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1 Introduction

The distributions of skills, occupations, and industries vary substantially and systematically

across US cities. Figures 1 through 3 illustrate this with three selected examples for each.

• Figure 1 plots the population of three educational attainment categories against total

metropolitan area population.1 The left panel plots the data; the right panel plots a

locally weighted regression for each category. While each educational category’s popu-

lation rises with metropolitan population, the relative levels also exhibit a systematic

relationship with city size. Comparing elasticities, the population with a bachelor’s

degree rises with city size faster than the population of college dropouts, which in turn

rises faster than the population of high-school graduates.

Figure 1: Populations of three educational groups across US metropolitan areas
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Data source: 2000 Census of Population microdata via IPUMS-USA

• Figure 2 plots metropolitan area employment in three occupational categories.2 Com-

puter and mathematical employment rises with city size faster than office and admin-

istrative employment, which in turn rises faster than installation, maintenance and

repair employment. These sectors also differ in their employee characteristics. Na-

tionally, the average individual in computer and mathematical occupations has about

1We use the terms “cities” and “metropolitan areas” interchangeably, as is customary in the literature.
These three educational groups comprise about 70 percent of the employed metropolitan population (see
Table 1).

2The occupations are SOC 49, 43, and 15 in the 2000 Occupational Employment Statistics data.
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two more years of schooling than the average individual in office and administrative

support and three more years than those in installation, maintenance, and repair.

Figure 2: Employment in three occupations across US metropolitan areas
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Data source: Occupational Employment Statistics 2000

• Figure 3 plots employment in three manufacturing industries.3 Employment in com-

puter and electronic products rises with city size faster than machinery, which in turn

rises faster than wood products. On average, computer and electronic employees have

about one more year of education than machinery employees and two more years of

education than wood products employees.

3The industries are NAICS 321, 333, and 334 in the 2000 County Business Patterns data. Employment
levels cluster at particular values due to censored observations. See appendix D describing the data.
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Figure 3: Employment in three manufacturing industries across US metropolitan areas
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Data source: County Business Patterns 2000

Together, these three figures suggest that larger cities are skill-abundant and specialize in

skill-intensive activities. Explaining these patterns involves fundamental questions about the

spatial organization of economic activity. What determines the distribution of skills across

cities? What determines the distribution of occupations and industries across cities? How

are these two phenomena interrelated? In this paper, we develop a theory describing the

comparative advantage of cities that predicts such a pattern of skills and sectors in a manner

amenable to empirical investigation.

As we describe in section 2, prior theories describing cities’ sectoral composition have

overwhelmingly focused on the polar cases in which cities are either completely specialized

“industry towns” or perfectly diversified hosts of all economic activities (Helsley and Strange,

2012). Yet Figures 2 and 3 make clear both that reality falls between these poles and that sec-

toral employment shares are systematically related to cities’ sizes. In this paper, we integrate

modern trade theory with urban economics by introducing a spatial-equilibrium model in

which the comparative advantage of cities is jointly governed by the comparative advantage

of individuals and their locational choices. Our theory both describes the intermediate case

in which cities are incompletely specialized and relates the pattern of specialization to cities’

observable characteristics. It makes strong, testable predictions about the distributions of

skills and sectors across cities that we take to the data.

Section 3 introduces our model of a system of cities with heterogeneous internal geogra-

phies. Cities are ex ante homogeneous, so cross-city heterogeneity is an emergent outcome
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of the choices made by freely mobile individuals. Agglomeration economies make cities with

larger, more skilled populations exhibit higher total factor productivity (TFP). Locations

within cities exhibit heterogeneity in their desirability, as is customary in land-use models

(Fujita and Thisse, 2002, Ch 3). These cities are populated by heterogeneous individuals

with a continuum of skill types, and these individuals may be employed in a continuum of sec-

tors. Comparative advantage causes more skilled individuals to work in more skill-intensive

sectors, as in Sattinger (1975), Costinot (2009), and Costinot and Vogel (2010). There is

a complementarity between individual income and locational attractiveness, so more skilled

individuals are more willing to pay for more attractive locations and occupy these locations

in equilibrium, as in the differential-rents model of Sattinger (1979).

In equilibrium, agglomeration, individuals’ comparative advantage, and heterogeneity

across internal locations within cities combine to deliver a rich set of novel predictions.

Agglomeration causes larger cities to have higher TFP, which makes a location within a larger

city more attractive than a location of the same innate desirability within a smaller city. For

example, the best location within a larger city is more attractive than the best location

within a smaller city due to the difference in TFP. Since more skilled individuals occupy

more attractive locations, larger cities are skill-abundant. The most skilled individuals in

the population live only in the largest city and more skilled individuals are more prevalent

in larger cities, consistent with the pattern shown in Figure 1. By individuals’ comparative

advantage, the most skill-intensive sectors are located exclusively in the largest cities and

larger cities specialize in the production of skill-intensive output. More skill-intensive sectors

exhibit higher population elasticities of sectoral employment, as suggested in Figures 2 and

3. Our model therefore predicts an urban hierarchy of skills and sectors. Under slightly

stronger assumptions, larger cities will be absolutely larger in all sectors.

We examine the model’s predictions about the spatial distribution of skills and sectors

across US cities using data from the 2000 Census of Population, County Business Patterns,

and Occupational Employment Statistics described in section 4. We use two empirical ap-

proaches to characterize cities’ skill and sectoral distributions. The first involves regression

estimates of the population elasticities of educational, occupational, and industrial popula-

tions akin to those shown in Figures 1 through 3. The second involves pairwise comparisons

governed by the monotone likelihood ratio property, as per Costinot (2009).4 To characterize

sectoral size, we simply compare sectors’ employment levels across cities.

Section 5 reports the results, which provide support for our model’s predictions about the

spatial pattern of skills and sectors. Characterizing skills in terms of three or nine educational

4The distributions fc(σ) and fc′(σ) exhibit the monotone likelihood ratio property if, for any σ > σ′,
fc(σ)
fc′ (σ) ≥

fc(σ
′)

fc′ (σ
′) .
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groups, we find that larger cities are skill-abundant. Among US-born individuals, cities’

skill distributions typically exhibit the monotone likelihood ratio property.5 Characterizing

sectors in terms of 21 manufacturing industries or 22 occupational categories, we find that

larger cities specialize in skill-intensive sectors. While sectors do not exhibit the monotone

likelihood ratio property as reliably as skills, there is systematic variation in cities’ sectoral

distributions that is consistent with the novel predictions of our theory.

