for 𝑡 ≥ 1, which im-

plies that never-takers are healthier than compliers. This survival analysis shows, with substantially

more precision than that afforded by the benchmark analysis in Section 3.3, that the VA advantage is

larger than the (precisely estimated) OLS effect would imply. This strongly suggests that, outside of

the quasi-experiment, veterans who use the VA are sicker than veterans who do not.

5 Mechanisms

This section probes further into the mechanisms behind the large VA mortality advantage. We divide

our analyses into three sets. First, we explore heterogeneity in treatment effects along dimensions

of patient and hospital characteristics. Second, we ask whether the VA produces superior health out-

comes by spending more; spending less would imply mechanisms that improve productivity. Relat-

edly, we investigate differences in services reported by VA vs. non-VA hospitals. Third, we indirectly

assess the mechanisms of continuity of care, health IT, and integration of care among veterans who

only use non-VA care.

5.1 Heterogeneous Treatment Effects

We explore of several dimensions of potentially heterogeneous treatment effects. Overall, our ev-

idence suggests a larger VA advantage among medical vulnerable veterans and those more likely

to use the VA. However, the VA advantage holds broadly across all types of veterans, and it is not

explained by characteristics of either VA or non-VA hospitals.

Complier Characteristics. One explanation for 𝛽𝐼𝑉 > 𝛽𝑂𝐿𝑆 in Table 2 is that the complier popula-

tion is very different than the overall population. So we begin by examining observable characteristics
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of compliers relative to the overall sample.27 Table 4 shows results for various characteristics. Com-

pliers are more likely to be Black, to have lower income, and to have a prior VA ED visit. Compliers

have slightly fewer recorded Elixhauser comorbidities and are less likely to receive Advanced Life

Support (ALS). In Appendix Table A.7, we show similar patterns when comparing always-takers and

never-takers, following an approach from Dahl, Kostol, and Mogstad (2014) that we describe in Ap-

pendix A.3. Consistent with our analysis in Section 4.4, we find that VA always-takers have higher

predicted mortality, based on observable characteristics, than either compliers or never-takers.28

Researchers and policymakers have noted a higher incidence of mental health and substance abuse

issues among veterans (Tanielian and Jaycox 2008). Recognizing this need, Congress allocated $152

million for increasing mental health care programming in 1999; in the following two decades, VA sta-

tions expanded mental health services and hired thousands of mental health providers (106th Congress

1999; U.S. Government Accountability Office 2015). This capacity to treat mental health disorders

contrasts with the non-VA health care sector, where mental health services have long been under-

funded and underprovided (Huskamp and Iglehart 2016). We find higher rates of mental illness and

substance among compliers than in the overall population (Table 4); we similarly find higher rates of

these conditions among always-takers than among never-takers (Appendix Table A.7).

Selection Model. Next, we explore whether compliers differ by their treatment effects, using the

standard framework of an endogenous selection model. Following the “marginal treatment effects”

(MTE) literature (see, e.g., Heckman and Vytlacil (2007) for a review), we exploit our multivalued

ambulance instrument to characterize the relationship between treatment effects and the veteran’s

revealed propensity to go to the VA. Specifically, we allow flexibility in the returns to VA care for

compliers induced into VA care by ambulances with different VA shares. Compliers induced into

VA care by ambulances with low VA shares reveal a higher propensity to use the VA than those who

require ambulances with high VA shares to go to the VA. We provide further details of our approach

in Appendix A.4.29

27Specifically, we employ the same approach from Abadie (2002) that we introduced in Section 4.1. Under IV validity
in Condition 1, we can estimate 𝐸 [ 𝑋𝑖 | 𝑖 ∈ C] for some characteristic 𝑋𝑖 by two-stage least squares, involving the first-stage
Equation (3) and a reduced-form equation replacing the outcome variable in Equation (4) with 𝑋𝑖𝐷𝑖 .

28For Table 4 and Appendix Table A.7, we predict mortality using the same regression of mortality on both baseline
and hold-out characteristics described in Section 3.2 applied only on rides going to non-VA hospitals, to separate the VA
advantage from coefficients used in the prediction. The intuition for this is described in Chetty, Friedman, and Rockoff
(2014, p. 2598). Adopting their approach of estimating coefficients on predictors while controlling for 𝐷𝑖 yields nearly
identical results.

29Our approach amounts to classifying ambulance rides into two groups based on having above- or below-median val-
ues of the characteristic of interest, then fitting a control function version of our main estimation model that includes a
dummy for presentation at a VA hospital, an interaction of this dummy with an indicator for above-median values of the
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We find evidence of moderate “selection on gains,” in which veterans with larger mortality reduc-

tions from going to the VA are more likely to go to the VA. In Appendix Figure A.8, we show the

MTE function ranging from veterans who are most likely to use the VA to those who are least likely

to use the VA. Veterans induced to go to the VA by lower-propensity ambulances have higher returns

to VA care than those induced by high-propensity ambulances. In Appendix Table A.8, we find a

substantial ATE, only marginally smaller than the LATE, across various specifications.

Heterogeneity by Patient and Hospital Characteristics. Finally, we assess heterogeneity in the

VA advantage by observable hospital and patient characteristics. We consider characteristics in three

categories: (i) patient characteristics; (ii) characteristics of non-VA hospitals serving a given zip

code, weighting the hospitals by volume of rides from the zip code; and (iii) characteristics of the

VA hospital serving a given zip code. Appendix A.5 provides details on hospital characteristics;

Appendix A.6 describes our estimation approach.

Appendix Table A.9 shows results for patient characteristics. The VA advantage is substantially

larger for medically vulnerable veterans. Veterans with higher predicted mortality, those transported

by ALS, and those with more ambulance rides in the prior year have larger treatment effects. The VA

survival benefit appears greater for veterans suffering from mental illness or substance abuse and for

those with more prior visits at the VA. However, none of the differences in the VA survival benefit

across patient characteristics imply a group harmed by the VA. Notably, the VA survival benefit is not

limited to select medical conditions that stereotypical users of the VA might have; even patients who

are less likely to use VA care experience a similar VA survival benefit.

Table 5 shows differences in hospital characteristics between VA and non-VA hospitals. For

example, VA hospitals have fewer ED visits and admissions per bed and are more likely to be teaching

hospitals.30 However, we find only modest treatment heterogeneity with respect to any of these

hospital characteristics (Appendix Tables A.10 to A.12). Heterogeneity along any of the VA or non-

VA hospital characteristics across zip codes is less than 20% of the main VA advantage, suggesting

that the VA advantage pertains across the spectrum of VA and non-VA alternatives. Zip codes from

which non-VA rides predominantly go to a single (non-VA) hospital have a smaller VA advantage. As

for VA hospital characteristics, the VA advantage is greater for larger VA hospitals. In Appendix A.7,

we describe complementary results from an empirical Bayes approach to heterogeneity in station-

characteristic of interest, and the residual from our first-stage model.
30VA hospitals appear to have more long-term care admissions, which explains a higher average length of stay (i.e., fewer

admissions for a slightly larger average daily census). As shown in Table 3, the difference in length of stay is not borne out
in our sample; the IV estimate of the effect on length of stay suggests that the VA reduces length of stay.
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specific OLS estimates of the VA advantage; in that approach, we fail to demonstrate meaningful

heterogeneity in the VA advantage across VA stations.

5.2 Effect on Spending and Utilization

In light of the important literature on the returns to spending in health care (e.g., Garber and Skinner

2008), we examine the causal effect of VA vs. non-VA care on spending. The motivation behind this

analysis is similar to that in Doyle et al. (2015), who sought to understand whether higher-spending

hospitals achieve better health outcomes. We also move beyond aggregate spending to examine the

nature of services reportedly delivered in VA and non-VA care.

Actual Spending. We calculate our baseline measure of spending from the perspective of actual

spending by taxpayers and veterans, relying on internal VA cost data and Medicare payment data

from claims. Internal VA cost accounting apportions costs by VA utilization data and scales the cost

of each encounter so that total spending matches actual budgeted spending within each VA station.31

On the Medicare side, we include total payments made to providers, including those from the veteran

(i.e., coinsurance and deductible), the government, and any other insurer.

Using the same instrumental variables approach as in our benchmark analysis, we study the VA

effect on spending over time since the ambulance ride. Specifically, we combine VA and Medicare

spending in various weekly intervals since the ambulance ride. Table 3 further shows that the VA

reduces 28-day combined spending by $2,598, or 21% of the mean 28-day spending. The reduction

in spending reflects a lower probability of inpatient admission and fewer hospital days associated with

VA care. Interestingly, the VA does not uniformly reduce utilization: The VA increases outpatient

visits in the following 28 days. Figure 5 shows potential cumulative spending curves during the first

year and implied weekly spending rates conditional on survival, for compliers transported to a VA

hospital and those transported to a non-VA hospital. Differences in cumulative spending accrue until

about three months after the ambulance ride; thereafter, the differences remain stable.

Fixed-Price Spending and Reported Utilization. As an alternative measure of spending, we take

reported utilization in the VA and Medicare data and apply the same prices to each instance of uti-

lization, based on its identifying code, regardless of whether it was covered by the VA budget or

31The apportioning uses inputs such as Relative Value Units (RVUs) associated with CPT codes, Diagnosis-Related
Group (DRG) weights, patient characteristics, and admission lengths of stay. This methodology is detailed in Wagner,
Chen, and Barnett (2003) and in Phibbs et al. (2019).
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reimbursed by Medicare.32 According to this measure, the VA reduces 28-day combined spending by

much more: $5,267, about double the reduction in our baseline measure of actual spending.33

Importantly, both VA and non-VA hospitals use identical coding systems for recording utilization

and are held to the same standard of accurate coding based on clinical documentation. However,

financial incentives in the two settings differ starkly. Outside of the VA, financing is predominantly

fee-for-service, tightly connected with units of utilization, and based on notions of cost. Inside the

VA, financing is based on the population of veteran enrollees and much less connected with reported

utilization (Wasserman et al. 2005).

In Appendix A.8, we uncover stark differences in reported utilization between the VA and non-

VA hospitals. These differences likely reflect a combination of differences in reporting (Dafny 2005;

Fang and Gong 2017) and differences in actual utilization. Among the most common services, some

outpatient and rehabilitation services (e.g., CPT codes 99212 and 99110) are much more likely to

be performed in the VA than outside of it; remarkably, telephone calls (CPT code 98966) are only

reported at the VA. Services with high reimbursement (under fee-for-service arrangements) are more

likely to be performed in non-VA hospitals; in contrast, services that are more common in the VA

receive very little reimbursement. Within evaluation and management (E/M) services with different

levels of complexity, the odds of reporting high- vs. low-complexity services are more than five times

higher in private hospitals vs. the VA.

Implications. The result that the VA saves lives while reducing spending is significant for two

reasons. First, the result speaks directly to the policy question of whether the VA should privatize

its care in a Medicare-type arrangement. We show that, at least for the patients in our design, this

privatization arrangement would be dominated by the status quo, as it would lead to both higher

spending and worse health outcomes. Second, this joint finding suggests that the general mechanism

behind the VA survival benefit is not higher spending but higher productivity.

Our evidence points to productive inefficiency, rather than “flat of the curve” spending, under-

lying the relatively low returns to US health care. We also uncover striking differences in reported

utilization between the VA and non-VA sectors. Public vs. private provision of care imply fundamen-

32We closely follow methodology laid out by Gottlieb et al. (2010) and Finkelstein, Gentzkow, and Williams (2016).
Specifically, we impute spending for physician services based on Relative Value Units (RVUs) for service procedures
with CPT codes, for other outpatient procedures based on average reimbursements for (non-CPT) HCPCS codes, and for
inpatient stays based on Diagnosis-Related Group (DRG) weights. We scale prices by a constant so that imputed total
Medicare spending equals actual total Medicare spending.

33See Appendix Figure A.10 for spending potential outcomes when considering spending with prices held fixed between
VA and Medicare utilization. This figure follows Figure 5 in format.
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tally different sets of financial incentives, which may plausibly drive stark differences in both reported

and actual utilization. The private sector neglects many services with low reimbursement, but these

services may nonetheless improve coordination of care and health outcomes. The private-sector re-

liance on fee-for-service billing may also imply differences in the share of time physicians spend on

documentation and differences in the preferences and skills of physicians who select to work in the

respective environments. These results complement a growing literature on productivity differences

across personnel (Chan, Gentzkow, and Yu 2019; Silver 2020) and hospitals (Chandra and Staiger

2007; Chandra and Staiger 2020) by showing an important productivity difference between health

care systems.

5.3 Health IT and Integrated Care

Our final analysis investigates the role of health IT and integrated care in generating the VA survival

advantage. There is much in the qualitative literature to support this mechanism. Fragmentation

and poor coordination in the US health sector has long been highlighted as a potential source of

inefficiency. In the VA, a qualitative literature attributes its “transformation” into a high-quality health

system, achieving superior performance in a wide range of process measures, to its adoption of health

IT and integrated care in the mid-1990s (e.g., Jha et al. 2003).34

While empirical research has focused on one mechanism or another, key complementarities likely

exist between a patient’s continuity of care and a health system’s adoption of health IT and integrated

care. Patients with isolated problems or those with no prior utilization in a health care system will

benefit little from health IT and integrated care. Similarly, patients who are well-informed or whose

providers have time to make decisions (e.g., hip replacements, chemotherapy initiation) may over-

come informational barriers imposed by the lack of health IT or integrated care. In contrast, easy

access to information is likely crucial in our setting of emergency conditions.

In this subsection, we can provide only indirect evidence of these mechanisms. The VA’s imple-

mentation of health IT and its reorganization into more integrated care in the mid-1990s predate the

availability of data for analysis.35 Similarly, it is not possible to examine the VA’s effect on mortality

among veterans who have no prior utilization at the VA since it is exceedingly rare for these veterans

to be transported to the VA by ambulance, as shown in Appendix Figure A.15. Thus, we will ex-

34For recent qualitative research that illuminates this mechanism between VA and non-VA care, see, e.g., Nevedal et al.
(2019) and Rinne et al. (2019).

35Indeed, the VA’s adoption of a standardized health IT platform (VistA) in the mid-1990s paved the way for research on
health services within the VA system, including this study.
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amine these mechanisms in a separate setting of veterans who only use providers outside of the VA.

As Appendix Figure A.15 also shows, veterans may utilize more than one non-VA hospital system;

ambulances may or may not transport these veterans to the hospital system where they usually receive

care.

We detail our analysis in Appendix A.9. In brief, we construct a separate sample of veterans who

only used non-VA care in the prior year and live in a zip code with more than one nearby non-VA

hospital. While ambulances will almost certainly transport these veterans to a non-VA hospital, we

assess mortality outcomes depending on whether they are quasi-randomly assigned—via a similar

ambulance instrument as the one we use in our benchmark analysis—to their modal non-VA hospital.

This modal-hospital effect on mortality arguably captures at least some of the potential effect of con-

tinuity of care in the private sector. We then examine complementarities with health IT and integrated

care by further exploiting two changes induced by incentives in federal laws and payment policies

during our study period. First, the HITECH Act of 2009 dramatically increased the share of hospitals

using health IT (Blumenthal 2010).36 Second, in 2011, Medicare began to incentivize care integration

via alternative payment arrangements to “Accountable Care Organizations” (ACOs) (Greaney 2011).

We find that, overall, the survival advantage of being transported to a veteran’s modal hospital is

small. Importantly, however, we show in Figure 6 that the effect only begins to appear around the

time of the HITECH Act of 2009, when a large share of non-VA hospitals adopted health IT. We

also examine how the modal-hospital effect relates to hospital-specific dates of health IT or ACO

adoption. Our results provide suggestive evidence that the growth in the modal-hospital effect is

associated with health IT adoption, even when holding hospitals fixed. The relationship with ACO

adoption appears similar but is imprecise (see Appendix Table A.15).37 Nonetheless, even after 2009,

the modal-hospital effect among private hospitals is at most half the size of the VA advantage. This

suggests important mechanisms outside of health IT and integrated care (e.g., financial incentives), as

described in Section 2.1, or differences in the VA’s implementation of health IT and integrated care.