In short, when mobile individuals optimally choose locations and sectors, larger cities

will have more skilled populations and thereby comparative advantage in skilled activities.

These features are consistent with US data.

2 Related literature

Our contributions are related to a diverse body of prior work. Our focus on high-dimensional

labor heterogeneity is related to recent developments in labor and urban economics. Our the-

oretical approach integrates elements from the systems-of-cities literature, land-use theory,

and international trade. Our model yields estimating equations and pairwise inequalities de-

scribing the comparative advantage of cities that are related to prior reduced-form empirical

work in urban economics, despite a contrast in theoretical underpinnings.

Our theory describes a continuum of heterogeneous individuals. A large share of systems-

of-cities theories describe a homogeneous population (Abdel-Rahman and Anas, 2004). Most

previous examinations of heterogeneous labor have only described two skill levels, typically

labeled skilled and unskilled.6 To describe greater heterogeneity, we assume a continuum

of skills, like Behrens, Duranton, and Robert-Nicoud (2014) and Davis and Dingel (2012).7

Understanding the distribution of skills across cities with more than two types is valuable

for at least three reasons. First, a large literature in labor economics has described impor-

tant empirical developments such as wage polarization, job polarization, and simultaneous

changes in between- and within-group inequality that cannot be explained by a model with

two homogeneous skill groups (Acemoglu and Autor, 2011). Second, these developments

have counterparts in cross-city variation in inequality and skill premia (Baum-Snow and

5Relative to our theory, foreign-born individuals with less than a high-school education tend to dispro-
portionately locate in large US cities. Data from 1980, when foreign-born individuals were a substantially
smaller share of the US population, suggest this reflects particular advantages that large cities offer foreign-
born individuals rather than a general tendency for the unskilled to locate in large cities. See section 5.1.2.

6We focus on theories in which labor is heterogeneous in an asymmetric sense (e.g. more skilled individuals
have absolute advantage in tasks or more skilled individuals generate greater human-capital spillovers). There
are also models describing matching problems, such as Helsley and Strange (1990) and Duranton and Puga
(2001), in which labor is heterogeneous in a horizontal characteristic.

7Eeckhout, Pinheiro, and Schmidheiny (2014) describe a model with three skill types.
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Pavan, 2013; Davis and Dingel, 2012). Third, we document systematic patterns in the cross-

city distribution of skills at high levels of disaggregation, which suggests that individuals

within broad skill categories are imperfect substitutes.8

Our model is a novel integration of systems-of-cities theory with land-use theory. The

Alonso-Muth-Mills model of a single city describes a homogeneous population of residents

commuting to a central business district (Brueckner, 1987). In that model, higher rents

for locations with shorter commutes equalize utility across locations in equilibrium. When

individuals are heterogeneous and value the rent-distance tradeoff differently, the single

city’s equilibrium rent schedule is the upper envelope of individuals’ bid-rent functions (von

Thünen, 1826; Fujita and Thisse, 2002, Ch 3). Models of a system of cities have incorpo-

rated the Alonso-Muth-Mills urban structure in which all individuals are indifferent across

all locations within a city as a city-level congestion mechanism (Abdel-Rahman and Anas,

2004; Behrens, Duranton, and Robert-Nicoud, 2014). Our novel contribution is to describe

multiple cities with internal geographies when individuals are not spatially indifferent across

all locations.9 The essential idea is that individuals choosing between living in Chicago or

Des Moines simultaneously consider in what parts of Chicago and what parts of Des Moines

they might locate. Though these tradeoffs appear obvious, we are not aware of a prior formal

analysis. Considering both dimensions simultaneously is more realistic in both the descrip-

tion of the economic problem and the resulting predicted cross-city skill distributions. Since

we have a continuum of heterogeneous individuals, we obtain equilibrium rent schedules that

are integrals rather than upper envelopes of a discrete number of bid-rent functions.10

Our model belongs to a long theoretical tradition describing factor-supply-driven compar-

ative advantage, dating from the Heckscher-Ohlin theory formalized by Samuelson (1948). In

international contexts, theorists have typically taken locations’ factor supplies as exogenously

endowed. Since individuals are mobile across cities, our theory endogenizes cities’ factor sup-

plies while describing how the composition of output is governed by comparative advantage.

Our approach to comparative advantage with a continuum of factors and a continuum of

sectors follows a large assignment literature and is most closely related to the recent work

of Costinot (2009) and Costinot and Vogel (2010).11 While these recent papers assume that

countries’ factor endowments exhibit the monotone likelihood ratio property, we obtain the

result that cities’ skill distributions exhibit this property as an equilibrium outcome. Thus,

8A long line of empirical work describes cross-city variation in skill distributions in terms of the share of
residents who have a college degree (Glaeser, 2008). Most closely related to our work is Hendricks (2011),
who finds a weak relationship between cities’ industries and college shares.

9In order to tractably characterize multiple cities with internal geographies and heterogeneous agents, we
neglect the business-vs-residential land-use problem studied by Lucas and Rossi-Hansberg (2002).

10Our continuum-by-continuum approach to a differential rents model is in the spirit of Sattinger (1979).
11Sattinger (1993) and Costinot and Vogel (2014) survey the assignment literature.
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from a theoretical perspective, cities within a country constitute a natural setting to examine

these theories of comparative advantage. Moreover, the assumption of a common production

technology is likely more appropriate within than between economies, and data from a single

economy are likely more consistent and comparable than data combined across countries.

The Heckscher-Ohlin model has been the subject of extensive empirical investigation in

international economics. A pair of papers describe regional outputs using this framework.

Davis and Weinstein (1999) run regressions of regional outputs on regional endowments, em-

ploying the framework of Leamer (1984), but they abstract from the issue of labor mobility

across regions. Bernstein and Weinstein (2002) consider the two-way links between endow-

ments and outputs, concluding that if we know regions’ outputs, we know with considerable

precision the inputs used, but not vice versa. For these reasons, traditional Heckscher-Ohlin

models did not appear a promising way to explain regional differences in sectoral composi-

tion.

Our theory predicts systematic variation in sectoral composition in the form of an urban

hierarchy of sectors. Prior systems-of-cities theories have overwhelmingly described polarized

sectoral composition: specialized cities that have only one tradable sector and perfectly

diversified cities that have all the tradable sectors (Abdel-Rahman and Anas, 2004; Helsley

and Strange, 2012).12 A recent exception is Helsley and Strange (2012), who examine whether

the equilibrium level of coagglomeration is efficient. While Helsley and Strange (2012) make

minimal assumptions in order to demonstrate that Nash equilibria are generically inefficient

when there are interindustry spillovers, we make strong assumptions that yield testable

implications about the distribution of sectoral activity across cities.

In addition to sectoral composition, our theory describes sectoral size. Theories of local-

ization and urbanization economies have contrasting predictions for cities’ absolute employ-

ment levels.13 In the canonical model of pure localization in Henderson (1974), specialized

cities of different sizes host different industries, yielding “textile cities” and “steel cities”.

Industrial specialization is the very basis for the city-size distribution, and one wouldn’t

12An exception is central place theory, and our model relates to that theory’s results in interesting ways.
Our model’s equilibrium exhibits a hierarchy of cities and sectors, as larger cities produce a superset of the
goods produced in smaller cities. Models in central place theory, dating from Christaller (1933) through Hsu,
Holmes, and Morgan (2014), have attributed this hierarchy property to the interaction of industry-specific
scale economies and geographic market access based on the distance between firms located in distinct city
centers. Our model yields the hierarchy property in the absence of both. Our theory links the hierarchy
of sectors to a hierarchy of skills shaped by the internal geography of cities, neither of which have been
considered in central place theory.

13The literature traditionally distinguishes two types of external economies of scale (Henderson, 1987,
p.929). Localization economies are within-industry, reflecting the scale of activity in that industry in that
location. Urbanization economies are general, reflecting the scale of all economic activity in a location.
Beyond scale, Lucas (1988) has stressed the composition of a location’s human capital. The agglomeration
process generating city-level productivities in our theory incorporates both scale and composition effects.
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expect large cities to be larger in all industries. By contrast, in urbanization models with

a composite output, every industry is (implicitly) larger in larger cities. In addition to in-

troducing a multi-sector urbanization model in which larger cities are relatively larger in

skill-intensive sectors, we identify conditions under which larger cities are absolutely larger

in all sectors.

A recent empirical literature has demonstrated significant agglomeration and coagglom-

eration of industries relative to the null hypothesis of locations being (uniformly) randomly

assigned in proportion to local population (Ellison and Glaeser, 1997; Duranton and Over-

man, 2005; Ellison, Glaeser, and Kerr, 2010). Our model’s predictions are consistent with

these findings. Since our theory says that sectors are ranked in terms of their relative employ-

ment levels, at most one sector could exhibit employment proportionate to total population.

All other sectors will exhibit geographic concentration. Similarly, since sectors more similar

in skill intensity will exhibit more similar relative employment levels, the cross-city distribu-

tion of sectoral employment will be consistent with skill-related coagglomeration. We obtain

these results in the absence of industry-specific scale economies and industry-pair-specific

interactions or spillovers.

Our empirical work follows directly from our model’s predictions about the cross-city

distribution of sectoral activity relating cities’ and sectors’ characteristics. There is a small

empirical literature describing variation in cities’ sectoral composition, but this work has not

been tightly tied to theory. This is likely because theories describing specialized or perfectly

diversified cities provide limited guidance to empirical investigations of data that fall be-

tween the extremes. Holmes and Stevens (2004) survey the spatial distribution of economic

activities in North America. In examining the empirical pattern of specialization, they show

that agriculture, mining, and manufacturing are disproportionately in smaller cities, while

finance, insurance, real estate, professional, and management activities are disproportion-

ately in larger cities. However, they do not reference a model or theoretical mechanism

that predicts this pattern to be the equilibrium outcome. Seminal work by Vernon Hender-

son explores theoretically and empirically the relationship between city size and industrial

composition (Henderson, 1991). Henderson (1974) theoretically describes the polar cases of

specialized and perfectly diversified cities (Helsley and Strange, 2012), while our model pre-

dicts incomplete industrial specialization. Henderson has argued that localization economies

link cities’ and industries’ sizes, while our theory relies on urbanization economies and indi-

viduals’ comparative advantage.

Despite these contrasts, our theory yields estimating equations for the population elas-

ticities of sectoral employment that are closely related to the reduced-form regressions of

employment shares on population that Henderson (1983) estimated for a few select indus-
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tries. Our theory provides an explicit microfoundation for these regressions for an arbitrary

number of sectors. Moreover, it predicts that we can order these elasticities by skill intensity.

It allows all these elasticities to be positive, consistent with larger cities being larger in all

sectors. It also describes how to compare the sectoral composition of groups of cities ordered

by size, nesting the comparison of large and medium-size cities made by Henderson (1997).

While our urbanization-based theory abstracts from the localization economies emphasized

by Henderson, we believe future work should seek to integrate these distinct approaches.

3 Model

We develop a general-equilibrium model in which L heterogeneous individuals choose a city,

a location within that city, and a sector in which to produce. There are C discrete cities

(c ∈ C = {1, . . . , C}), a continuum of skills, and a continuum of sectors. We study the

consequences for city total factor productivity and the cross-city distributions of skills and

sectors.

3.1 Preferences, production, and places

Individuals consume a freely traded final good. This final good is the numeraire and produced

by combining a continuum of freely traded, labor-produced intermediate goods indexed by

σ ∈ Σ ≡ [σ, σ̄]. These have prices p(σ) that are independent of location because trade costs

are zero. Locations are characterized by their city c and their (inverse) innate desirability

τ ∈ T ≡ [0,∞), so they have rental prices r(c, τ).

Final-goods producers have a CES production function

Q =
{ˆ

σ∈Σ

B(σ)[Q(σ)]
ε−1
ε dσ

} ε
ε−1
, (1)

where the quantity of intermediate good σ is Q(σ), ε > 0 is the elasticity of substitution

between intermediates, and B(σ) is an exogenous technological parameter. The profits of

final-goods producers are given by

Π = Q−
ˆ
σ∈Σ

p(σ)Q(σ)dσ. (2)

Heterogeneous individuals use their labor to produce intermediate goods. There is a mass

of L heterogeneous individuals with skills ω that have the cumulative distribution function

F (ω) and density f(ω) on support Ω ≡ [ω, ω̄]. The productivity of an individual of skill ω
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in sector σ at location τ in city c is

q(c, τ, σ;ω) = A(c)T (τ)H(ω, σ). (3)

A(c) denotes city-level total factor productivity, which results from agglomeration and is

taken as given by individuals. T (τ) reflects the productivity effects of location within the

city, which in a canonical case is the cost of commuting to the central business district.14 We

assume that T (τ) is continuously differentiable and T ′(τ) < 0, which is just a normalization

that higher-τ locations are less desirable. We assume that the twice-differentiable function

H(ω, σ) is strictly log-supermodular in ω and σ and strictly increasing in ω.15 The former

governs comparative advantage, so that higher-ω individuals are relatively more productive

in higher-σ sectors.16 The latter says that absolute advantage is indexed by ω, so that higher-

ω individuals are more productive than lower-ω individuals in all sectors. Each individual

inelastically supplies one unit of labor, so her income is her productivity times the price of

the output produced, q(c, τ, σ;ω)p(σ).