36In 2009, 1.5% of US non-federal hospitals had an electronic health record (EHR) system in all clinical units, and an
additional 7.6% had an EHR system in at least one clinical unit (Jha et al. 2009). By 2014, 97% of such hospitals had pos-
sessed an EHR technology meeting requirements of the Department of Health and Human Services, and 76% of hospitals
had implemented the EHR system in at least one clinical unit (Charles, Gabriel, and Searcy 2015). However, interoperabil-
ity (i.e., the ability to share electronic medical records) across private hospitals has remained low (Holmgren, Patel, and
Adler-Milstein 2017). To this day, multiple EHR platforms exist in the private sector, and they do not communicate with
each other.

37In contrast to dramatic rates of health IT adoption, we find that only 11% of non-VA hospitals participated in ACOs by
the last year of our sample, consistent with other research (Colla et al. 2016).
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6 Conclusion

The structure of health care delivery to US veterans provides a distinctive research opportunity, al-

lowing us to study fundamentally different systems of health care that coexist for a large patient

population. Specifically, millions of older veterans (those at least age 65) are dually eligible for care

in a public system operated by the Veterans Health Administration or in private-sector hospitals fi-

nanced by Medicare. The ambulance setting provides plausible quasi-experimental assignment of

veterans to these health care systems. Our work has current policy relevance, as the Department of

Veterans Affairs is now considering whether to bolster its existing public delivery system or to replace

it, either partially or entirely, with a system of financing private care.

We find a significant VA advantage: Our preferred instrumental variables estimate, based on

veterans induced by their ambulance company to be treated at a VA or non-VA hospital, shows a 4.5

p.p. survival gain at 28 days (95% confidence interval 1.1 to 8.0 p.p.), implying about a 46% reduction

in mortality relative to the overall average. These survival gains occur in the first week following

the ambulance ride and appear to be long-lasting. We further use this survival-analysis framework

to validate our IV quasi-experiment and to demonstrate differences in long-term mortality hazards

between VA and non-VA users who are non-compliers; we show that, if anything, the VA treats

sicker patients in our sample than do non-VA hospitals. Although we find some intuitive margins of

heterogeneity in the VA advantage, the VA outperforms the non-VA alternative in a wide variety of

locations and for all types of patients that we consider, not only for patients with stereotypical medical

conditions.

Importantly, the VA also reduces total spending by 21% relative to non-VA providers, which

points to higher productivity in the VA than in the private sector. We demonstrate striking differ-

ences in the procedures reportedly performed at the VA vs. those reportedly performed by non-

VA providers. These differences relate to the underlying arrangements in which public vs. private

providers are funded in the US (and other developed countries). We also find evidence consistent with

complementary mechanisms of continuity of care, health IT, and organization. For example, veterans

with prior VA care (and those who are more likely to use the VA) have larger survival gains from VA

assignment. Among veterans who only use non-VA hospitals, the benefits of continuity of care are

weaker and seem to materialize only when their (non-VA) hospitals adopt health IT and integrated

care. Still, even when accounting for private efforts to adopt health IT and reorganize care, a sizeable

residual VA advantage remains.
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Our results contribute more broadly to two streams of literature on the efficiency of production.

First, we contribute to the descriptive analysis that compares the performance of the US health care

system to systems in other developed countries (Blank, Burau, and Kuhlmann 2017). By almost all

accounts, comparisons of US health outcomes and health care spending are unfavorable with those of

other developed countries (Garber and Skinner 2008; Rice et al. 2013). Our analysis points to a po-

tentially significant source of inefficiency in the US context: its version of private provision of health

care. This arrangement rewards costly but not necessarily efficient care. Although several developed

countries that outperform the US also feature private provision of care, the US system arguably has

the most complex configuration of financing and delivery, with high levels of uninsurance, adminis-

trative costs, and fragmentation (Cebul et al. 2008). These well-known information and coordination

gaps may be fatal, at least for veterans in emergencies.

Second, we provide empirical support in the context of health care for the general idea of produc-

tion complementarities among three innovations in production: workplace reorganization, products

and services, and information technology (IT) (Bresnahan, Brynjolfsson, and Hitt 2002). The VA

adopted a comprehensive health IT system almost two decades before nearly all private hospitals in

the US. This reform was accompanied by a massive integration of care, reorganizing the delivery

system and redefining services involved in patient care. For private hospitals, redefining health care

products and services is limited by fee-for-service payment systems and the difficulty of measuring

quality (Cutler 2010). Hospitals without a broad network of clinics and a clear mandate for a popula-

tion’s health may find it difficult to reorganize and redefine their services to optimize patient health.

Our result that health IT in private hospitals may improve survival—but to a muted extent and only

for patients that the hospitals have previously treated—is consistent with these production comple-

mentarities. Complementarities in health care production may pose barriers for replicating the VA

advantage in the fragmented private landscape of US health care.
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Figure 1: First Stage, Balance, and Reduced Form
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Note: Panel A shows a binned scatter plot of arrival at a VA hospital on the y-axis against the ambulance
leave-out propensity to arrive at a VA hospital on the x-axis. The figure is a graphical representation of the
first-stage regression in Equation (3). Panel B shows binned scatter plots of 28-day mortality and predicted
28-day mortality on the y-axis against the ambulance leave-out propensity to arrive at a VA hospital on the x-
axis. Mortality bin means are shown in solid circles, while predicted mortality bin means are shown in hollow
circles. The figure represents the reduced-form regression in Equation (4) and the corresponding balance
regression replacing mortality with predicted mortality. The sample includes 401,319 ambulance rides and
1,217 combinations of ambulance company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs).
The sample selection is given in Appendix Table A.1. Baseline controls are detailed in Appendix Table A.2
and include patient zip code dummies, ALS/BLS dummies, source of the ambulance ride, time categories, and
patient prior utilization.
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Figure 2: OLS and IV Specifications
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Note: This figure shows OLS and IV estimates of the effect of the VA on 28-day mortality, represented in
Equation (2) as 𝛽, with progressive sets of controls. Numbered incremental controls correspond to categories
or subcategories of variables presented in order in Appendix Tables A.2 and A.3. Control sets are as follows:
(1) zip code; (2) pickup source; (3) ambulance service; (4) time categories; (5) prior utilization; (6) demo-
graphics; (7) socioeconomic status, combat history, and eligibility; (8) extended prior utilization; (9) prior
diagnoses; (10) 3-digit ambulance diagnosis codes; (11) co-rider baseline controls; and (12) co-rider hold-out
controls. Estimates are shown along solid lines, while 95% confidence intervals are shown in dashed lines. All
specifications use the baseline sample, given in Appendix Table A.1.
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Figure 3: Complier Potential Outcomes

A: Survival
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Note: This figure shows potential outcomes for ambulance compliers who arrive at a VA hospital and those
who arrive at a non-VA hospital. Panel A shows survival outcomes as a function of days from the ambulance
ride. “Days” indicate one-week intervals from the ambulance ride. Denote 𝑆𝑖 (𝑡;𝑑) ∈ {0,1} as an indicator for
whether patient 𝑖 survives up to time 𝑡 after the ambulance ride, depending on whether the patient arrives at the
VA (𝑑 = 1) or a non-VA hospital (𝑑 = 0). Observed survival is 𝑆𝑖 (𝑡) =𝐷𝑖𝑆𝑖 (𝑡;1) + (1−𝐷𝑖) 𝑆𝑖 (𝑡;0). We estimate
complier VA survival, or 𝐸 [ 𝑆𝑖 (𝑡;1) | 𝑖 ∈ C], by an IV regression with a dependent variable of 𝑆𝑖 (𝑡)𝐷𝑖 , the
endogenous VA treatment 𝐷𝑖 , and the same first-stage and reduced-form design matrix implied by Equations
(3) and (4). We estimate complier non-VA survival, or 𝐸 [ 𝑆𝑖 (𝑡;0) | 𝑖 ∈ C], by a similar IV regression with a
dependent variable of 𝑆𝑖 (𝑡) (𝐷𝑖 −1). All regressions use a sample of ambulance rides with no prior ride in the
last year and the same baseline controls as described in Figure 1. Panel B presents implied weekly mortality
hazard rates, as given by Equation (5).

40



Figure 4: Observed Risk-Adjusted Outcomes
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Note: This figure shows observed risk-adjusted outcomes for patients who arrive at a VA hospital and those
who arrive at a non-VA hospital. Panel A shows survival outcomes as a function of days from the ambulance
ride. “Days” indicate one-week intervals from the ambulance ride. Denote 𝑆𝑖 (𝑡;𝑑) ∈ {0,1} as an indicator for
whether patient 𝑖 survives up to time 𝑡 after the ambulance ride, depending on whether the patient arrives at
the VA (𝑑 = 1) or a non-VA hospital (𝑑 = 0). Observed survival is 𝑆𝑖 (𝑡) = 𝐷𝑖𝑆𝑖 (𝑡;1) + (1−𝐷𝑖) 𝑆𝑖 (𝑡;0). We
estimate VA survival, or 𝐸 [ 𝑆𝑖 (𝑡) |𝐷𝑖 = 1], by an OLS regression with a dependent variable of 𝑆𝑖 (𝑡)𝐷𝑖 and the
same design matrix implied by Equation (2); we estimate non-VA survival, or 𝐸 [ 𝑆𝑖 (𝑡) |𝐷𝑖 = 0], by a similar
OLS regression with a dependent variable of 𝑆𝑖 (𝑡) (𝐷𝑖 −1). All regressions use a sample of ambulance rides
with no prior ride in the last year and the same baseline controls as described in Figure 1. Panel B presents
implied weekly mortality hazard rates, as given by Equation (6).
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Figure 5: Complier Spending

A: Cumulative Spending
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B: Conditional Spending Rate
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Note: This figure shows potential spending outcomes for ambulance compliers who arrive at a VA hospital and
those who arrive at a non-VA hospital. Denote Spending𝑖 (𝑡;𝑑) as the potential cumulative spending function
for patient 𝑖 up to time 𝑡 after the ambulance ride, depending on whether the patient arrives at the VA (𝑑 = 1) or a
non-VA hospital (𝑑 = 0). If a veteran 𝑖 dies at 𝑡, Spending𝑖 (𝑡;𝑑) will be constant for all 𝑡 ≥ 𝑡. Panel A shows cu-
mulative spending per patient as a function of days from the ambulance ride. We estimate cumulative spending
for compliers who arrive at a VA hospital, or 𝐸

[
Spending𝑖 (𝑡;1)

�� 𝑖 ∈ C
]
, by an IV regression with a depen-

dent variable of Spending𝑖 (𝑡) ×𝐷𝑖 , the endogenous VA treatment 𝐷𝑖 , and the same first-stage and reduced-
form design matrix implied by Equations (3) and (4). We estimate complier non-VA cumulative spending, or
𝐸
[
Spending𝑖 (𝑡;0)

�� 𝑖 ∈ C
]
, by a similar IV regression with a dependent variable of Spending𝑖 (𝑡) (𝐷𝑖 −1). All

regressions use a sample of ambulance rides with no prior ride in the last year and the same baseline controls as
described in Figure 1. Panel B presents implied weekly spending rates for compliers, conditional on survival.
See Appendix Figure A.10 for spending results with prices fixed.
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Figure 6: Modal Hospital Effect and Health IT Adoption

A: Modal Hospital Effect by Year
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Note: Panel A of this figure shows the IV estimate of the modal non-VA hospital effect on 28-day mortality by
calendar year. The first-stage and reduced-form equations are given in Equations (A.30) and (A.31). The overall
sample is the same alternative sample designed to study choice among non-VA hospitals for patients with only
non-VA utilization in the prior year. Results for the overall IV estimates are shown in Appendix Figure A.16.
Details of the sample selection are given in Appendix Table A.13. Estimates are shown in connected dots,
while 95% confidence intervals are shown in dashed lines. Panel B of the figure shows the percent of rides
going to hospitals after health IT adoption in our analytic sample. Health IT adoption is defined from a dataset
from the Office of the National Coordinator of Health Information Technology (ONC). This dataset merges
hospital attestation data from the Medicare EHR Incentive Program with certified EHR product information
from ONC’s Certified Health IT Product List (CHPL), and we code the use of any certified product as health
IT adoption.
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Table 4: Complier Characteristics

Overall Compliers Ratio
Male 0.963 0.952 0.99

(0.006) [0.98 - 1.00]
Age 76.0 74.9 0.99

(0.433) [0.97 - 1.00]
Black 0.194 0.257 1.33

(0.028) [1.05 - 1.61]
Income $20,905 $16,972 0.81

($611) [0.75 - 0.87]
Rural zip code 0.051 0.091 1.78

(0.025) [0.82 - 2.75]
Residential source 0.705 0.647 0.92

(0.033) [0.83 - 1.01]
Comorbidity count 6.143 5.447 0.89

(0.113) [0.85 - 0.92]
Mental illness 0.427 0.444 1.04

(0.015) [0.97 - 1.11]
Substance abuse 0.144 0.163 1.13

(0.011) [0.97 - 1.28]
Prior VA ED visit only 0.294 0.412 1.40

(0.012) [1.32 - 1.48]
Prior non-VA ED visit only 0.247 0.065 0.26

(0.005) [0.22 - 0.30]
Prior VA and non-VA ED visit 0.235 0.288 1.23

(0.012) [1.12 - 1.33]
Ambulance rides in prior year 2.156 2.178 1.01

(0.084) [0.93 - 1.09]
Advanced Life Support 0.684 0.600 0.88

(0.024) [0.81 - 0.95]
Predicted VA user 0.847 0.939 1.11

(0.004) [1.10 - 1.12]
Predicted mortality 0.097 0.095 0.98

(0.004) [0.90 - 1.06]

Note: This table presents average complier characteristics and the ratio between this average and the average
among all veterans in the sample. Average complier characteristics and standard errors are calculated by
performing two-stage least squares using the first stage Equation (3) and a reduced-form equation replacing the
outcome variable in Equation (4) with 𝑋𝑖𝐷𝑖 , where 𝑋𝑖 is the characteristic corresponding to ride 𝑖. Regressions
use baseline controls described in Appendix Table A.2; the regression sample is the baseline sample described
in Appendix Table A.1. Standard errors for each average are presented in parentheses. The corresponding 95%
confidence intervals for each ratio are presented in brackets.