Locations within each city are heterogeneous, with the innate desirability of a location

indexed by τ ≥ 0. The most desirable location is denoted τ = 0, so higher values of τ denote

greater distance from the ideal location. The supply of locations with innate desirability

of at least τ is S(τ).17 This is a strictly increasing function, since the supply of available

locations increases as one lowers one’s minimum standard of innate desirability. S(0) = 0,

since there are no locations better than the ideal. We assume S(τ) is twice continuously

differentiable. Locations are owned by absentee landlords who spend their rental income

on the final good. The city has sufficient land capacity that everyone can reside in the

city and the least desirable locations are unoccupied. We normalize the reservation value of

unoccupied locations to zero, so r(c, τ) ≥ 0.

Individuals choose their city c, location τ , and sector σ to maximize utility. An individ-

ual’s utility depends on their consumption of the numeraire final good, which is their income

14As written, T (τ) indexes the innate desirability of the location for its productive advantages, but a
closely related specification makes T (τ) describe a location’s desirability for its consumption value. The
production and consumption interpretations yield very similar results but differ slightly in functional form.
For expositional clarity, we use the production interpretation given by equations (3) and (4) in describing
the model in the main text and present the consumption interpretation in appendix A.

15In R2, a function H(ω, σ) is strictly log-supermodular if ω > ω′, σ > σ′ ⇒ H(ω, σ)H(ω′, σ′) >
H(ω, σ′)H(ω′, σ).

16We refer to higher-ω individuals as more skilled and higher-σ sectors as more skill-intensive.
17In the special case of the classical von Thünen model, τ describes physical distance from the central

business district and the supply is S(τ) = πτ2.
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after paying their locational cost:

U(c, τ, σ;ω) = A(c)T (τ)H(ω, σ)p(σ)− r(c, τ). (4)

Denote the endogenous quantity of individuals of skill ω residing in city c at location τ and

working in sector σ by L× f(ω, c, τ, σ).

City-level TFP, A(c), reflects agglomeration gains derived from both population size and

composition. A(c) is higher when a city contains a larger and more skilled population.

Denote the endogenous quantity of individuals of skill ω residing in city c by L× f(ω, c) ≡
L×
´
σ∈Σ

´
τ∈T f(ω, c, τ, σ)dτdσ. Total factor productivity is

A(c) = J

(
L

ˆ
ω∈Ω

j(ω)f(ω, c)dω

)
, (5)

where J(·) is a positive, strictly increasing function and j(ω) is a positive, non-decreasing

function.

3.2 Equilibrium

In a competitive equilibrium, individuals maximize utility, final-good producers and landown-

ers maximize profits, and markets clear. Individual maximize their utility by their choices

of city, location, and sector such that

f(ω, c, τ, σ) > 0 ⇐⇒ {c, τ, σ} ∈ arg maxU(c, τ, σ;ω). (6)

Profit maximization by final-good producers yields demands for intermediates

Q(σ) = I
( p(σ)

B(σ)

)−ε
, (7)

where I ≡ L
∑

c

´
σ

´
ω

´
τ
q(ω, c, τ, σ)p(σ)f(ω, c, τ, σ)dτdωdσ denotes total income and these

producers’ profits are zero. Profit maximization by absentee landlords engaged in Bertrand

competition causes unoccupied locations to have rental prices of zero,

r(c, τ)×
(
S ′(τ)− L

ˆ
σ∈Σ

ˆ
ω∈Ω

f(ω, c, τ, σ)dωdσ

)
= 0 ∀c ∀τ. (8)

Market clearing requires the endogenous quantity of individuals of skill ω residing in city

c at location τ and working in sector σ, L × f(ω, c, τ, σ), to be such that the supply of a
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location type is greater than or equal to its demand, the demand and supply of intermediate

goods are equal, and every individual is located somewhere.

S ′(τ) ≥ L

ˆ
ω∈Ω

ˆ
σ∈Σ

f(ω, c, τ, σ)dσdω ∀c ∀τ (9)

Q(σ) =
∑
c∈C

Q(σ, c) = L
∑
c∈C

ˆ
ω∈Ω

ˆ
τ∈T

q(c, τ, σ;ω)f(ω, c, τ, σ)dωdτ ∀σ (10)

f(ω) =
∑
c∈C

f(ω, c) =
∑
c∈C

ˆ
σ∈Σ

ˆ
τ∈T

f(ω, c, τ, σ)dτdσ ∀ω (11)

A competitive equilibrium is a set of functions Q : Σ → R+, f : Σ × C × T × Ω → R+,

r : C× T → R+, and p : Σ→ R+ such that conditions (6) through (11) hold.

3.3 An autarkic city

We begin by considering a single city, denoted c, with exogenous population L(c) and skill

distribution F (ω). With fixed population, autarky TFP is fixed by equation (5). We describe

individuals’ choices of sectors and locations to solve for the autarkic equilibrium.

To solve, we exploit the fact that locational and sectoral argument enters individuals’

utility functions separably. Individuals’ choices of their sectors are independent of their

locational decisions:

arg max
σ

A(c)T (τ)H(ω, σ)p(σ)− r(c, τ) = arg max
σ

H(ω, σ)p(σ)

Define the assignment function M(ω) = arg maxσH(ω, σ)p(σ) so that we can write G(ω) ≡
H(ω,M(ω))p(M(ω)). By comparative advantage, M(ω) is increasing.18 By absolute advan-

tage, more skilled individuals earn higher nominal incomes and G(ω) is a strictly increasing

function.19

Individuals’ choices of their locations are related to their sectoral decisions in the sense

that willingness to pay for more desirable locations depends on the skill component of income

G(ω). Within the city, individual choose their optimal location:

max
τ

A(c)T (τ)G(ω)− r(c, τ)

Competition among landlords ensures that the most desirable locations are those occupied,

18Lemma 1 of Costinot and Vogel (2010) shows that M(ω) is continuous and strictly increasing in equi-
librium.