47



Table 5: Means of Hospital Characteristics

Hospital Sample
VA Non-VA

Baseline
sample

Baseline
sample

National
average

Volume, Size, and Capabilities
ED visits 17,780 41,600 38,416
Admissions 6,310 13,676 12,445
Average daily census 227 200 182
Total staffed beds 322 283 258
Teaching hospital 0.59 0.27 0.22
Urban location 0.90 0.97 0.89
Trama center 0.11 0.64 0.61
Advanced cardiac care 0.74 0.70 0.58

Staffing
ED staff per 1,000 ED visits 0.78 0.55 0.73
Nurses per 1,000 patient-days 6.20 5.45 5.63
Physicians per 1,000 patient-days 5.31 7.75 8.73
Hospitalists per 1,000 patient-days 0.17 0.29 0.40
Intensivists per 1,000 patient-days 0.08 0.16 0.20

Spending and Relative Outcomes
Relative spending 1.13 1.01 1.00
Mortality rate 7.68 12.27 12.23
Readmissions rate 12.33 18.08 18.14

Payment and Organization
Capitated lives covered 8,087 11,399
Network participant 0.51 0.46
Hospital system 0.75 0.62
HMO 0.19 0.20
PPO 0.21 0.19
ACO 0.04 0.09

Health IT Adoption
Adoption by 2011 0.25 0.20
Adoption by 2012 0.61 0.56
Adoption by 2013 0.87 0.83
Adoption by 2014 0.93 0.87

Note: This table presents average characteristics of VA and non-VA hospitals. Non-VA hospital characteristics
are further presented for the baseline sample and for the national average. The national average weights hospital
characteristics by their yearly admissions in the American Hospital Association (AHA) Annual Survey. The
average in the baseline sample weights hospital characteristics by rides in that sample, described in Appendix
Table A.1. Hospital characteristics are described in further detail in Appendix A.5.
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Appendix for Online Publication

A.1 IV Validity

A.1.1 Exclusion Restriction

Under the standard assumptions for IV validity in Imbens and Angrist (1994), ambulance companies

would be subject to the exclusion restriction, in Condition 1(ii), that they only affect outcomes by

whether they transport patients to the VA and not by other treatments that they may administer or by

their choice of non-VA hospitals. Following Kolesar et al. (2015), we relax this assumption to allow

for differences in potential treatments and non-VA hospital choices across ambulance companies but

require that such differences that may affect outcomes are not systematically related to ambulance

propensity to transport to the VA.

Specifically, we include controls C𝑖 that are related to actions by the ambulance after pickup in

the first-stage and reduced-form relationships:

𝐷𝑖 = 𝜋1𝑍𝑖 +X0
𝑖 𝛿1 +C𝑖[1 + Z1,𝑧 (𝑖) + Y1,𝑖;

𝑌𝑖 = 𝜋2𝑍𝑖 +X0
𝑖 𝛿2 +C𝑖[2 + Z2,𝑧 (𝑖) + Y2,𝑖 .

Under each set of ambulance-related controls, we examine the stability of 𝛽𝐼𝑉 = �̂�2/�̂�1.

We consider four sets of controls in C𝑖 . First, we control for splines of ambulance charges re-

flected in their Medicare claims. Consistent with the health economics literature on productivity and

the returns to spending (Chandra et al. 2016; Doyle et al. 2015), we consider charges incurred by the

ambulance company as a sufficient statistic for the intensity of treatment during the ride.38 Second,

we control for splines of the mileage of the ride. Third, we control for indicators of the number of

non-VA hospitals to which the ambulance company transports patients from a zip code.

Fourth, we control for average measures of non-VA hospitals to which the ambulance company

delivers its patients. For each non-VA hospital ℎ, we measure average mortality and spending out-

comes 𝑌 ℎ, among veterans outside of our benchmark analytic sample who only have non-VA prior

utilization (Panel B of Appendix Table A.13). We also measure the share, 𝑤 𝑗ℎ, that each ambulance

company 𝑗 delivers patients to each non-VA hospital ℎ, also among veterans with non-VA-only prior

utilization. For each ride 𝑖, we then control for average non-VA hospital measures of mortality and

spending, calculated as
∑

ℎ𝑤 𝑗 (𝑖) ,ℎ𝑌 ℎ, weighted by the hospital-specific shares of the assigned am-

bulance 𝑗 (𝑖). As in Section 5.2, we use information on Medicare claims to infer non-VA hospital

spending.

Appendix Table A.4 shows estimates of the VA effect on mortality and on spending, using

38In principle, we also observe detailed CPT procedure codes for services rendered during the ambulance ride (e.g.,
supplemental oxygen, medications, or intravenous fluids). However, in 2002, Medicare changed to a simple payment
arrangement that depended only on a few characteristics of the ride, such as ALS vs. BLS level, mileage, and the use of
lights and sirens (Centers for Medicare & Medicaid Services 2002). Consistent with this payment policy, detailed CPT
codes for extra services are usually missing in the claims data.
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the same baseline controls as in our benchmark analyses in Section 3 with the addition of various

ambulance-related controls. We find that results are highly robust to the addition of these controls.

A.1.2 Monotonicity

We test the monotonicity condition in Condition 1(iii) by tests standard in the judges-design literature

that demonstrate a positive first-stage relationship across subgroups of observations (Arnold, Dobbie,

and Yang 2018; Bhuller et al. 2020). We define eight pairs of subsamples based on several important

patient characteristics: (i) age ≤ 80 years vs. age > 80 years; (ii) white vs. non-white race; (iii)

comorbidity count above vs. below median; (iv) either vs. neither mental illness or substance abuse

present; (v) VA visits in the prior year above vs. below median; (vi) Advanced Life Support vs. Basic

Life Support; (vii) prediction of VA user above vs. below median; and (viii) prediction of mortality

above vs. below median.

Under monotonicity, we expect that an ambulance with a higher propensity to transport veterans

to the VA should weakly increase the probability of transport to the VA for any set of veterans. Specif-

ically, using the set of observations I𝑚 for each subsample𝑚, we estimate a first-stage regression with

respect to our baseline instrument, 𝑍𝑖 , from Equation (1):

𝐷𝑖 = 𝜋
𝑚
1 𝑍𝑖 +X0

𝑖 𝛿
𝑚
1 + Z𝑚1,𝑧 (𝑖) + Y

𝑚
1,𝑖 , (A.1)

and we assess whether �̂�𝑚1 ≥ 0.

We further assess monotonicity in each subsample 𝑚 by constructing a “reverse-sample” instru-

ment that only uses observations in the analytical sample (Step 6 in Appendix Table A.1) that are not

in I𝑚:

�̃�−𝑚
𝑖 =

1
�̃�−𝑚

𝑗 (𝑖)

∑︁
𝑖′∈Ĩ𝑗 (𝑖) \I𝑚

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

�̃�𝑘 (𝑖′ ) , 𝑗 (𝑖)
. (A.2)

Within the analytical sample, Ĩ𝑗 denotes the set of rides assigned to 𝑗 , �̃�−𝑚
𝑗

is the number of patients

assigned to ambulance 𝑗 without characteristic 𝑚, and �̃�𝑘, 𝑗 is the number of rides by patient 𝑘 with

ambulance 𝑗 .39 In each subsample 𝑚, we also perform first-stage regressions of the form in Equation

(A.1) that use �̃�−𝑚
𝑖

instead of 𝑍𝑖 as the instrument.

Recall that the baseline instrument, 𝑍𝑖 , is computed in the much larger sample of dually eligible

veterans (Step 1 in Appendix Table A.1). Since the reverse-sample instruments are based on much

smaller patient populations, they may be weaker predictors of underlying ambulance propensities to

transport to the VA.

In Appendix Table A.5, we demonstrate a positive and statistically significant first-stage coeffi-

cient in every subsample and for both the baseline and reverse-sample instruments. Coefficient sizes

are generally smaller for the reverse-sample instruments. In Appendix Table A.6, we show first-stage

39We use the analytical sample construct the reverse-sample instruments, so that the samples used to construct instru-
ments are roughly the same between pairs of characteristics (e.g., subsamples for comorbidity count above vs. below
median).
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relationships using two other instruments based on the smaller analytical sample. Specifically, we

construct a “baseline” instrument, �̃�𝑖 , and an “in-sample” instrument, �̃�𝑚
𝑖

, from the analytical sam-

ple:

�̃�𝑖 =
1

�̃� 𝑗 (𝑖) −1

∑︁
𝑖′∈Ĩ𝑗 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

�̃�𝑘 (𝑖′ ) , 𝑗 (𝑖)
, and (A.3)

�̃�𝑚
𝑖 =

1
�̃�𝑚

𝑗 (𝑖) −1

∑︁
𝑖′∈Ĩ𝑗 (𝑖)∩I𝑚

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

�̃�𝑘 (𝑖′ ) , 𝑗 (𝑖)
. (A.4)

First-stage coefficients for these instruments are also all positive and statistically significant. They are

similar in magnitude to the coefficients for the reverse-sample instruments, which suggests that lower

signal-to-noise ratios due to smaller sample sizes explain much of decrease in coefficient magnitude

for the reverse-sample instruments compared to the baseline (overall-sample) instrument.

A.2 Statistical Tests of Hazard Functions

A.2.1 Potential Survival Rates and Hazard Rates

Following the notation in Section 4, let 𝑠𝐼𝑉 (𝑡;𝑑) ≡ 𝐸 [ 𝑆𝑖 (𝑡;𝑑) | 𝑖 ∈ C] denote the IV estimands of the

potential survival rates among compliers, where 𝑑 ∈ {0,1} indicates outcomes under VA care (𝑑 = 1)
or non-VA care (𝑑 = 0), for each week 𝑡 ∈ {0,1, . . . ,52}. We then define the corresponding estimands

of the potential mortality hazards as follows:

ℎ𝐼𝑉 (𝑡;𝑑) ≡ 𝑠𝐼𝑉 (𝑡 −1;𝑑) − 𝑠𝐼𝑉 (𝑡;𝑑)
𝑠𝐼𝑉 (𝑡 −1;𝑑) .

We use two-stage least squares to construct estimates of the potential survivor fractions at each time

horizon, 𝑠𝐼𝑉 (𝑡;𝑑) and then construct the corresponding potential hazard functions, ℎ̂𝐼𝑉 (𝑡;𝑑). We also

construct a set of 250 block bootstrap samples (selecting samples by zip code, with replacement), and

for replication sample 𝑟 ∈ {1, . . . , 𝑅}, we construct 𝑠𝑟
𝐼𝑉

(𝑡;𝑑) and ℎ̂𝑟
𝐼𝑉

(𝑡;𝑑). Using these samples we

construct the mean estimated potential hazard for each week across the replications:

ℎ
𝐵

𝐼𝑉 (𝑡;𝑑) = 1
𝑅

∑︁
𝑟

ℎ̂𝑟𝐼𝑉 (𝑡;𝑑) . (A.5)

We also construct the standard deviation of the bootstrap-estimated potential hazard for each week:

�̂�𝐵
𝐼𝑉 (𝑡;𝑑) =

√︄
1

𝑅−1

∑︁
𝑟

[
ℎ̂𝑟
𝐼𝑉

(𝑡;𝑑) − ℎ𝐵𝐼𝑉 (𝑡;𝑑)
]2
. (A.6)

We construct similar objects for potential survival and hazard rates under OLS: 𝑠𝑂𝐿𝑆 (𝑡;𝑑) and

ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), respectively. Using the same set of block bootstrap samples, we compute 𝑠𝑟
𝑂𝐿𝑆

(𝑡;𝑑) and

ℎ̂𝑟
𝑂𝐿𝑆

(𝑡;𝑑) in each bootstrap replication sample 𝑟 .
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A.2.2 Test of Mortality Displacement

To detect “mortality displacement” (Schwartz 2000), in which deaths of VA patients are only delayed,

we test the joint null hypothesis that ℎ𝐼𝑉 (𝑡;1) ≤ ℎ𝐼𝑉 (𝑡;0) for all 𝑡 ≥ 1. This null hypothesis states

that the mortality hazard under the VA never overtakes the mortality hazard under non-VA hospitals,

even in later periods, and it is consistent with no mortality displacement.

Restating the null hypothesis as

𝐻0,1 : ℎ𝐼𝑉 (𝑡;0) − ℎ𝐼𝑉 (𝑡;1) ≥ 0, for all 𝑡 ≥ 1, (A.7)

we use estimates ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) and consider the following test statistic of the null, based on

Wolak (1987):

𝑄1 ≡
52∑︁
𝑡=1
𝑤1,𝑡1

(
ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) < 0

) (
ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) (𝑡)

)2
, (A.8)

where 𝑤1,𝑡 is a strictly positive weight. This test statistic penalizes only negative differences ℎ̂𝐼𝑉 (𝑡;0)−
ℎ̂𝐼𝑉 (𝑡;1) < 0 that can be consistent with the null hypothesis that ℎ̂𝐼𝑉 (𝑡;0)− ℎ̂𝐼𝑉 (𝑡;1) ≥ 0, for all 𝑡 ≥ 1,

only by statistical noise.

To derive a critical value for𝑄1, we use our bootstrap sample to form a set of recentered bootstrap

estimates of the potential hazards at each week:

ℎ̃𝑟𝐼𝑉 (𝑡;0) = ℎ̂𝑟𝐼𝑉 (𝑡;0) − ℎ𝐵𝐼𝑉 (𝑡;0) ;

ℎ̃𝑟𝐼𝑉 (𝑡;1) = ℎ̂𝑟𝐼𝑉 (𝑡;1) − ℎ𝐵𝐼𝑉 (𝑡;1) .

We then construct the empirical distribution of the test statistic, in Equation (A.8), under the recen-

tered bootstrap deviations:

𝑄𝑟
1 ≡

52∑︁
𝑡=1
𝑤1,𝑡1

(
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1) < 0

) (
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1)

)2
. (A.9)

We take the 95th percentile of this distribution as the critical value above which our test statistic 𝑄1

can reject the null hypothesis 𝐻0,1, in Equation (A.7).

Following Wolak (1987), this distribution is formed under the data generating process implied

by the “least favorable null” for testing joint inequality constraints (Perlman 1969). Specifically, we

consider the least favorable data generating process that satisfies the null hypothesis 𝐻0, in Equation

(A.7), which is

𝐻0,1 : ℎ𝐼𝑉 (𝑡;0) − ℎ𝐼𝑉 (𝑡;1) = 0, for all 𝑡 ≥ 1. (A.10)

If we obtain a test statistic 𝑄1 with improbable negative deviations that reject the least favorable null

hypothesis 𝐻0,1 in Equation (A.10), then we can also reject the null hypothesis 𝐻0,1 in Equation

(A.7).
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We use the same weights 𝑤1,𝑡 in Equations (A.8) and (A.9) and set them as the inverse of the

estimated sampling variance of the recentered deviations:

𝑤−1
1,𝑡 =

1
𝑅−1

∑︁
𝑟

(
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1)

)2
. (A.11)

These weights standardize the statistical distribution of ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1), so that the test statistic

distribution can be considered as chi-squared. Although we use critical values derived from the boot-

strap distribution, we find the scale of our test statistic to be more intuitive with this normalization.40

We show results in Panel A of Appendix Figure A.5. We find that 𝑄1 is within the distribution of

bootstrapped values of 𝑄𝑟
1. Therefore, we cannot reject the null of no mortality displacement.

A.2.3 Extended Test of IV Validity

In addition to standard tests of IV validity that are based on observable characteristics—including

tests of balance in Section 3.2 and monotonicity in Appendix A.1.2—we develop a tractable extended

test of IV validity using the insights in Balke and Pearl (1997) and Heckman and Vytlacil (2005,

Proposition A.5) that are based on potential outcomes.

Kitagawa (2015) summarizes these insights as follows for a binary instrument 𝑍 ∈ {0,1}, a binary

treatment 𝐷 ∈ {0,1} (increasing in probability with 𝑍), and an outcome 𝑌 ∈ Y. For any Borel set 𝐵

in Y, IV validity in Condition 1 implies that

Pr (𝑌 ∈ 𝐵,𝐷 = 1| 𝑍 = 1) −Pr (𝑌 ∈ 𝐵,𝐷 = 1| 𝑍 = 0) ≥ 0; (A.12)

Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 0) −Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 1) ≥ 0. (A.13)

Kitagawa (2015, Proposition 1.1) further states that tests of Equations (A.12) and (A.13) constitute

the strongest possible tests of IV validity in the sense that no other feature of the data can contribute

further to screening out invalid instruments.41

We note that, given the approach in Abadie (2002), testing Equations (A.12) and (A.13) is alge-

braically equivalent to testing, for all 𝐵 ⊂ Y,

Pr (𝑌𝑖 (0) ∈ 𝐵 | 𝑖 ∈ C) ≥ 0; (A.14)

Pr (𝑌𝑖 (1) ∈ 𝐵 | 𝑖 ∈ C) ≥ 0. (A.15)

40Wolak (1987) proposes to use an optimal minimum distance test statistic that would use the full covariance matrix of
𝛿 (𝑡). We avoid this formulation due to finite-sample issues that would cause this covariance matrix to be poorly estimated
by the full covariance matrix of 𝛿𝑟 (𝑡), noted by Altonji and Segal (1996). Results are qualitatively similar when we choose
a weight of 𝑤𝑡 = 1 for all 𝑡, but we find that using 𝑤𝑡 from Equation (A.11)—i.e., normalizing each 𝛿 (𝑡) by its bootstrapped
standard error—affords greater power in rejecting the null. This approach is equivalent to our best estimate of a diagonal
covariance matrix in place of the full covariance matrix.

41Chan, Gentzkow, and Yu (2019) provides an applied example, in the setting of radiologists. In this paper, standard
monotonicity tests in Appendix A.1.2 are satisfied, but a simple version of this extended test of validity is strongly rejected.
They find that radiologists who diagnose more cases with pneumonia do so in a wide range of subgroups of patients defined
by observable characteristics (i.e., standard tests of monotonicity) but that the same radiologists who diagnose more cases
with pneumonia are more likely to miss cases of pneumonia (i.e., Pr ( |𝑌 ∈ 𝐵,𝐷 = 0 𝑍 = 0) −Pr ( |𝑌 ∈ 𝐵,𝐷 = 0 𝑍 = 1) < 0).
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Thus, we use the Abadie (2002) approach to define a partition of mortality outcomes Y in terms

of weekly hazard rates by the date of death (if any) following the ambulance ride. Such a partition

implies that potential hazard rates among compliers, ℎ𝐼𝑉 (𝑡;𝑑), are non-negative in every week 𝑡 ∈
{1, . . . ,52} under both VA assignment (𝑑 = 1) and non-VA assignment (𝑑 = 0).

That is, our extended test of IV validity amounts to testing the following joint null hypothesis of

inequality constraints:

𝐻0,2 : ℎ𝐼𝑉 (𝑡;𝑑) ≥ 0, for all 𝑡 ≥ 1, 𝑑 ∈ {0,1} . (A.16)

Following a similar approach as for mortality displacement in Appendix A.2.2, our test statistic is

𝑄2 ≡
1∑︁

𝑑=0

52∑︁
𝑡=1
𝑤2,𝑡1

(
ℎ̂𝐼𝑉 (𝑡;𝑑) < 0

) (
ℎ̂𝐼𝑉 (𝑡;𝑑)

)2
,

where 𝑤−1
2,𝑡 =

(
�̂�𝐵
𝐼𝑉

(𝑡;𝑑)
)2. We obtain the critical value for our test statistic by the distribution of

recentered bootstrapped estimates, defined above. For the 𝑟th bootstrap replication, the test statistic

is

𝑄𝑟
2 ≡

1∑︁
𝑑=0

52∑︁
𝑡=1
𝑤2,𝑡1

(
ℎ̃𝑟𝐼𝑉 (𝑡;𝑑) < 0

) (
ℎ̃𝑟𝐼𝑉 (𝑡;𝑑)

)2
.

We take the 95th percentile of the distribution of 𝑄𝑟
2 across replications 𝑟 ∈ {1, . . . , 𝑅} as the criti-

cal value for 𝑄2. As above, this test of inequality constraints is based upon a least favorable null

hypothesis. In this case, the least favorable null hypothesis is

𝐻0,2 : ℎ𝐼𝑉 (𝑡;𝑑) = 0, for all 𝑡 ≥ 1, 𝑑 ∈ {0,1} . (A.17)

We show results in Panel B of Appendix Figure A.5. We find that 𝑄2 is lower than any boot-

strapped value of 𝑄𝑟
2. This suggests that we cannot reject the null hypothesis 𝐻0,2 in Equation (A.16)

and that the realized data are significantly more favorable than the least favorable null hypothesis

𝐻0,2 in Equation (A.17). In other words we can strongly reject the null that ℎ𝐼𝑉 (𝑡;𝑑) = 0, for all

𝑡 ≥ 1, 𝑑 ∈ {0,1}, which means that ℎ𝐼𝑉 (𝑡;𝑑) > 0 for at least some 𝑡 ≥ 1, 𝑑 ∈ {0,1}.

A.2.4 Tests of Hazard Rate Equality

We finally perform tests of the equality of hazard rates after the first week after the ambulance ride.

Comparing hazard rates across different groups of veterans, we aim to shed light on heterogeneity in

longer-term mortality risk across these groups. To define these tests generally, consider two sets of

hazard rates, ℎ1 (𝑡) and ℎ2 (𝑡), for 𝑡 ≥ 2. We consider two types of null hypotheses.

First, we assess mean differences in hazard rates between {ℎ1 (𝑡)}𝑡 and {ℎ2 (𝑡)}𝑡 , for 𝑡 ≥ 1, under

the null hypothesis that the mean hazard rate is the same between the two sets:

𝐻0,3 :
1
51

52∑︁
𝑡=2

(ℎ1 (𝑡) − ℎ2 (𝑡)) = 0. (A.18)
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We test this null hypothesis by comparing 1
51
∑52

𝑡=2

(
ℎ̂1 (𝑡) − ℎ̂2 (𝑡)

)
against the bootstrapped distri-

bution of recentered differences. Specifically, for replication 𝑟 ∈ {1, . . . , 𝑅}, denote the bootstrap-

estimate hazard rates of (ℎ1 (𝑡) , ℎ2 (𝑡)) as
(
ℎ̂𝑟1 (𝑡) , ℎ̂

𝑟
2 (𝑡)

)
. Define the recentered bootstrap hazard rate

as

ℎ̃𝑟1 (𝑡) ≡ ℎ̂𝑟1 (𝑡) − ℎ
𝐵

1 (𝑡) and

ℎ̃𝑟2 (𝑡) ≡ ℎ̂𝑟2 (𝑡) − ℎ
𝐵

2 (𝑡) ,

where ℎ
𝐵

1 (𝑡) ≡ 1
𝑅

∑
𝑟 ℎ1 (𝑡) and ℎ

𝐵

2 (𝑡) ≡ 1
𝑅

∑
𝑟 ℎ2 (𝑡). The distribution of

{ 1
51
∑52

𝑡=2
(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)}
𝑟

determines the two-sided critical values for the mean hazard difference. By construction, this distri-

bution will have mean 0.

Second, we consider the joint null hypothesis that the difference between each pair of hazards is

equal to 0:

𝐻0,4 : ℎ1 (𝑡) − ℎ2 (𝑡) = 0, for all 𝑡 ≥ 1. (A.19)

Using estimates ℎ̂1 (𝑡) − ℎ̂2 (𝑡), we construct the following test statistic:

𝑄4 (ℎ1 (·) , ℎ2 (·)) ≡
52∑︁
𝑡=2
𝑤4,𝑡

(
ℎ̂1 (𝑡) − ℎ̂2 (𝑡)

)2
.

We compute the empirical distribution of𝑄4 under the null hypothesis by using recentered differences

ℎ̃𝑟1 (𝑡) − ℎ̃
𝑟
2 (𝑡). Each bootstrap replication 𝑟 yields

𝑄𝑟
4 (ℎ1 (·) , ℎ2 (·)) ≡

52∑︁
𝑡=2
𝑤4,𝑡

(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)2
.

We take the 95th percentile of the distribution of 𝑄𝑟
4 across replications 𝑟 ∈ {1, . . . , 𝑅} as the critical

value for 𝑄4. We set 𝑤−1
4,𝑡 =

1
𝑅−1

∑
𝑟

(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)2
to standardize the distribution of ℎ̂1 (𝑡) − ℎ̂2 (𝑡).

In Appendix Figures A.6 and A.7, we consider five comparisons of hazard rates, for 𝑡 ≥ 1, under

the null hypotheses of Equations (A.18) and (A.19), respectively. First, we test the null hypothesis that

ℎ𝐼𝑉 (𝑡;1) − ℎ𝐼𝑉 (𝑡;0) = 0, for all 𝑡 ≥ 1. Under quasi-experimental assignment of compliers (Condition

1), we expect not to reject this null if longer-term hazard rates reflect underlying health. Second, we

test the null hypothesis that ℎ𝑂𝐿𝑆 (𝑡;1) − ℎ𝑂𝐿𝑆 (𝑡;0) = 0, for all 𝑡 ≥ 1. While we show the stability

of OLS results in Figure 2, this test may reveal differences in underlying health between veterans

assigned to the VA and those assigned to a non-VA hospital that are not captured by observable

patient characteristics.

Third, we test the null hypothesis that ℎ𝐼𝑉 (𝑡;1) − ℎ𝑂𝐿𝑆 (𝑡;1) = 0, for all 𝑡 ≥ 1. This reveals differ-

ences in underlying health between compliers and VA-assigned veterans, which includes compliers

and always-takers. Fourth, we similarly test the null hypothesis that ℎ𝐼𝑉 (𝑡;0) −ℎ𝑂𝐿𝑆 (𝑡;0) = 0, for all

𝑡 ≥ 1. This reveals differences in underlying health between compliers and non-VA-assigned veterans,

which includes compliers and never-takers.
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A.3 Non-Complier Characteristics

In this appendix, we describe a simple approach to calculate characteristics of non-compliers, follow-

ing Dahl, Kostol, and Mogstad (2014), and we discuss results. In our approach, we first residualize

the leave-out ambulance propensity to transport to the VA, 𝑍𝑖 , by our key controls,
(
𝑧 (𝑖) ,X0

𝑖

)
. Denote

this residual as 𝑍∗
𝑖
. We categorize always-takers as rides with 𝑍∗

𝑖
below the 20th percentile that still

went to the VA (𝐷𝑖 = 1). We categorize never-takers as rides with 𝑍∗
𝑖

above the 80th percentile that

still did not go to the VA (𝐷𝑖 = 0).
Among each group of always-takers and never-takers, we compute characteristics along the same

dimensions as those in our compliers analysis, in Table 4. Specifically, for each characteristic, we

compute mean values among the group of always-takers and among the group of never-takers, and

we compare these means with the overall mean by a ratio. We compute standard errors of these

means by drawing bootstrapped samples, blocked by zip code, and repeating this procedure with

each bootstrapped sample.

As shown in Appendix Table A.7, we mostly find results that are consistent with our earlier

results of complier characteristics and the fact that the majority of non-compliers are never-takers:

For many characteristics, those that are more common among compliers tend to be more common

among always-takers and less common among never-takers. Compared to the overall population,

always-takers are more likely to be Black and have lower income. Always-takers are more likely to

have a mental illness, and they have a slightly higher rate of substance abuse, though the latter is

not statistically significant. Always-takers are more likely to have prior VA ED visits and less likely

to have prior non-VA ED visits. However, both always-takers and never-takers, as defined by this

methodology, have slightly higher predicted mortality.

A.4 Marginal and Average Treatment Effects

Consider the probability of going to the VA as a function of our instrument 𝑍𝑖 and key controls(
𝑧 (𝑖) ,X0

𝑖

)
: 𝑃 (𝑍𝑖), where we have omitted the key controls for brevity. Following Heckman and

Vytlacil (2005), we can state the treatment rule as

𝐷𝑖 = 1 (𝑃 (𝑍𝑖) ≥ 𝑈𝑖) , (A.20)

where 𝑈𝑖 is uniformly distributed in the interval (0,1). Individuals with low 𝑈𝑖 relative to 𝑝 ≡
argmin𝑖 𝑃 (𝑍𝑖) are always-takers, while individuals with high 𝑈𝑖 relative to 𝑝 ≡ argmax𝑖 𝑃 (𝑍𝑖) are

never-takers.

In this appendix, we estimate two objects relative to selection, as defined by 𝑈𝑖 ∼𝑈 (0,1). The

marginal treatment effect (MTE) for rides with𝑈𝑖 = 𝑢 is

𝑀𝑇𝐸 (𝑢) ≡ 𝐸 [𝑌𝑖 (1) −𝑌𝑖 (0) |𝑈𝑖 = 𝑢] .
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The average treatment effect (ATE) is

𝐴𝑇𝐸 =

∫ 1

0
𝑀𝑇𝐸 (𝑢) 𝑑𝑢.

We estimate 𝑀𝑇𝐸 (𝑢), for 𝑢 ∈
[
𝑝, 𝑝

]
, using variation in the propensity of ambulances to transport to

the VA. We estimate the ATE by extrapolating 𝑀𝑇𝐸 (𝑢) to 𝑢 ∈ [0,1] with a control function approach.

A.4.1 Marginal Treatment Effects

We first estimate marginal treatment effects using a local instrumental variables approach that exploits

outcomes along the distribution of ambulance propensity to transport to the VA. The intuition for this

approach is that 𝑀𝑇𝐸 (𝑢) can be stated as

𝑀𝑇𝐸 (𝑢) = 𝜕

𝜕𝑝
𝐸 [𝑌𝑖 |𝑃 (𝑍𝑖) = 𝑢] .

That is, if mortality decreases linearly with ambulance propensity to transport to the VA, then the

data would be consistent with constant treatment effects. On the other hand, if mortality decreases at

a faster rate for lower 𝑃 (𝑍𝑖), then the data would suggest “selection on gains,” in which veterans who

are more likely to benefit from VA care are also more likely to be transported to the VA given a set of

ambulances. The visual IV relationship in Appendix Figure A.2 suggests a slightly convex shape in

the relationship between mortality and 𝑃 (𝑍𝑖), which implies selection on gains.

We proceed with estimating a flexible relationship between 𝑌𝑖 and 𝑃 (𝑍𝑖) as follows. We compute

𝑃 (𝑍𝑖) = �̂�𝑖 from the first-stage Equation (3). We then residualize �̂�𝑖 by baseline controls, defined in

Appendix Table A.2, and denote the residual as �̂�∗
𝑖
. We similarly residualize 𝑌𝑖 by baseline controls

and denote the residual as 𝑌 ∗
𝑖

. For interpretation, we set 𝑌 ∗
𝑖

and �̂�∗
𝑖

to have the same respective means

as 𝑌𝑖 and 𝐷𝑖 . A regression of 𝑌 ∗
𝑖

on �̂�∗
𝑖

yields a point estimate that is numerically identical to the IV

estimate 𝛽𝐼𝑉 .42

Rather than fitting a straight line through points
(
�̂�∗

𝑖
,𝑌 ∗

𝑖

)
, we fit a flexible function with Gaussian

basis splines with four knots (𝑘1, 𝑘2, 𝑘3, 𝑘4) corresponding to the 5th, 35th, 65th, and 95th percentiles

of �̂�∗
𝑖
. Specifically, for each ride 𝑖, we form five basis functions

𝑓𝑛 (𝑝) = exp
(
− (𝑘𝑛 − 𝑘𝑛−1) (𝑝− 𝑐𝑛)2

)
,

where 𝑐𝑛 = 1
2 (𝑘𝑛−1 + 𝑘𝑛), 𝑘0 = min �̂�∗

𝑖
, and 𝑘5 = max �̂�∗

𝑖
. We regress

𝑌 ∗
𝑖 =

5∑︁
𝑛=1

𝛾𝑛 𝑓𝑛
(
�̂�∗

𝑖

)
+ Y𝑖

and form a flexible prediction 𝑌 ∗ (𝑝) =∑5
𝑛=1 �̂�𝑛 𝑓𝑛 (𝑝).

42This regression corresponds to the indirect least squares version of IV and is numerically identical to the visual IV
coefficient corresponding to the two-stage least squares version of IV.
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This prediction yields a convenient analytical derivative for the MTE

�𝑀𝑇𝐸 (𝑢) =
5∑︁

𝑛=1
�̂�𝑛 𝑓

′
𝑛 (𝑢) = −

5∑︁
𝑛=1

2 (𝑘𝑛 − 𝑘𝑛−1)2 (𝑢− 𝑐𝑛) �̂�𝑛 𝑓𝑛 (𝑢) .