19Absolute advantage across all sectors is not necessary. The weaker condition that productivity is in-
creasing in skill at the equilibrium assignments, ∂

∂ωH(ω,M(ω)) > 0, is sufficient.
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so the least desirable occupied site τ̄(c) ≡ maxτ{τ : f(ω, c, τ, σ) > 0} in a city of population

L(c) is defined by L(c) = S(τ̄(c)). The set of occupied locations is T̄ (c) ≡ [0, τ̄(c)]. More

desirable locations have higher rental prices.

Lemma 1 (Populated locations). In equilibrium, S(τ) = L
´ τ

0

´
σ∈Σ

´
ω∈Ω

f(ω, c, x, σ)dωdσdx ∀τ ∈
T̄ (c), r(c, τ) is strictly decreasing in τ ∀τ < τ̄(c), and r(c, τ̄(c)) = 0.

Individuals of higher skill have greater willingness to pay for more desirable locations.

That is, ∂2

∂τ∂ω
A(c)T (τ)G(ω) < 0 because locational advantages complement individual pro-

ductivity. As a result, in equilibrium higher-ω individuals occupy lower-τ locations.

Lemma 2 (Autarky locational assignments). In autarkic equilibrium, there exists a con-

tinuous and strictly decreasing locational assignment function N : T̄ (c) → Ω such that

f(ω, c, τ, σ) > 0 ⇐⇒ N(τ) = ω, N(0) = ω̄ and N(τ̄(c)) = ω.

This assignment function is obtained by equating supply and demand of locations:

S(τ) = L

ˆ τ

0

ˆ
σ∈Σ

ˆ
ω∈Ω

f(ω, c, x, σ)dωdσdx

⇒ N(τ) = F−1

(
L(c)− S(τ)

L(c)

)
Given individuals’ equilibrium locations within the city, the schedule of locational rental

prices supporting these assignments comes from combining individuals’ utility-maximizing

decisions and the boundary condition r(c, τ̄(c)) = 0.

Lemma 3 (Autarky locational prices). In autarkic equilibrium, r(c, τ) is continuously dif-

ferentiable on τ ≥ 0 and given by r(c, τ) = −A(c)
´ τ̄(c)

τ
T ′(t)G(N(t))dt for τ ≤ τ̄(c).

The properties of interest in a competitive equilibrium are characterized by the assign-

ment functions M : Ω → Σ and N : T̄ (c) → Ω. In the autarkic equilibrium, more skilled

individuals work in more skill-intensive sectors and occupy more desirable locations.

3.4 A system of cities

The previous section described a single city with an exogenous population. We now de-

scribe a system of cities in which these populations are endogenously determined in spatial

equilibrium. Take cities’ TFPs, which will be endogenously determined in equilibrium, as

given for now and label the cities so that A(C) ≥ A(C − 1) ≥ · · · ≥ A(2) ≥ A(1).20 In

20Individuals take these TFPs as given. For now, we can assume these differences in total factor produc-
tivity are exogenously given. We describe their endogenous determination in section 3.6.
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autarky, τ was a sufficient statistic for the attractiveness of a location. In a system of cities,

we must clearly distinguish between a location’s attractiveness and its innate desirability.

A location’s attractiveness, which we denote by γ, depends both on city-level TFP and its

innate desirability within the city.

Definition 1. The attractiveness of a location in city c of (inverse) innate desirability τ is

γ = A(c)T (τ).

Cities with higher TFP have larger populations. Consider two cities, c and c′, that differ

in productivity, with A(c) > A(c′). The city with greater TFP will have greater population,

L(c) > L(c′). If it did not, the least desirable occupied location in city c would be more

desirable than the least desirable occupied location in city c′, τ̄(c) ≤ τ̄(c′), since the supply of

locations, S(τ), is common across cities. Since TFP is also higher in c, this would make the

least attractive occupied location in city c more attractive than the least attractive occupied

location in city c′, A(c)T (τ̄(c)) > A(c′)T (τ̄(c′)). In equilibrium, the least desirable occupied

location in each city has a price of zero, r(c, τ̄(c)) = r(c′, τ̄(c′)) = 0, by lemma 1. In that

case, every individual would agree that living in c at τ̄(c) is strictly better than living in c′

at τ̄(c′) (because A(c)T (τ̄(c))G(ω) > A(c′)T (τ̄(c′))G(ω)), which contradicts the definition of

τ̄(c′) as an occupied location. So the city with higher TFP must have a larger population.

A smaller city’s locations are a subset of those in a larger city in terms of attractiveness.

For every location in the less populous city, there is a location in the more populous city

that is equally attractive. The location in city c′ of innate desirability τ ′ is equivalent to

a location τ in city c, given by A(c)T (τ) = A(c′)T (τ ′). The equally attractive location in

the larger city has higher TFP but lower innate desirability. That is, an individual who is

indifferent between c and c′ lives closer to the most desirable location in c′ than the most

desirable location in c, τ ′ = T−1
(
A(c)
A(c′)

T (τ)
)
< τ . The more populous city also has locations

that are strictly more attractive than the best location in the less populous city; there are

locations of attractiveness γ ∈ (A(c′)T (0), A(c)T (0)] found in c and not in c′. In equilibrium,

two locations of equal attractiveness must have the same price, so we can describe the rental

price of a location of attractiveness γ as rΓ(γ).

To characterize locational assignments and prices in the system of cities, we first charac-

terize assignments and prices in terms of γ. The solution is analogous to that derived in the

autarkic case. We then translate these assignments and prices into functions of c and τ .

More skilled individuals occupy more attractive locations. Denote the set of attrac-

tiveness levels occupied in equilibrium by Γ ≡ [γ, γ̄], where γ ≡ A(C)T (τ̄(C)) and γ̄ ≡
A(C)T (0). Individuals of higher skill have greater willingness to pay for more attractive

locations, so in equilibrium higher-ω individuals occupy higher-γ locations.
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Lemma 4 (Locational assignments). In equilibrium, there exists a continuous and strictly

increasing locational assignment function K : Γ→ Ω such that (i) f(ω, c, τ,M(ω)) > 0 ⇐⇒
A(c)T (τ) = γ and K(γ) = ω, and (ii) K(γ) = ω and K(γ̄) = ω̄.

To obtain an explicit expression for K : Γ → Ω, we can denote the supply of locations

with attractiveness γ or greater as SΓ(γ). The supply function is

SΓ(γ) =
∑

c:A(c)T (0)≥γ

S

(
T−1

(
γ

A(c)

))
.

By definition SΓ(γ̄) = 0 and by the fact that the best locations are populated SΓ(γ) =

L. Lemmas 1 and 4 allow us to say that SΓ(γ) = L
´ γ̄
γ
f(K(x))K ′(x)dx, so K(γ) =

F−1
(
L−SΓ(γ)

L

)
. These locational assignments yield an expression for equilibrium locational

prices.