For each 𝑝 ∈ [0.05,0.20], corresponding to the range of �̂�∗
𝑖
, we compute 95% confidence in-

tervals of 𝑌 ∗ (𝑝) by taking the standard deviations of 𝑌 ∗ (𝑝) across 50 bootstrapped iterations (with

samples drawn by zip code, with replacement). Similarly, for each 𝑢 ∈ [0.05,0.20], we compute 95%

confidence intervals of �𝑀𝑇𝐸 (𝑢) by taking the standard deviations of �𝑀𝑇𝐸 (𝑢) across these same

bootstrapped iterations. We display both 𝑌 ∗ (𝑝) and �𝑀𝑇𝐸 (𝑢) in Appendix Figure A.8.

A.4.2 Average Treatment Effect

In order to estimate the ATE, we adopt a control function model in order to extrapolate treatment

effects to non-compliers. Specifically, we model potential outcomes as

𝐸 [𝑌𝑖 (𝑑) |𝑈𝑖 = 𝑢] = 𝛼𝑑 +𝛾𝑑 (𝐽 (𝑢) − `𝐽 ) +X0
𝑖 𝛿+ Z𝑧 (𝑖) , (A.21)

where 𝑑 ∈ {0,1} and 𝑢 ∈ (0,1). 𝐽 (𝑢) is a strictly increasing, continuous function that maps selection

to potential outcomes, and `𝐽 ≡ 𝐸 [𝐽 (𝑈𝑖)]. Since 𝐸 [𝐽 (𝑢) − `𝐽 ] = 0, we can interpret 𝛼1 −𝛼0 as the

ATE. Kline and Walters (2019) show that the control function model in Equations (A.20) and (A.21)

can also rationalize the Imbens and Angrist (1994) LATE that we estimate in Section 3, regardless of

the choice of 𝐽 (𝑢).43

For our baseline specification, we adopt the linear selection function of 𝐽 (𝑢) = 𝑢 from Olsen

(1980), which we use with Equation (A.21) to state the following expectation, conditional on the

first-stage error Y1,𝑖 from Equation (3):44

𝐸
[
𝑌𝑖 |𝐷𝑖 = 𝑑, Y1,𝑖 = Y

]
= 𝛼𝑑 +𝛾𝑑𝐸

[
𝐽 (𝑢) − `𝐽 |𝐷𝑖 = 𝑑, Y1,𝑖 = Y

]
+X0

𝑖 𝛿+ Z𝑧 (𝑖)
= 𝛼𝑑 −𝛾𝑑

Y

2
+X∗

𝑖 𝛿+ Z𝑧 (𝑖) . (A.22)

This expectation corresponds to the following regression:

𝑌𝑖 = 𝛼Δ𝐷𝑖 +𝛾0

(
−
Ŷ1,𝑖

2

)
+𝛾Δ

(
−
Ŷ1,𝑖

2

)
𝐷𝑖 +X0

𝑖 𝛿+ Z𝑧 (𝑖) + 𝑣𝑖 , (A.23)

plugging in the estimated first-stage residual Ŷ1,𝑖 from Equation (3). We can compute the ATE from

43Kline and Walters (2019) show algebraic equivalence between the control function LATE implied by Equation (A.21),
𝑝, and 𝑝, under a binary instrument and no controls. They also generalize their result for multivalued instruments. With
controls, the equivalence may not hold in the standard regression approach in which controls are treated as additively
separable but will hold under a propensity score approach.

44To see this, assume that the first stage regression in Equation (3) estimates a well-behaved 𝑃 (𝑍𝑖) ∈ (0,1) such that
𝐷𝑖 = 𝑃 (𝑍𝑖) + Y1,𝑖 . Define _𝑑 (𝑝) ≡ 𝐸 [ 𝐽 (𝑈𝑖) − `𝐽 |𝐷𝑖 = 𝑑, 𝑃 (𝑍𝑖) = 𝑝]. We have _1 (𝑝) = 𝑝

2 − 1
2 =

𝑝−1
2 , and _0 (𝑝) =

𝑝+1
2 − 1

2 =
𝑝
2 . Note that _𝑑 (𝑝) = 𝑝−𝑑

2 = −Y
2 , where Y ≡ 𝑑 − 𝑝. This implies that Y1,𝑖 = 𝐷𝑖 −𝑃 (𝑍𝑖) is a sufficient statistic

for (𝐷𝑖 , 𝑃 (𝑍𝑖)), and we can state the expectation 𝐽 (𝑈𝑖) − `𝐽 conditional on Y1,𝑖 : 𝐸
[
𝐽 (𝑈𝑖) − `𝐽 | Y1,𝑖 = Y

]
= − Y

2 .
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this equation as 𝛼Δ = 𝛼1 −𝛼0. We estimate Equation (A.23) by OLS to yield �̂�Δ = −0.037 , slightly

smaller in magnitude than the LATE estimate of −0.041 from Section 3. For inference on the differ-

ence between the ATE and the LATE, we recover a numerically equivalent LATE with the following

control function regression:45

𝑌𝑖 = 𝛽𝐶𝐹𝐷𝑖 +𝛾Ŷ1,𝑖 +X0
𝑖 𝛿0 + Z0,𝑧 (𝑖) + 𝑣𝑖 , (A.24)

where 𝛽𝐶𝐹 is estimated by OLS and is numerically equivalent to 𝛽𝐼𝑉 estimated by two-stage least

squares. For each bootstrapped replication, we estimate both the ATE, �̂�1− �̂�0, and its difference with

the LATE, 𝛽𝐶𝐹 , in order to obtain standard errors on both the ATE and the difference.

We also examine semiparametric specifications that allow for flexible relationships between the

first-stage residual and the structural error term. These alternative specifications allow nonlinear

relationships of 𝑔𝑑 (Y) ≡ 𝐸
[
Y0,𝑖

��𝐷𝑖 = 𝑑, Y1,𝑖 = Y
]
, where Y0,𝑖 is the structural error term in Equation

(2). Specifically, we estimate regressions of the following form:

𝑌𝑖 = 𝛼Δ𝐷𝑖 +𝑔0
(
Ŷ1,𝑖

)
(1−𝐷𝑖) +𝑔1

(
Ŷ1,𝑖

)
𝐷𝑖 +X0

𝑖 𝛿+ Z𝑧 (𝑖) + 𝑣𝑖 , (A.25)

where 𝑔𝑑
(
Ŷ1,𝑖

)
, 𝑑 ∈ {0,1}, are flexible functions of the first-stage residual that are non-zero when

𝐷𝑖 = 0 and 𝐷𝑖 = 1, respectively. To estimate 𝑔𝑑
(
Ŷ1,𝑖

)
, 𝑑 ∈ {0,1}, we use a vector of restricted cubic

spline functions or Gaussian basis functions, with three or five knots. Ensuring that 𝐸
[
𝑔𝑑

(
Ŷ1,𝑖

) ]
= 0

by demeaning each spline or basis function, we can interpret 𝛼Δ as the ATE.

In Appendix Table A.8, we show estimates of the ATE and the ATE-LATE difference. ATE es-

timates are all smaller in magnitude than the LATE estimate from Section 3. We compute standard

errors on this difference with 50 bootstrapped iterations (selecting samples by zip code, with replace-

ment). The ATE-LATE difference is statistically significant in our baseline specification in Equation

(A.23), though they are not statistically significant in the semiparametric specifications.

A.5 Hospital Characteristics

This appendix provides further details on hospital characteristics that we use in our heterogeneity

analyses in Section 5.1. These characteristics are listed in Table 5 and Appendix Tables A.10 to

A.12. For each zip code and year, we use characteristics of the closest VA hospital and a weighted

average of the characteristics of associated non-VA hospitals. Weights for each non-VA hospital are

proportional to the number of ambulance rides originating from a given zip code to the hospital in

that year. Unless otherwise noted, characteristics are observed at the hospital-year level.

We use the American Hospital Association (AHA) Annual Survey to collect the following VA

and non-VA hospital characteristics at the hospital-year level: (i) number of ED visits; (ii) number of

facility admissions; (iii) number of available hospital beds; (iv) teaching hospital status; (v) trauma

45Blundell and Matzkin (2014) attribute the first proof of this equivalence between control function and two-stage least
squares approaches to estimating the LATE to Telser (1964).
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center status; (vi) number of privileged ED staff, which we use to construct ED staff per 100 ED

visits given (i); (vii) number of full-time registered nurses, which we use to construct nurses per 100

admissions given (ii); (viii) number of privileged hospitalists, which we use to construct hospitalists

per 100 admissions; and (ix) number of privileged intensivists, which we use to construct intensivists

per 100 admissions given (ii).

We construct a measure of advanced cardiac care, which we define as either the capability to

perform interventional cardiac catheterization or cardiac surgery as measured by the AHA Annual

Survey (at the hospital-year level) or listing as an ST-Elevation Myocardial Infarction (STEMI) center

by the American Heart Association (at the hospital level). We record whether each hospital is certified

as a Primary Stroke Center according to the Joint Commission, the American Heart Association, and

the American Stroke Association (at the hospital level).

For VA hospitals, we form measures of relative spending from the average cost of an inpatient-

day, available from the VA Health Economics Resource Center (HERC). For non-VA hospitals, we use

data from Data.Medicare.gov on Medicare spending per beneficiary at the hospital level. Similarly,

we obtain mortality and readmission rates from Data.Medicare.gov for non-VA hospitals and from

the VA’s Strategic Analytics for Improvement and Learning (SAIL). For each hospital’s mortality

rate, we take the mean of all available 30-day mortality rates, including disease-specific rates such

as heart attack and pneumonia; we form similar means for each hospital’s readmission rate based on

available 30-day readmission rates, including disease-specific rates. Because some years are missing

mortality or readmission rates, we first form averages across years at the hospital level.

For measures of non-VA hospital organization, we use AHA Annual Survey measures of network

status, hospital system status, and health maintenance organization (HMO) affiliation. We also ob-

tain whether the hospital participates in an Affordable Care Organization (ACO) from the Medicare

Shared Savings Program (MSSP) ACO provider-level dataset. We measure health IT adoption for

each hospital and year from any electronic health record certified products on the Certified Health

IT Product List (CHPL) reported on healthIT.gov. Additional characteristics in Table 5 are also

obtained from the AHA Annual Survey: (i) average daily census, (ii) urban location (i.e., the hospital

is not classified as either “micro” or rural), (iii) capitated lives covered, and (iv) Preferred Provider

Organization (PPO) affiliation.

A.6 Heterogeneity by Observable Characteristics

This appendix describes our analytical approach to estimating treatment effect heterogeneity by ob-

servable hospital or patient characteristics. As described in Section 5.1, we three categories of char-

acteristics: (i) characteristics of non-VA hospitals serving a given zip code, weighting the hospitals

by volume of rides from the zip code; (ii) characteristics of the VA hospital serving a given zip code;

and (iii) patient characteristics. Hospital characteristics are described in further detail in Appendix

A.5.

For each characteristic 𝑥, we construct a binary indicator variable, 𝐼𝑥,𝑖 ∈ {0,1}. For example, for
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the non-VA hospital characteristic of the number of staffed beds, we create a binary indicator variable

for whether the volume-weighted average number of staffed beds across non-VA hospitals in a zip

code is above or below the median. We include a demeaned 𝐼𝑥,𝑖 ≡ 𝐼𝑥,𝑖 − �̂�𝑖

[
𝐼𝑥,𝑖

]
in the following

linear control function regression:

𝑌𝑖 = 𝛽𝑥𝐷𝑖 + 𝜌𝑥𝐷𝑖 𝐼𝑥,𝑖 + 𝜋𝑥 𝐼𝑥,𝑖 +𝛾𝑥 Ŷ1,𝑖 +X0
𝑖 𝛿𝑥 + Z𝑥,𝑧 (𝑖) + 𝜖𝑥,𝑖 , (A.26)

where Ŷ1,𝑖 is the first-stage error from Equation (3). Controlling for the endogeneity of selection, this

approach yields estimates of binary heterogeneous treatment effects along several dimensions. This

approach enables greater statistical power than performing separate IV regressions in subsamples

defined by 𝐼𝑥,𝑖 ∈ {0,1}. For a discussion of this general approach, see Wooldridge (2015), Section

III. Since 𝐼𝑥,𝑖 has a mean of 0, we can interpret 𝛽𝑥 as the LATE, controlling for 𝐼𝑥,𝑖; 𝜌𝑥 is the

difference in the VA effect on mortality between 𝐼𝑥,𝑖 = 1 and 𝐼𝑥,𝑖 = 0. We calculate standard errors by

bootstrap, drawing blocks of data by zip code.

A.7 OLS Heterogeneity in Station-Specific VA Advantage

In analyses described in this appendix, we estimate OLS heterogeneity in the station-specific VA

advantage and validate this heterogeneity with our quasi-experiment. As in our heterogeneity analyses

in Section 5.1, we assign each zip code 𝑧 to a VA station ℓ (𝑧) based on the station that the most

veterans living in that zip code use. This assignment of zip codes to VA stations matches station

catchment areas for 92% of zip codes.

In separate OLS regressions, we estimate the VA advantage for each station ℓ as 𝛽ℓ in

𝑌𝑖 = 𝛽
ℓ
𝑂𝐿𝑆𝐷𝑖 +X0

𝑖 𝛿
ℓ + Zℓ

𝑧 (𝑖) + Y𝑖 , (A.27)

using ambulance rides 𝑖 such that the zip code 𝑧 (𝑖) maps to station ℓ (i.e., ℓ (𝑖) ≡ ℓ (𝑧 (𝑖)) = ℓ). The

ride-weighted variance of 𝛽ℓ
𝑂𝐿𝑆

is 3.4×10−4, while the ride-weighted variance of the sampling error

for each 𝛽ℓ
𝑂𝐿𝑆

is 2.1×10−4. This implies a sampling-error-adjusted, ride-weighted variance of 𝛽ℓ
𝑂𝐿𝑆

of 𝐴 = (3.4−2.1) ×10−4 = 1.4×10−4, or a standard deviation of 𝛽ℓ
𝑂𝐿𝑆

of
√
𝐴 = 0.012.

In Appendix Figure A.9, we plot the distribution of 𝛽ℓ
𝑂𝐿𝑆

for 32 stations with at least 5,000 rides,

forming a smple of 276,483 rides. We also plot the empirical Bayes posteriors for all stations, which

we calculate as follows:

𝛽ℓ𝑂𝐿𝑆 = (1−𝐵ℓ) 𝛽ℓ𝑂𝐿𝑆 +𝐵ℓ𝛽𝑂𝐿𝑆 , (A.28)

where 𝐵ℓ =
𝑉ℓ

𝑉ℓ+𝐴 is the shrinkage factor based on 𝑉ℓ , which is the variance of the sampling error for

station ℓ, and 𝐴, which is the variance of the prior distribution of 𝛽ℓ
𝑂𝐿𝑆

. 𝛽𝑂𝐿𝑆 = −0.024 is the overall

OLS estimate reported in Section 3.3. This figure shows that essentially all stations exhibit a VA

advantage, at least when estimated by OLS.

We evaluate whether differences in 𝛽ℓ
𝑂𝐿𝑆

imply differences in the treatment effects identified by

our quasi-experiment. As a first analysis, we divide stations into two groups depending on whether
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𝛽ℓ
𝑂𝐿𝑆

is above- or below-median. We estimate by two-stage least squares 𝛽𝐼𝑉 , based on Equations

(3) and (4), separate IV estimates for ambulance rides belonging to each of these two groups. 𝛽𝐼𝑉
estimated for stations with below-median (i.e., larger in magnitude) 𝛽ℓ

𝑂𝐿𝑆
is 0.030 larger in magnitude

than the same estimate for stations with above-median (i.e., smaller in magnitude) 𝛽ℓ
𝑂𝐿𝑆

. However,

the difference is imprecise, with a bootstrapped standard error of 0.051.