Lemma 5 (Locational prices). In equilibrium, rΓ(γ) is increasing and continuously differ-

entiable on [γ, γ̄] and given by rΓ(γ) =
´ γ
γ
G(K(x))dx.

Therefore, the determination of locational assignments and prices within the system of

cities is analogous to determining these locational assignments and prices for an autarkic

city with a supply of locations that is the sum of locations across the system of cities.

3.5 The distributions of skills and sectors across cities

We can now characterize the distributions of rents, skills, and sectoral employment in a

system of cities. We first show how the distribution of locations across cities governs the dis-

tributions of skills and sectoral employment across cities through the locational and sectoral

assignment functions. We then identify a necessary and sufficient condition under which

these distributions are log-supermodular. Finally, we identify conditions under which larger

cities will have larger populations of all skill types and employ more people in all sectors.

Since the rental price of a location depends only on its attractiveness, which is the product

of city TFP and innate desirability, the rental price of a location with innate desirability τ

in city c is r(c, τ) = rΓ(A(c)T (τ)). In any city c, the supply of locations with attractiveness

γ, and thus the set of locations with rental price rΓ(γ), is

s(γ, c) ≡ ∂

∂γ

[
S (τ̄(c))− S

(
T−1

(
γ

A(c)

))]
if γ ≤ A(c)T (0)

=


1

A(c)
V
(

γ
A(c)

)
if γ ≤ A(c)T (0)

0 otherwise
, (12)
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where V (z) ≡ − ∂
∂z
S (T−1(z)) is the supply of locations with innate desirability T−1(z).

The distribution of skills follows from s(γ, c) and locational assignments K : Γ→ Ω.

Lemma 6 (A city’s skill distribution). The population of individuals of skill ω in city c is

L× f(ω, c) =

K−1′(ω)s(K−1(ω), c) if A(c)T (0) ≥ K−1(ω)

0 otherwise
.

The distribution of sectoral employment follows from s(γ, c), locational assignments K :

Γ→ Ω, and sectoral assignments M : Ω→ Σ.

Lemma 7 (A city’s sectoral employment distribution). The population of individuals em-

ployed in sector σ in city c is

L× f(σ, c) =

M−1′(σ)K−1′(M−1(σ))s(K−1(M−1(σ)), c) if A(c)T (0) ≥ K−1(M−1(σ))

0 otherwise
.

The relative population of individuals of skill ω in two cities depends on the relative supply

of locations of attractiveness K−1(ω). Since higher-ω individuals occupy more attractive

locations and the most attractive locations are found exclusively in the larger city, there

is an interval of high-ω individuals who reside exclusively in the larger city. Individuals of

abilities below this interval are found in both cities. The sectoral assignments M : Ω → Σ,

which are common across locations, translate this hierarchy of skills across cities into a

hierarchy of sectors across cities.

We now identify the condition under which the distributions of rents, skills, and sectoral

employment across cities are log-supermodular functions. When the distribution of locational

attractiveness is log-supermodular, so are the distributions of skills and sectoral employment.

The first result follows from more skilled individuals occupying more attractive locations in

equilibrium. The second result comes from larger cities’ TFP advantages being sector-

neutral, so that sectoral composition is governed by skill composition.

Since the distribution of locations in terms of innate desirability τ is common across

cities, cross-city differences in the distributions of locational attractiveness γ reflect differ-

ences in cities’ TFPs. Equation (12) demonstrates a hierarchy of locational attractiveness,

since the most attractive locations are found exclusively in the highest-TFP city. Amongst

levels of attractiveness that are supplied in multiple cities, equation (12) shows that cities’

TFPs shape the supply schedule s(γ, c) through both a scaling effect ( 1
A(c)

) and a dilation of

V ( γ
A(c)

). Comparisons of relative supplies (s(γ, c)s(γ′, c′)
?
> s(γ′, c)s(γ, c′)) depend only on

the dilation.
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Our main result, Proposition 1, is a necessary and sufficient condition for the ordering of

city TFPs to govern the ordering of locational supplies.

Proposition 1 (Locational attractiveness distribution). The supply of locations of attrac-

tiveness γ in city c, s(γ, c), is log-supermodular if and only if the supply of locations with

innate desirability T−1(z) within each city, V (z), has a decreasing elasticity.

Proposition 1 links our assumption about each city’s distribution of locations, V (z),

to endogenous equilibrium locational characteristics, s(γ, c). Its proof is in appendix B.

Heuristically, note that a higher-TFP city is relatively abundant in more attractive locations

when the elasticity ∂ ln s(γ,c)
∂ ln γ

is larger in the higher-TFP city. Equation (12) implies that the

γ-elasticity of s(γ, c) is the elasticity of V (z) at z = γ
A(c)

. When this elasticity is higher at

lower values of z, an ordering of cities’ TFPs (and thus cities’ sizes) is an ordering of these

elasticities, and thus an ordering of relative supplies at equilibrium.21

The distributions of skills and sectoral employment across cities follow straightforwardly

from Proposition 1. The skill distribution follows immediately through the locational assign-

ment function. The employment distribution follows in turn through the sectoral assignment

function. Since K : Γ → Ω and M : Ω → Σ are strictly increasing functions, f(ω, c) and

f(σ, c) are log-supermodular if and only if s(γ, c) is log-supermodular.

Corollary 1 (Skill and employment distributions). If V (z) has a decreasing elasticity, then

f(ω, c) and f(σ, c) are log-supermodular.

Since productivity differences across locations are Hicks-neutral in our economy’s equilib-

rium, the employment distribution across cities governs the output distribution across cities.

Larger cities are skill-abundant and more skilled individuals work in more skill-intensive sec-

tors, so larger cities produce relatively more in skill-intensive sectors. These patterns of spe-

cialization and trade are closely related to the high-dimensional model of endowment-driven

comparative advantage introduced by Costinot (2009), but in our setting cities’ populations

are endogenously determined.22 Since at equilibrium larger cities’ productivity advantages

are sector-neutral differences in total factor productivity, f(ω, c) is log-supermodular, and

H(ω, σ) is log-supermodular, our economy’s equilibrium satisfies Definition 4, Assumption 2,

21For example, for the von Thünen disc geography, S(τ) = πτ2, with linear transportation costs, T (τ) =
d1−d2τ , the supply of locations within cities V (z) = 2π

d22
(d1−z) has an elasticity of − z

d1−z , which is decreasing

in z. Therefore, this canonical case satisfies the condition of Proposition 1.
22Assumption 2 in Costinot (2009)’s factor-endowment model is that countries’ exogenous endowments are

such that countries can be ranked according to the monotone likelihood ratio property. Corollary 1 identifies
a sufficient condition for cities’ equilibrium skill distributions to exhibit this property.