For a more systematic validation of 𝛽ℓ
𝑂𝐿𝑆

, in the spirit of Angrist et al. (2017), we conduct a

pooled analysis by indirect least squares. Specifically, denoting demeaned 𝛽ℓ
𝑂𝐿𝑆

as 𝛽ℓ∗
𝑂𝐿𝑆

, we estimate

𝑌𝑖 = 𝛽𝐷𝑖 +𝛾𝐷𝑖 × 𝛽ℓ (𝑖)∗𝑂𝐿𝑆
+X0

𝑖 𝛿+ Z𝑧 (𝑖) + Y𝑖 ,

where we instrument 𝐷𝑖 and 𝐷𝑖 × 𝛽ℓ (𝑖)∗𝑂𝐿𝑆
by 𝑍𝑖 and 𝑍𝑖 × 𝛽ℓ (𝑖)∗𝑂𝐿𝑆

. This regression reveals an imprecise

and wrong-signed result of �̂� = −0.790 (s.e., 1.351). The overall imprecision of these results suggests

that there is little signal of heterogeneity across station-specific OLS measures of the VA advantage.

The more precise results in Section 5.1 also suggest little meaningful heterogeneity along binary

characteristics of VA and non-VA hospitals in a given zip code.

A.8 Reported Utilization Patterns

This appendix details comparisons of reported utilization patterns between VA and non-VA hospitals.

Our analyses are based on line items of utilization from the VA and Medicare data corresponding

to any patient in the baseline sample in the 28 days following his ambulance ride. Each line item

corresponds to a service defined by its Current Procedural Terminology (CPT) code.

Our first set of analyses examine the share of line items originating from the VA across different

CPT codes. Specifically, we define this share as the proportion of line items for a CPT code origi-

nating from VA records out of the total number of line items for that CPT code reported by both VA

and non-VA (i.e., Medicare) providers. Appendix Figure A.11 shows VA shares for the top 25 (out of

5,167) CPT codes in the Medicare Physician Fee Schedule (MPFS), ranked by total utilization.

We find a wide range of VA shares even within this set of common CPT codes. At one extreme,

only 4.1% of line items for CPT code 99223, one of the codes for evaluation and management (E/M)

performed in initial hospital care, originate from the VA. Also with a VA share of 4.1%, CPT code

99239 reports E/M care lasting more than 30 minutes on the discharge day of a hospitalization. For

this code to be reported, the physician must report spending more than 30 minutes with the patient. In

contrast, the complementary E/M CPT code that reports spending 30 or fewer minutes on discharge

day (99238) is more than four times likelier (17.1%) to originate from the VA. Non-VA hospitals have

a clear financial incentive to report the code 99239 over 99238 (the former reimburses close to 50%

more), but differentiating between the two services has no clinical value. At the other extreme, 90.5%

of line items for CPT code 99211, which reports a simple outpatient E/M service not requiring the

presence of a physician, originate from the VA. Strikingly, all of the reported utilization of CPT code

98966, for short calls made by a non-physician, occur in the VA.

Appendix Figure A.12 shows similar VA shares for the top 25 (out of 115) groups of Category
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I CPT codes, ranked by total utilization. This figure shows similar patterns, albeit for much larger

aggregations of line items. Non-VA providers much more commonly report hospital inpatient E/M

services. The VA much more commonly reports physical therapy, rehabilitation, psychiatric services,

and telephone (i.e., non-face-to-face) services provided by non-physicians. Pulmonary services—

the vast majority of which comprise low-reimbursed services such as measuring oxygen levels and

providing inhalation treatment—are also much more commonly reported in the VA.

We examine the relationship between reimbursement and the share of a CPT code’s utilization

coming from the VA. We measure reimbursement among CPT codes on the MPFS, multiplying year-

specific relative value units (RVUs) with the year-specific dollar conversion factor. In Appendix Fig-

ure A.13, we show a strong negative relationship between the median reimbursement (across years)

for a given CPT code and its VA share. Importantly, reimbursement by Medicare for physician ser-

vices is determined by the resource-based relative value scale (RBRVS), a system entirely based on

the costliness of procedures and not on the benefit of procedures (American Medical Association

2015). Thus, services with high potential value relative to their costs (e.g., telephone calls) are reim-

bursed little and much less likely reported in the fee-for-service system outside the VA.

We finally focus on evaluation and management (E/M) CPT codes, which allow for reporting

of complexity. E/M codes are among the most common CPT codes and reflect an integral part of

clinical care, particularly for emergency patients. Reimbursement may vary widely across E/M codes

reporting different levels of complexity. For example, within the set of CPT codes 99201-99205,

collectively for “office or other outpatient encounters for new patients,” may range almost fivefold

in reimbursement. The complexity allowed for an E/M code reported for an encounter depends on

documentation, but much of the documentation is ultimately unverifiable. For these reasons, Fang

and Gong (2017) devote much of their analysis to detecting potential overbilling to E/M codes.

In Appendix Figure A.14, we show the odds of reporting the highest level of complexity within

a type of E/M code relative to reporting the lowest level of complexity with that type among non-VA

vs. VA providers. We display the odds ratio (i.e., the non-VA odds divided by the VA odds) on the

x-axis for seven broad categories of E/M codes. We show that the odds of reporting the highest level

of complexity are much higher among non-VA providers. In only one category (i.e., critical care) is

the odds ratio close to one. The (volume-weighted) average odds ratio is 5.1.

A.9 Modal-Hospital Mechanisms

This appendix details analyses in Section 5.3, where we describe indirect evidence for the role of

health IT and integrated care. We perform analyses on a sample of veterans who only use non-VA

care in the year prior to their ambulance rides. Since no veteran in this sample has prior VA utilization,

the sample is disjoint from our benchmark sample (Appendix Table A.1). We only include zip codes

with at least two non-VA hospitals within 20 miles, but we make no requirement on proximity to a

VA hospital. The probability of transport to a VA hospital in this sample is 0% (as opposed to 33% in

the benchmark sample), but rates of weekend transport and 28-day mortality are remarkably similar.
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We detail the sample selection process for this analysis in Appendix Table A.13 and present patient

and ride characteristics in this sample Appendix Table A.14.

Quasi-Experimental Design. As an analog to our benchmark VA instrument in Equation (1), we

construct an instrument that reflects a given ambulance company’s leave-out propensity to deliver

patients to the index patient’s modal non-VA hospital. Let ℎ (𝑖) denote the hospital that ambulance

ride 𝑖 is transported to, and let ℎ𝑚 (𝑖) represent the modal non-VA hospital used by patient 𝑘 (𝑖) in

ride 𝑖. Our treatment of interest is 𝐷𝑚
𝑖
≡ 1 (ℎ (𝑖) = ℎ𝑚 (𝑖)), which indicates whether ambulance ride 𝑖

transports its patient 𝑘 (𝑖) to his modal hospital. Our instrumental variable for this treatment is

𝑍𝑚
𝑖 =

1
𝐾 𝑗 (𝑖) ,𝑧 (𝑖) −1

∑︁
𝑖′∈I𝑗 (𝑖) ,𝑧 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑚
𝑖′

𝑁𝑘 (𝑖′ ) ,𝑧 (𝑖′ ) , 𝑗 (𝑖′ )
. (A.29)

where 𝐾 𝑗 ,𝑧 is the number of patients transported by company 𝑗 from zip code 𝑧, 𝑁𝑘,𝑧, 𝑗 is the number

of rides taken by patient 𝑘 originating in zip code 𝑧 with company 𝑗 , and I𝑗 ,𝑧 is the set of rides

transported by ambulance company 𝑗 from zip code 𝑧. This is the leave-out probability that ambulance

company 𝑗 (𝑖) transports other patients from the same zip code to the modal hospital ℎ𝑚 (𝑖) of patient

𝑘 (𝑖).46 We use the following first-stage and reduced-form equations, similar to Equations (3) and (4):

𝐷𝑚
𝑖 = 𝜋𝑚1 𝑍

𝑚
𝑖 +𝛾𝑚1 𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
1 + Z𝑚1,𝑧 (𝑖) + Y

𝑚
1,𝑖; (A.30)

𝑌𝑖 = 𝜋𝑚2 𝑍
𝑚
𝑖 +𝛾𝑚2 𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
2 + Z𝑚2,𝑧 (𝑖) + Y

𝑚
2,𝑖 . (A.31)

We include in these equations an additional control variable:

𝑍
𝑚

𝑖 =
1

𝐾𝑧 (𝑖) −1

∑︁
𝑖′∈I𝑧 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑚
𝑖′

𝑁𝑘 (𝑖′ ) ,𝑧 (𝑖′ )
,

where 𝐾𝑧 is the number of patients from zip code 𝑧, 𝑁𝑘,𝑧 is the number of rides taken by patient 𝑘

originating in zip code 𝑧, and I𝑧 is the set of rides originating in zip code 𝑧. This is the leave-out

probability that patients from the same zip code 𝑧 (𝑖) are transported to hospital ℎ𝑚 (𝑖), unconditional

on the ambulance company. The modal-hospital effect may also capture hospital quality or hospital-

patient match effects. We further assess the modal hospital effect both (i) while including hospital

fixed effects in Equations (A.30) and (A.31) and (ii) while splitting rides 𝑖 into samples based on

whether the ride was before or after the hospital ℎ (𝑖) adopted health IT or joined an ACO.

In the sample of veterans with only non-VA prior utilization (Panel B of Appendix Table A.13),

we demonstrate in Appendix Figure A.16 a well-behaved first-stage relationship between 𝐷𝑚
𝑖

and 𝑍𝑚
𝑖

and balance between predicted mortality, 𝑌𝑖 , and 𝑍𝑚
𝑖

, conditional on
(
𝑍
𝑚

𝑖 ,X0
𝑖
, 𝑧 (𝑖)

)
.47

46As with the benchmark instrument, we construct this instrument from data in the overall sample of ambulance rides
with dually eligible veterans (Column 1, Table 1 and Appendix Table A.14). For patients with multiple hospitals that tie for
highest utilization in the prior year, we designate the set of these highest-use hospitals as the “modal hospital.”

47Analogously to Figure 1, this figure presents binned scatter plots of the first-stage regression in Equation (A.30), the
reduced-form regression in Equation (A.31), and a balance regression with predicted mortality as the outcome variable and

A.16



Results. The IV estimate of the modal-hospital effect on mortality is −0.006 (s.e. 0.004), which is

less than 20% of the VA effect on mortality. The visual IV graph in Appendix Figure A.17 shows

that the overall relationship between the reduced form and first stage is not particularly striking.48

However, computing this IV estimate separately by years, we show in Figure 6 a stronger modal-

hospital effect emerges after the passage of the HITECH Act of 2009, which led to a rapid rise in

electronic medical record systems. The modal-hospital effect is close to 0 and stable prior to 2009.

Following 2009, the modal-hospital effect grows to about half the size of the VA effect on mortality.

To extend this analysis, we use hospital-specific dates of hospital health IT adoption or ACO

participation (described in Appendix A.5). During our sample period, a sizable proportion of hospitals

adopted health IT and, to a much lesser extent, participated in an ACO. We construct four subsamples

defined by whether or not each veteran’s modal hospital had adopted health IT at the time of his

ambulance ride and similarly by whether or not each veteran’s modal hospital had joined an ACO. In

each subsample, we performed the same IV regression of the effect of transport to a veteran’s modal

hospital. Results are shown in Appendix Table A.15, Columns 1, 2, 4, and 5. We obtain all of these

results after adding hospital fixed effects in the first-stage and reduced-form regressions in Equations

(A.30) and (A.31), respectively. Results are qualitatively unchanged regardless of their inclusion.

In Columns 3 and 6 of Appendix Table A.15, we also perform regressions in the overall sample

(described in Panel B of Appendix Table A.13). We maintain all of the interactions implicit in our

subsample results except that we allow hospital group fixed effects to remain constant before and after

adoption of health IT or an ACO. We do so with the following control function approach. First, we

estimate a first-stage regression that interacts everything with adoption status, except for fixed effects

for hospital groups, 𝑔 (ℎ (𝑖)), defined by whether a hospital ever adopts health IT or an ACO:

𝐷𝑚
𝑖 =

∑︁
𝑎∈{0,1}

1
(
Adopted𝑖 = 𝑎

) (
𝜋𝑚1,𝑎𝑍

𝑚
𝑖 +𝛾𝑚1,𝑎𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
1,𝑎 + Z

𝑚
1,𝑧 (𝑖) ,𝑎

)
+ b𝑚1,𝑔 (ℎ (𝑖) ) + Y

𝑚
1,𝑖 . (A.32)

We then take estimated first-stage residuals Ŷ𝑚1,𝑖 and include them in an interacted control-function

model:

𝑌𝑖 =
∑︁

𝑎∈{0,1}
1
(
Adopted𝑖 = 𝑎

) (
𝛽𝑎𝐷

𝑚
𝑖 +𝛾𝑎 Ŷ𝑚1,𝑖 +X0

𝑖 𝛿𝑎 + Z𝑧 (𝑖) ,𝑎
)
+ b𝑔 (ℎ (𝑖) ) + 𝜖𝑖 . (A.33)

As with our other control-function regressions, we compute standard errors by 50 bootstrapped itera-

tions, drawing samples by zip code blocks, with replacement. While estimates control for hospital or

hospital group fixed effects, we find that results are essentially unchanged regardless of their inclu-

sion.

the same design matrix.
48Analogously to Figure 2 and Appendix Figure A.3 in the benchmark analysis, Appendix Figure A.18 shows stability

in OLS and two-stage least squares estimates with increasing controls, and Appendix Figure A.19 shows the robustness of
two-stage least squares estimates under an exhaustive set of control combinations.
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Figure A.1: Balance Coefficient in Simulated Data
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Note: This figure plots the balance coefficient in the baseline sample and in simulated data in which we per-
fectly sort a percent of ambulance rides and randomly assign the rest of the ambulance rides. The y-axis shows
the balance coefficient, and the x-axis shows the percent of perfectly sorted observations in the simulated data,
or ] ∈ {0,1, . . . ,100}. The dashed horizontal line indicates the balance coefficient in the baseline sample, also
shown in Panel B of 1. Each simulated dataset comprises observations of residuals of predicted mortality 𝑌𝑖
and residuals of 𝑍𝑖 , formed by regressions of each object on baseline controls. We form the simulated dataset
by perfectly sorting ] percent (in expectation) of𝑌𝑖 residuals according to ambulances that are sorted by their
mean 𝑍𝑖 residual and randomly assigning the remaining 1− ] percent (in expectation). We assign rides only
within their original zip code, also holding the number of rides assigned to each ambulance company within
the zip code fixed. The regression of reassigned residual 𝑌𝑖 on residual 𝑍𝑖 gives the balance coefficient in each
simulated dataset, shown in the solid black line. The shaded gray region indicates the 95% confidence inter-
val, which we obtain by 20 bootstrapped replications drawn by zip code blocks with replacement. The upper
confidence limit intersects with the actual balance coefficient between ] = 2 and ] = 3.
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Figure A.2: Visual IV
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Note: This figure shows the visual IV plot corresponding to our baseline IV regression of the effect of the VA
on 28-day mortality. For each bin of the instrument, which is the ambulance leave-out propensity to arrive at a
VA hospital, we plot the mean 28-day mortality on the y-axis and the probability that the index patient arrives
at a VA hospital on the x-axis. VA arrival predictions correspond to a first-stage regression in Equation (3), and
mortality predictions correspond to a reduced-form regression in Equation (4). The best-fit line in the visual
IV plot replicates the IV estimate of the effect of the VA on 28-day mortality, which we perform to obtain
the standard error (in parentheses). This IV regression uses 401,319 observations and 1,217 combinations of
ambulance company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs). The baseline sample
selection is given in Appendix Table A.1. Controls include patient zip code dummies, ALS/BLS dummies,
source of the ambulance ride, time categories, and patient prior utilization, detailed in Appendix Table A.2.
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Figure A.3: Combinations of Controls
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Note: This figure shows IV estimates of the VA effect on 28-day mortality on the y-axis, from Equation (2),
varying the number of controls included in the IV regression. Numbered incremental controls correspond to
categories or subcategories of variables presented in order in Appendix Tables A.2 and A.3. All specifications
include the five baseline controls. Therefore, the figure represents 5+

(
27 −1

)
= 132 specifications. For each

number of controls 𝑛 for 𝑛 > 5, we consider “7 choose 𝑛− 5” specifications. The mean IV estimate is shown
with a dashed line; the minimum and maximum IV estimates are shown with a short dashed line. We use our
baseline sample, described in Appendix Table A.1.