17



and Assumption 3 of Costinot (2009).23 We therefore obtain Corollary 2, which characterizes

cities’ sectoral outputs.

Corollary 2 (Output and revenue distributions). If V (z) has a decreasing elasticity, then

sectoral output Q(σ, c) and revenue R(σ, c) ≡ p(σ)Q(σ, c) are log-supermodular.

These results characterize the pattern of comparative advantage across cities.24

When does the more productive city have a larger population of every skill type? By

lemma 6, whenever it has a larger supply of every attractiveness level, s(γ, c) ≥ s(γ, c′) ∀γ.

This is trivially true for γ > A(c′)T (0). What about attractiveness levels found in both

cities? Proposition 2 identifies a sufficient condition under which a larger city has a larger

supply of locations of a given attractiveness. Its proof appears in appendix B. Corollary 3

applies this result to the least-attractive locations, thereby identifying a sufficient condition

for larger cities to have larger populations of all skill types and therefore employ more people

in every sector.

Proposition 2. For any A(c) > A(c′), if V (z) has a decreasing elasticity that is less than

-1 at z = γ
A(c)

, s(γ, c) ≥ s(γ, c′).

Corollary 3. If V (z) has a decreasing elasticity that is less than -1 at z = K−1(ω)
A(c)

=
γ

A(c)
,

A(c) > A(c′) implies f(ω, c) ≥ f(ω, c′) and f(M(ω), c) ≥ f(M(ω), c′) ∀ω ∈ Ω.

3.6 Endogenizing cities’ total factor productivities

Our exposition of equilibrium in sections 3.4 and 3.5 took cities’ total factor productivities

as given. When the condition of Proposition 1 is satisfied, a city that has higher total

factor productivity A(c) is larger and has a skill distribution f(ω, c) that likelihood ratio

dominates those of cities with lower TFPs. Thus, this spatial pattern can be supported by

endogenous productivity processes that make the city-level characteristic A(c) higher when

23Definition 4 of Costinot (2009) requires that factor productivity vary across countries (cities) in a Hicks-
neutral fashion. Since productivity A(c)T (τ) varies both across and within cities, our production function
q(c, τ, σ;ω) does not satisfy this requirement for arbitrary locational assignments. However, in equilibrium,
our economy does exhibit this property. In the production interpretation of T (τ), equilibrium productivity
q(c, τ, σ;ω) = K−1(ω)H(ω, σ) does not vary across ω-occupied locations and is log-supermodular in ω and
σ. In the notation of equation (6) in Costinot (2009), a(γ) = 1 and h(ω, σ) = K−1(ω)H(ω, σ), satisfying
Definition 4 and Assumption 3.

24A traditional definition of comparative advantage refers to locations’ autarkic prices. In our setting,
autarky means prohibiting both trade of intermediate goods and migration between cities. Since individuals
are spatially mobile, cities do not have “factor endowments”, and we must specify the autarkic skill distribu-
tions. If we consider an autarkic equilibrium with the skill distributions from the system-of-cities equilibrium,
then larger cities have lower relative autarkic prices for higher-σ goods because they are skill-abundant, as
shown by Costinot and Vogel (2010, p. 782).
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the city contains a larger and more skilled population, such as the class of agglomeration

functions described by equation (5). Numerous agglomeration processes may generate such

productivity benefits, and we do not attempt to distinguish between them here.

4 Empirical approach and data description

We examine the predictions of our model using two approaches to characterize the outcomes

described by Corollary 1.25 The first involves regression estimates of the population elastic-

ities of educational, occupational, and industrial populations. The second involves pairwise

comparisons governed by the monotone likelihood ratio property.

Empirically testing Corollary 1 requires data on cities’ skill distributions, sectors’ skill

intensities, and cities’ sectoral employment. We use public-use microdata from the US Census

of Population to identify the first two. The latter is described by data from County Business

Patterns and Occupational Employment Statistics. The Census of Population describes

individuals’ educational attainments, geographic locations, places of birth, occupations, and

industries. County Business Patterns describes cities’ industrial employment. Occupational

Employment Statistics describes cities’ occupational employment. We combine these various

data at the level of (consolidated) metropolitan statistical areas (MSAs); see appendix D for

details.

4.1 Empirical tests

Corollary 1 says that the distribution of skills across cities, f(ω, c), and the distribution of sec-

toral employment across cities, f(σ, c), are log-supermodular functions. Log-supermodularity

has many implications; we focus on two that are amenable to empirical testing. If the func-

tion f(ν, c) is log-supermodular, then

• a linear regression ln f(ν, c) = αν + βν lnL(c) + εν,c in which αν are fixed effects and

L(c) is city population yields βν ≥ βν′ ⇐⇒ ν ≥ ν ′;

• if C and C ′ are distinct sets and C is greater than C ′ (infc∈C L(c) > supc′∈C′ L(c′)), then∑
c∈C ln f(ν, c) +

∑
c′∈C′ ln f(ν ′, c′) ≥

∑
c∈C ln f(ν ′, c) +

∑
c′∈C′ ln f(ν, c′) ∀ν > ν ′.

25Proposition 1 and Corollary 2 make predictions about other economic outcomes, such as rental prices
and sectoral outputs, that are difficult to empirically characterize due to data constraints. For example,
data on occupations describe employment levels, not occupational output or revenue. Similarly, examining
stochastic or likelihood-ratio dominance in rental prices across cities would require representative samples of
(unimproved) land prices, which are not available. The available evidence on urban costs, which shows that
the maximum, mean, and range of unimproved land prices are greater in larger cities (Combes, Duranton,
and Gobillon, 2012), are consistent with our model’s predictions.
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The first implication, which we will refer to as the “elasticity test,” says that the city-

population elasticity of the population of a skill type in a city f(ω, c) is increasing in skill

ω.26 Similarly, the population elasticity of sectoral employment f(σ, c) is increasing in skill

intensity σ. The elasticity test examines the patterns suggested by Figures 1 through 3,

where steeper slopes correspond to higher elasticities. Our theory thus provides a structure

to interpret previous work describing the population elasticities of sectoral employment, such

as Henderson (1983) and Holmes and Stevens (2004).27 The second implication, which we

will refer to as the “pairwise comparisons test”, says that if cities are divided into bins ordered

by population sizes, then in any pairwise comparison of two bins and two skills/sectors, the

bin containing more populous cities will have relatively more of the more skilled type.28

These two empirical tests are not independent, since they are both implied by log-

supermodularity. Appendix C describes how they are related. In short, success of one test

implies success of the other, to the extent that the first-order approximations of ln f(ν, c)

fit the data well. Figures 1 through 3 suggest that they do. We also implement a test

for systematic deviations proposed by Sattinger (1978) and examine whether the pairwise

comparisons success rate increases with the number of cities per bin.29

4.2 Skills

Following a large literature, we use observed educational attainment as a proxy for indi-

viduals’ skills.30 Educational attainment is a coarse measure, but it is the best measure

available in data describing a large number of people across detailed geographic locations.