A.21



Figure A.4: Treatment Effects by Time and Sample

A: OLS
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B: IV
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Note: This figure shows mortality treatment effects over varying days since the ambulance ride and in varying
samples dropping patients with prior rides. “Days” indicate one-week intervals from the ambulance ride. Panel
A shows OLS results corresponding to Equation (6). Panel B shows IV results corresponding to Equation (5).
The vertical dashed line indicates treatment effects on 28-day mortality, our baseline outcome.
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Figure A.5: Joint Inequality Constraints

A: No Mortality Displacement
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B: No Negative Hazard Rate
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Note: This figure shows the test statistic for joint inequality constraints and bootstrapped-generated distribu-
tions of the test statistic under the least favorable version of the null hypothesis. Panel A shows the joint
inequality test of no mortality displacement, as defined by the null hypothesis in Equation (A.7). Panel B
shows the joint inequality test of no negative hazard rates, as defined by the null hypothesis in Equation (A.16).
The test statistic for both tests is shown as a solid vertical line. The one-sided critical value, or 95th percentile
of the bootstrapped distribution of the test statistic under the least favorable version of the null hypothesis, is
shown as a dashed vertical line. The test statistic and the bootstrap procedure for Panels A and B are described
further in Appendices A.2.2 and A.2.3, respectively.
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Figure A.6: Mean Hazard Differences

A: VA vs. Non-VA Compliers B: VA vs. Non-VA Users
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C: VA Compliers vs. Users D: Non-VA Compliers vs. Users
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Note: This figure shows tests of equality of mean hazard rates for different sets of hazard rates, as defined
by the null hypothesis in Equation (A.18). Each panel corresponds to a comparison between sets of hazards
corresponding to VA or non-VA compliers or users. Details of the statistical procedure are given in Appendix
A.2.4. Hazard rates for compliers are estimated by two-stage least squares and denoted in the appendix by
ℎ̂𝐼𝑉 (𝑡;𝑑), where 𝑑 = 1 for compliers assigned to the VA and 𝑑 = 0 for compliers assigned to a non-VA hospital.
Hazard rates for users are estimated by OLS and denoted by ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), where 𝑑 similarly denotes VA users
(𝑑 = 1) vs. non-VA users (𝑑 = 0). The solid black line shows the test statistic, and the histogram shows the
distribution of bootstrapped test statistics under the null hypothesis. Bootstrapped standard errors are given in
the caption.
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Figure A.7: Joint Equality Constraints

A: VA vs. Non-VA Compliers B: VA vs. Non-VA Users
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C: VA Compliers vs. Users D: Non-VA Compliers vs. Users
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Note: This figure shows tests of joint equality of hazard rates for different sets of hazard rates, as defined
by the null hypothesis in Equation (A.19). Each panel corresponds to a comparison between sets of hazards
corresponding to VA or non-VA compliers or users. Details of the statistical procedure are given in Appendix
A.2.4. Hazard rates for compliers are estimated by two-stage least squares and denoted in the appendix by
ℎ̂𝐼𝑉 (𝑡;𝑑), where 𝑑 = 1 for compliers assigned to the VA and 𝑑 = 0 for compliers assigned to a non-VA hospital.
Hazard rates for users are estimated by OLS and denoted by ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), where 𝑑 similarly denotes VA users
(𝑑 = 1) vs. non-VA users (𝑑 = 0). The solid line shows the test statistic. The histogram shows the distribution
of bootstrapped test statistics under the null hypothesis. The dashed line shows the one-sided 95th percentile
critical value.
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Figure A.8: Marginal Treatment Effects

A: Flexible Visual IV
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B: Marginal Treatment Effects
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Note: This figure shows a flexible fit of the IV relationship between 28-day mortality and the ambulance
propensity to transport to a VA hospital. Panel A shows the visual IV relationship with residual 28-day mortality
on the y-axis and residual probability of being transported to a VA hospital on the x-axis. Both objects are
residualized by baseline controls, described in Appendix Table A.2. The probability of being transported to a
VA hospital is calculated from the first-stage relationship in Equation (3). The data underlying the fit in Panel
A are similar to those in the linear visual IV plot in Appendix Figure A.2. The fit is based on five Gaussian
basis splines. Panel B shows the implied marginal treatment effects, which are the analytical derivatives at each
point on the fit in Panel A. 95% confidence intervals are calculated by 50 bootstrapped interations (drawn by
zip codes, with replacement). Details are given in Appendix A.4.
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Figure A.9: Station-Specific OLS Estimates of VA Advantage

A: Stations with at Least 5,000 Rides
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Note: Panel A of this figure shows the kernel density distribution of station-specific OLS estimates of the
VA advantage, or 𝛽ℓ

𝑂𝐿𝑆
estimated from Equation (A.27) for rides corresponding to each station. We include

estimates from 32 stations with at least 5,000 rides, comprising a sample of 276,483 rides. Panel B of this
figure shows the kernel density distribution of empirical Bayes posteriors of the station-specific OLS estimates
of the VA advantage. These posteriors are given by 𝛽ℓ

𝑂𝐿𝑆
in Equation (A.28). The figure displays posteriors

from all 94 stations in our baseline sample in Appendix Table A.1, comprising 401,319 rides.
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Figure A.10: Complier Spending, Fixed Prices

A: Cumulative Spending
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B: Conditional Spending Rate
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Note: This figure shows potential spending outcomes for ambulance compliers who arrive at a VA hospital
and those who arrive at a non-VA hospital. Panel A shows cumulative spending per patient as a function of
days from the ambulance ride. Panel B presents implied weekly spending rates for compliers, conditional on
survival. Instead of actual spending by the government, insurers, and patients, as shown in Figure 5, this figure
considers imputed spending with fixed prices based on methodology in Gottlieb et al. (2010) and Finkelstein,
Gentzkow, and Williams (2016). Specifically, we impute spending for physician services based on Relative
Value Units (RVUs) for service procedures with CPT codes, for other outpatient procedures based on aver-
age reimbursements for (non-CPT) HCPCS codes, and for inpatient stays based on Diagnosis-Related Group
(DRG) weights. We scale prices by a constant so that imputed total Medicare spending equals actual total
Medicare spending. The note for Figure 5 provides further details.
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Figure A.11: VA Shares Within Top Reported Procedures
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Note: This figure shows the VA share of line items of reported utilization of each of the top 25 procedures,
defined by Current Procedural Terminology (CPT) codes, on the Medicare Physician Fee Schedule (MPFS). We
include line items of utilization for any patient in our baseline sample in the 28 days following his ambulance
ride. The area of each circle indicates the relative number of line items belonging to each CPT code. For scale,
the largest circle represents 1.627 line items per ambulance ride; the smallest circle represents 0.162 line items
per ambulance ride. The top 25 procedures represent 57.2% of line items with any CPT code on the MPFS.
The gray vertical line indicates the overall VA share of line items of any CPT code on the MPFS.
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Figure A.12: VA Shares Within Top Reported Procedure Groups
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Note: This figure shows the VA share of line items of reported utilization in each of the top 25 groups of proce-
dures, defined by Current Procedural Terminology (CPT) codes. We form groups based on the list of 115 groups
of Category I CPT codes at https://en.wikipedia.org/wiki/Current Procedural Terminology,
which in turn is based on the organization of CPT codes by the American Medical Association (2017). We
include line items of utilization for any patient in our baseline sample in the 28 days following his ambulance
ride. The area of each circle indicates the relative number of line items belonging to each CPT code group. For
scale, the largest circle represents 4.159 line items per ambulance ride; the smallest circle represents 0.095 line
items per ambulance ride. The top 25 groups of procedures represent 65.1% of line items with any Category I
CPT code. The gray vertical line indicates the overall VA share of line items of any Category I CPT code.
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Figure A.13: Reimbursement and VA Shares of Procedures
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Note: This figure shows a binned scatter plot between reimbursement in dollars (on the y-axis) and the VA
share of line items corresponding to each of the top 200 Current Procedural Terminology (CPT) codes on the
Medicare Physician Fee Schedule (MPFS). Reimbursement for a CPT code is calculated for each year it is on
the MPFS by multiplying its year-specific relative value units (RVUs) with the year-specific conversion factor.
We then take the median reimbursement across years that the CPT code is on the MPFS. We include line items
of utilization for any patient in our baseline sample in the 28 days following his ambulance ride. The top 25
procedures represent 79.3% of line items with any CPT code on the MPFS. We weight each CPT observation
by its number of line items in forming the binned scatter plot.
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Figure A.14: High-Complexity E/M Utilization in Non-VA vs. VA Providers
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Note: This figure shows the odds ratio of high-complexity evaluation and management (E/M) Current Proce-
dural Terminology (CPT) codes billed by non-VA vs. VA providers. We include line items of utilization for
any patient in our baseline sample in the 28 days following his ambulance ride. Within each type of E/M code,
defined by the setting and the type of patient (e.g., “office or other outpatient visit for the evaluation and man-
agement of an established patient” for CPT codes 99211 to 99215), E/M codes are distinguished by “level” of
complexity. We calculate the odds of highest to lowest complexity for non-VA providers and for VA providers
and present the odds ratio on the x-axis. An odds ratio of one indicates that non-VA and VA providers are
equally likely to bill the highest- vs. the lowest-complexity E/M code within the type. An odds ratio greater
than one indicates that non-VA providers are more likely to do so. We present results within seven categories
of E/M-code types defined by setting. The area of each circle is proportional to the total number of line items
in each of these categories.
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Figure A.16: Modal Hospital First Stage, Balance, and Reduced Form

A: First Stage
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B: Balance and Reduced Form
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Note: Panel A shows a binned scatter plot of arrival at the veteran’s modal hospital against the ambulance
leave-out propensity to arrive at that hospital on the x-axis. The figure is a graphical representation of the
first-stage regression in Equation (A.30). Panel B shows binned scatter plots of 28-day mortality and predicted
28-day mortality on the y-axis against the ambulance leave-out propensity to arrive at the veteran’s modal
hospital on the x-axis. Mortality bin means are shown in solid circles, while predicted mortality bin means
are shown in hollow circles. The figure represents the reduced-form regression in Equation (A.31) and the
corresponding balance regression replacing mortality with predicted mortality. The sample includes 1,414,217
ambulance rides and 5,716 combinations of ambulance company identifiers and Dartmouth Atlas Hospital
Referral Regions (HRRs). The sample includes patients who have some utilization affiliated with a non-VA
hospital and no utilization at the VA in the prior year. The selection details of this sample are given in Appendix
Table A.13. Controls include patient zip code dummies, ALS/BLS dummies, source of the ambulance ride, time
categories, and patient prior utilization, detailed in Appendix Table A.2.
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Figure A.17: Modal Hospital Visual IV
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Note: This figure shows the visual IV plot corresponding to the IV regression of the effect of arrival at a
patient’s modal hospital on 28-day mortality. For each bin of the instrument, which is the ambulance leave-out
propensity to arrive at the patient’s modal hospital, we plot the mean 28-day mortality on the y-axis and the
probability that the index patient arrives at his modal hospital on the x-axis. Modal hospital arrival predictions
correspond to a first-stage regression in Equation (A.30), and mortality predictions correspond to a reduced-
form regression in Equation (A.31). The best-fit line in the visual IV plot replicates the IV estimate of the
effect of arrival at a patient’s modal hospital on 28-day mortality, which we perform to obtain the standard
error (in parentheses). This IV regression uses 1,414,217 observations and 5,716 combinations of ambulance
company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs). We use the sample of non-VA-
only utilizers, given in Appendix Table A.13. Controls include patient zip code dummies, ALS/BLS dummies,
source of the ambulance ride, time categories, and patient prior utilization, detailed in Appendix Table A.2.
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Figure A.18: Modal Hospital OLS and IV Specifications
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Note: This figure shows the effect of arrival at a patient’s modal hospital on 28-day mortality estimated from
OLS and IV specifications, with progressive sets of controls. Numbered incremental controls correspond to
categories or subcategories of variables presented in order in Appendix Tables A.2 and A.3. Control sets are
as follows: (1) zip code; (2) pickup source; (3) ambulance service; (4) time categories; (5) prior utilization; (6)
demographics; (7) socioeconomic status, combat history, and eligibility; (8) extended prior utilization; (9) prior
diagnoses; (10) 3-digit ambulance diagnosis codes; (11) co-rider baseline controls; and (12) co-rider hold-out
controls. Estimates are shown along solid lines, while 95% confidence intervals are shown in dashed lines. All
specifications control for hospital identities and use the sample of non-VA-only utilizers, given in Appendix
Table A.13.
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Figure A.19: Modal Hospital Combinations of Controls
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Note: This figure shows IV estimates of the effect of arrival at a patient’s modal hospital on mortality on the
y-axis, with first-stage and reduced-form Equations (A.30) and (A.31), varying the number of controls included
in the IV regression. Control variables are detailed in Appendix Tables A.2 and A.3. All specifications include
the five baseline controls. Therefore, the figure represents 5+

(
27 −1

)
= 132 specifications. For each number

of controls 𝑛 for 𝑛 > 5, we consider “7 choose 𝑛− 5” specifications. The mean IV estimate is shown with a
dashed line; the minimum and maximum IV estimates are shown with a short dashed line. We use the sample
of non-VA-only utilizers, given in Appendix Table A.13.
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Table A.2: Baseline Control Variables

Category Subcategory Variables
Location
(1,633 indicators)

Zip code
(1,630 indicators)

Zip code indicators (1,630 indicators)

Pickup source
(3 indicators)

Indicators for whether pickup is from residence,
residential (including domiciliary, custodial
facility), skilled nursing facility, or scene of
accident (omitted category)

Ambulance service
(3 indicators)

Indicators for whether ambulance is ALS special
(CPT codes A0427, A0330, A0370), ALS
non-special (CPT codes Q3019, A0368, A0328),
ALS level 2 (CPT code A0433), or BLS (omitted
category; CPT codes A0429, A0362, A0322)

Time categories
(173 indicators)

Day of the week (6 indicators);
Month-year interactions (167 indicators)

Prior utilization
(6 indicators)

Indicators for utilization in prior year of Medicare
primary care, VA primary care utilization,
Medicare ED, VA ED, Medicare inpatient, and
VA inpatient services

Note: This table describes baseline controls variables, denoted as
(
𝑧 (𝑖) ,X0

𝑖

)
in Condition 1 and throughout the

text. We consider our quasi-experiment to be conditional on these variables, and we include these variables as
controls in all of our analyses. Numbers of non-collinear indicators are given in parentheses.

A.39



Table A.3: Hold-Out Control Variables

Category Subcategory Variables
Patient background
(60 variables)

Demographics
(30 indicators)

Age: 5-year age bins from 20-64 years, 2-year
age bins from 65-100 years (26 indicators);
Male gender;
Race: indicators for white, Black, Hispanic, and
Asian/other (omitted category)

Socioeconomic
status, combat
history, and
eligibility
(22 indicators)

Terciles of income and net worth (4 indicators);
Period of combat: WWII, Korean, Vietnam, other
(omitted category) (3 indicators);
Indicator for aid and attendance for in-home care;
Priority group indicators (7 indicators);
Service connection: service connected, not
service connected, or non-veteran/other (omitted
category) (2 indicators);
6 missing indicators for each of the above
characteristics

Extended prior
utilization
(8 variables)

Counts of VA primary care visits, outpatient
visits, ED visits, and inpatient visits in prior year;
Analogous counts of Medicare visits in prior year

Prior diagnoses
(93 indicators)

31 Elixhauser indicators (dividing hypertension
indicator into 2 indicators for complicated and
uncomplicated hypertension), in four categories:
present in VA data only, present in Medicare data
only, and present in both VA and Medicare data
(31×3 = 93 indicators)

3-digit ambulance
diagnosis codes
(641 indicators)

3-digit ambulance diagnosis (ICD-9) codes (641
indicators)

Co-rider
characteristics
(33 variables)

Co-rider baseline
controls
(12 variables)

Co-rider pickup source proportions (3 variables);
Co-rider ambulance service proportions (3
variables);
Co-rider prior utilization proportions (6 variables)

Co-rider hold-out
controls
(21 variables)

Co-rider average continuous age;
Co-rider proportion male gender;
Co-rider race proportions (3 variables);
Co-rider 1-digit ambulance code proportions (15
variables);
Co-rider average predicted mortality

Note: This table describes hold-out control variables. These variables are used to test robustness of our findings,
particularly in Figure 2 and Appendix Figures A.3, A.18, and A.19. Numbers of non-collinear indicators or
variables are given in parentheses.
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Table A.5: Monotonicity Tests

Instrument

First stage sample Observations VA share Baseline
Reverse-
sample

Age ≤ 80 239,611 0.347 0.931 0.497
(0.038) (0.022)

Age > 80 161,707 0.305 0.789 0.456
(0.041) (0.022)

White 314,064 0.304 0.821 0.221
(0.037) (0.016)

Non-white 87,176 0.426 0.992 0.596
(0.068) (0.041)

Comorbidity count (high) 167,332 0.292 0.758 0.427
(0.041) (0.019)

Comorbidity count (low) 233,987 0.358 0.938 0.553
(0.039) (0.027)

Mental illness or substance abuse 188,961 0.354 0.931 0.514
(0.040) (0.024)

No mental illness or substance abuse 212,358 0.309 0.815 0.456
(0.037) (0.020)

VA visits in prior year (high) 183,087 0.508 1.038 0.710
(0.050) (0.035)

VA visits in prior year (low) 218,232 0.181 0.718 0.284
(0.031) (0.014)

Advanced Life Support 274,690 0.301 0.836 0.249
(0.036) (0.018)

No Advanced Life Support 126,616 0.393 0.840 0.301
(0.048) (0.032)

Predicted VA user (high) 200,659 0.543 1.113 0.865
(0.054) (0.055)

Predicted VA user (low) 200,660 0.117 0.559 0.218
(0.030) (0.011)

Predicted mortality (high) 200,659 0.328 0.835 0.368
(0.036) (0.019)

Predicted mortality (low) 200,660 0.333 0.898 0.502
(0.046) (0.024)

Instrument sample
Dual

eligibles
Analytical

sample

Note: This table presents first-stage coefficients on different subsamples of patients. For each subsample, we
present results for two different instruments: (i) the baseline leave-out instrument, 𝑍𝑖 , given in Equation (1)
and calculated from observations among dually eligible veterans (Step 1 of Appendix Table A.1), and (ii) a
reverse-sample instrument, �̃�−𝑚

𝑖
, given in Equation (A.2) and calculated from observations in the analytical

sample (Step 6 of Appendix Table A.1) that are outside of the regression subsample. Each regression uses
baseline controls defined in Appendix Table A.2. Further details are given in Appendix A.1.2.
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Table A.6: Monotonicity Tests (Continued)

Instrument
First stage sample Observations VA share Baseline In-sample
Age ≤ 80 239,611 0.347 0.586 0.525

(0.021) (0.020)
Age > 80 161,707 0.305 0.494 0.394

(0.023) (0.022)
White 314,064 0.304 0.504 0.513

(0.019) (0.020)
Non-white 87,176 0.426 0.676 0.440

(0.032) (0.033)
Comorbidity count (high) 167,332 0.292 0.493 0.438

(0.020) (0.021)
Comorbidity count (low) 233,987 0.358 0.583 0.504

(0.022) (0.020)
Mental illness or substance abuse 188,961 0.354 0.592 0.518

(0.021) (0.020)
No mental illness or substance abuse 212,358 0.309 0.501 0.426

(0.020) (0.020)
VA visits in prior year (high) 183,087 0.508 0.691 0.572

(0.026) (0.021)
VA visits in prior year (low) 218,232 0.181 0.421 0.445

(0.018) (0.021)
Advanced Life Support 274,690 0.301 0.523 0.518

(0.020) (0.021)
No Advanced Life Support 126,616 0.393 0.531 0.433

(0.025) (0.024)
Predicted VA user (high) 200,659 0.543 0.743 0.619

(0.028) (0.021)
Predicted VA user (low) 200,660 0.117 0.331 0.423

(0.016) (0.027)
Predicted mortality (high) 200,659 0.328 0.513 0.458

(0.020) (0.019)
Predicted mortality (low) 200,660 0.333 0.570 0.479

(0.023) (0.021)

Instrument sample
Analytical

sample
Analytical

sample

Note: This table presents first-stage coefficients on different subsamples of patients. For each subsample, we
present results for two different instruments: (i) the baseline leave-out instrument, �̃�𝑖 , given in Equation (1),
and (ii) an in-sample instrument, �̃�𝑚

𝑖
, given in Equation (A.2) and calculated from leave-out observations in

the same regression subsample. Both instruments are calculated using observations in the analytical sample
(Step 6 of Appendix Table A.1). Each regression uses baseline controls defined in Appendix Table A.2. Further
details are given in Appendix A.1.2.
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Table A.7: Always-Taker and Never-Taker Characteristics

Always-takers Never-takers
Mean Ratio Mean Ratio

Male 0.961 1.00 0.965 1.00
(0.002) [0.99 - 1.00] (0.001) [1.00 - 1.00]

Age 75.6 0.99 76.3 1.00
(0.158) [0.99 - 1.00] (0.153) [1.00 - 1.01]

Black 0.222 1.14 0.184 0.95
(0.012) [1.02 - 1.26] (0.010) [0.85 - 1.05]

Income $18,039 0.86 $22,397 1.07
($200) [0.84 - 0.88] ($232) [1.05 - 1.09]

Rural zip code 0.064 1.27 0.053 1.04
(0.015) [0.67 - 1.87] (0.011) [0.62 - 1.46]

Residential source 0.685 0.97 0.667 0.95
(0.011) [0.94 - 1.00] (0.009) [0.92 - 0.97]

Comorbidity count 5.85 0.95 6.44 1.05
(0.046) [0.94 - 0.97] (0.032) [1.04 - 1.06]

Mental illness 0.469 1.10 0.420 0.98
(0.006) [1.07 - 1.13] (0.004) [0.97 - 1.00]

Substance abuse 0.150 1.04 0.137 0.95
(0.005) [0.97 - 1.10] (0.004) [0.90 - 1.00]

Prior VA ED visit only 0.593 2.02 0.145 0.49
(0.007) [1.97 - 2.06] (0.003) [0.47 - 0.52]

Prior non-VA ED visit only 0.032 0.13 0.376 1.52
(0.002) [0.12 - 0.14] (0.005) [1.48 - 1.56]

Prior VA and non-VA ED visit 0.230 0.98 0.237 1.01
(0.006) [0.93 - 1.03] (0.004) [0.98 - 1.05]

Ambulance rides in prior year 2.212 1.03 2.210 1.03
(0.030) [1.00 - 1.05] (0.025) [1.00 - 1.05]

Advanced Life Support 0.576 0.84 0.707 1.03
(0.013) [0.81 - 0.88] (0.010) [1.01 - 1.06]

Predicted VA user 0.969 1.14 0.778 0.92
(0.001) [1.14 - 1.15] (0.002) [0.91 - 0.92]

Predicted mortality 0.103 1.07 0.100 1.03
(0.002) [1.03 - 1.10] (0.001) [1.01 - 1.05]

Note: This table presents average characteristics for always-takers and never-takers. Always-takers are defined
as patients who present to the VA even when they receive a residualized instrument below the 20th percentile;
never-takers are defined as patients who present to a non-VA hospital even when they receive a residualized
instrument above the 80th percentile. To form these residualized instruments, we residualize the baseline in-
strument, 𝑍𝑖 , given in Equation (1), by baseline controls, described in Appendix Table A.2. Observations are
drawn from the baseline sample described in Appendix Table A.1. For each row corresponding to a characteris-
tic, the table presents average characteristics and the ratio between this average and the overall sample average.
Overall sample means are given in Table 4. Standard errors are calculated by bootstrap, blocking observations
by zip codes, and are shown in parentheses. Corresponding 95% confidence intervals of the ratio are presented
in brackets. Further details are given in Appendix A.3.
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Table A.9: Heterogeneity by Patient Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Older than 80 -0.047 0.004 0.00 1.00
(0.017) (0.003)

Black -0.043 -0.002 0.00 1.00
(0.017) (0.003)

Hispanic -0.045 -0.008 0.00 1.00
(0.017) (0.008)

Income -0.044 0.003 $10,651 $31,159
(0.017) (0.002)

Comorbidity count -0.044 -0.014 3.90 9.28
(0.016) (0.002)

Mental illness or substance abuse -0.045 -0.005 0.00 1.00
(0.017) (0.002)

VA visits in prior year -0.044 -0.004 2.15 11.88
(0.017) (0.002)

Ambulance rides in prior year -0.043 -0.008 1.00 3.55
(0.017) (0.002)

Advanced Life Support -0.046 -0.013 0.00 1.00
(0.017) (0.002)

Predicted VA user -0.044 -0.005 0.70 1.00
(0.017) (0.003)

Predicted mortality -0.045 -0.018 0.04 0.15
(0.016) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along patient charac-
teristics. For each VA hospital characteristic 𝑥, we divide observations 𝑖, based on whether 𝑥 is below vs. above
the median, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression results correspond to Equation (A.26).
The coefficient on VA represents the LATE of going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents the
difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0.

A.46



Table A.10: Heterogeneity by Non-VA Hospital Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Volume, Size, and Capabilities
ED visits -0.046 -0.002 28,082 53,849

(0.016) (0.002)
Admissions -0.046 -0.003 9,664 17,859

(0.017) (0.002)
Total staffed beds -0.046 -0.004 199 375

(0.017) (0.002)
Teaching hospital -0.045 -0.000 0.02 0.51

(0.017) (0.002)
Trauma center -0.045 0.004 0.28 0.93

(0.016) (0.002)
Advanced cardiac care -0.046 -0.000 0.64 1.00

(0.017) (0.002)
Stroke center -0.045 0.001 0.03 0.65

(0.017) (0.002)

Staffing
ED staff per 1,000 ED visits -0.045 -0.001 0.30 0.75

(0.017) (0.002)
Nurses per 1,000 patient-days -0.046 0.006 4.13 6.58

(0.016) (0.002)
Physicians per 1,000 patient-days -0.045 0.002 4.36 10.79

(0.017) (0.002)
Hospitalists per 1,000 patient-days -0.045 0.003 0.12 0.39

(0.017) (0.002)
Intensivists per 1,000 patient-days -0.045 0.003 0.05 0.23

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along binary indi-
cators of average non-VA hospital characteristics associated with each zip code. For each zip code, hospital
characteristics are averaged with weights proportional to the number of rides going to each non-VA hospital
from the zip code. We then divide observations 𝑖, based on whether their zip codes 𝑧 (𝑖) have below- vs. above-
median averages, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression results correspond to Equation
(A.26). The coefficient on VA represents the LATE of going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 repre-
sents the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0. Appendix
Table A.11 presents results for additional characteristics. Appendix A.5 provides further details on the hospital
characteristics.
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Table A.11: Heterogeneity by Non-VA Hospital Characteristics (Continued)

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Spending and Outcomes
Relative spending -0.045 -0.002 0.97 1.04

(0.017) (0.002)
Mortality rate -0.045 -0.003 11.62 12.89

(0.017) (0.002)
Readmission rate -0.045 -0.002 17.30 18.90

(0.017) (0.002)

Organization and IT
Network or hospital system -0.045 -0.002 0.65 1.00

(0.017) (0.002)
HMO or ACO -0.045 -0.002 0.00 0.47

(0.017) (0.002)
Health IT -0.046 -0.002 0.00 0.80

(0.016) (0.002)
Share of non-VA rides (max.) -0.045 0.002 0.42 0.73

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along binary indi-
cators based on non-VA hospital characteristics associated with each zip code. For “Share of non-VA rides
(max.)”, we take the maximum non-VA hospital share of non-VA rides as the zip code characteristic. Hospital
characteristics are averaged within each zip code for the remaining characteristics with weights proportional
to the number of rides going to each non-VA hospital from the zip code. We then divide observations 𝑖, based
on whether their zip codes 𝑧 (𝑖) have below- vs. above-median statistics, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, re-
spectively. Regression results correspond to Equation (A.26). The coefficient on VA represents the LATE of
going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents the difference in the LATE between observations
with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0. Appendix Table A.10 presents results for additional characteristics.
Appendix A.5 provides further details on the hospital characteristics.

A.48



Table A.12: Heterogeneity by VA Hospital Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Volume, Size, and Capabilities
ED visits -0.045 -0.001 8,625 23,111

(0.017) (0.002)
Admissions -0.044 -0.003 3,247 8,148

(0.016) (0.002)
Total staffed beds -0.044 -0.007 139 463

(0.017) (0.002)
Teaching hospital -0.045 -0.003 0.00 0.93

(0.017) (0.002)
Trauma center -0.052 0.006 0.00 1.00

(0.018) (0.004)
Advanced cardiac care -0.051 -0.004 0.00 1.00

(0.018) (0.002)

Staffing
ED staff per 1,000 ED visits -0.050 -0.001 0.19 1.21

(0.022) (0.003)
Nurses per 1,000 patient-days -0.045 0.003 3.80 8.60

(0.017) (0.002)
Physicians per 1,000 patient-days -0.050 -0.000 1.12 7.95

(0.022) (0.003)
Hospitalists per 1,000 patient-days -0.051 0.006 0.03 0.30

(0.022) (0.003)
Intensivists per 1,000 patient-days -0.050 0.001 0.00 0.15

(0.022) (0.003)

Spending and Outcomes
Relative spending -0.045 -0.002 0.95 1.22

(0.016) (0.002)
Mortality rate -0.045 0.005 7.11 7.98

(0.017) (0.003)
Readmission rate -0.045 -0.003 11.70 12.70

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along characteristics
of the VA hospital associated with each zip code. For each VA hospital characteristic 𝑥, we divide observations
𝑖, based on whether 𝑥 is below vs. above the median, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression
results correspond to Equation (A.26). The coefficient on VA represents the LATE of going to the VA, and
the coefficient on VA × 𝐼𝑥,𝑖 represents the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and
observations with 𝐼𝑥,𝑖 = 0. Appendix A.5 provides further details on the hospital characteristics.
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