To describe cities’ skill distributions, we aggregate individual-level microdata to the level of

metropolitan statistical areas. A large literature in urban economics describes variation in

26The linear regression may understood as a first-order Taylor approximation: ln f(ν, c) ≈ ln f(ν, c∗) +
∂ ln f(ν,c)
∂ lnL(c) |c=c∗

(lnL(c)− lnL(c∗)) + ε = αν + βν lnL(c) + εν,c, where βν = ∂ ln f(ν,c)
∂ lnL(c) |c=c∗

is increasing in ν by

log-supermodularity of f(ν, c).
27Henderson (1983) regresses employment shares on population levels, but reports “percent ∆ share /

percent ∆ population”, which is equal to βσ−1 in our notation. Similarly, Holmes and Stevens (2004) describe
how location quotients, a city’s share of industry employment divided by its share of total employment, vary

with city size. In our notation, a location quotient is LQ(σ, c) =
f(σ,c)/

∑
c′ f(σ,c′)

L(c)/L , so the L(c)-elasticity of

LQ(σ, c) is βσ − 1.
28Provided f(ν, c) > 0 ∀ν∀c, log-supermodularity means ν > ν′, c > c′ ⇒ ln f(ν, c) + ln f(ν′, c′) ≥

ln f(ν′, c) + ln f(ν, c′). The pairwise comparisons test follows from taking sums twice of each side of this
inequality given c > c′ ∀c ∈ C ∀c′ ∈ C ′.

29Appendix C shows that, if ln f(ν, c) is the sum of a log-supermodular function and idiosyncratic errors,
the probability of obtaining the correct inequality increases with aggregation. If the deterministic component
is log-submodular (log-modular), this probability decreases with (is invariant to) aggregation.

30Costinot and Vogel (2010) show that log-supermodularity of factor supplies in an observed characteristic
and unobserved skill ω is sufficient for mapping a theory with a continuum of skills to data with discrete
characteristics.
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terms of two skill groups, typically college and non-college workers. Following Acemoglu and

Autor (2011), we use a minimum of three skill groups. The Census 2000 microdata identify

16 levels of educational attainment, from “no schooling completed” to “doctoral degree”.

We define three skill groups of approximately equal size among the working population:

high-school degree or less; some college or associate’s degree; and bachelor’s degree or more.

In a more ambitious approach, we also consider nine skill groups, ranging from individuals

who never reached high school (3 percent of the population) to those with doctoral degrees

(1 percent).31 Table 1 shows the population shares and percentage US-born for each of

these skill groups in 2000. Foreign-born individuals are disproportionately in the tails of the

educational distribution.

Table 1: Skill groups by educational attainment
Population Percent Population Percent

Skill (3 groups) share US-born Skill (9 groups) share US-born
High school or less .35 .77 Less than high school .03 .21

High school dropout .07 .69
High school graduate .24 .87

Some college .32 .88 College dropout .24 .89
Associate’s degree .08 .87

Bachelor’s or more .33 .85 Bachelor’s degree .21 .86
Master’s degree .08 .83
Professional degree .03 .81
Doctoral degree .01 .69

Population shares and percentage US-born are percentages of full-time, full-year prime-age workers.

Source: Census 2000 microdata via IPUMS-USA

4.3 Sectors

In our model, workers produce freely traded sectoral outputs indexed by σ that are used

to produce the final good. In the international trade literature, it is common to interpret

sectors in models of comparative advantage as industries. Recent work in both international

and labor economics has emphasized a perspective focused on workers completing tasks,

which empirical work has frequently operationalized as occupations (Grossman and Rossi-

Hansberg, 2008; Acemoglu and Autor, 2011). We will implement empirical tests using each.

We define sectors to be the 21 manufacturing industries in the three-digit stratum of the

31Individuals with doctorates typically earn less than individuals with professional degrees, so it may be
inappropriate to treat PhDs as higher-ω individuals than professionals.
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North American Industry Classification System (NAICS) or the 22 occupational categories

in the two-digit stratum of the Standard Occupational Classification (SOC). We suspect that

the assignment of workers to sectors is better characterized as assignments to occupations

than assignments to industries, since virtually all industries employ both skilled and unskilled

workers. Our measures of cross-sectoral variation in skill intensities in the following section

are consistent with this conjecture.

We measure industrial employment in a metropolitan area using data from the 2000

County Business Patterns. We measure occupational employment in a metropolitan area

using estimates from the 2000 BLS Occupational Employment Statistics. See appendix D

for details.

4.4 Skill intensities

Our theory makes the strong assumption that H(ω, σ) is strictly log-supermodular so that

sectors are ordered with respect to their skill intensities. In our empirical work, we infer

sectors’ skill intensities from the data using the observable characteristics of the workers

employed in them. We use microdata from the 2000 Census of Population, which contains

information about workers’ educational attainments, industries, and occupations. We use

the average years of schooling of workers employed in a sector as a measure of its skill in-

tensity.32 In doing so, we control for spatial differences by regressing years of schooling on

both sectoral and city fixed effects, but we have found that omitting the city fixed effects

has little effect on the estimated skill intensities. Table 2 reports the five least skill-intensive

and five most skill-intensive sectors among both the 21 manufacturing industries and the 22

occupational categories. There is considerably greater variation in average years of schooling

across occupational categories than across industries.33 This may suggest that the “assign-

ment to occupations” interpretation of our model will be a more apt description of the data

than the “assignments to industries” interpretation.

32Autor and Dorn (2013) rank occupations by their skill level according to their mean log wage. Our
assumption of absolute advantage is consistent with such an approach. Using average log wages as our
measure of skill intensity yields empirical success rates comparable to and slightly higher on average than
those reported in section 5. We use years of schooling rather than wages as our measure of sectoral skill
intensities since nominal wages may also reflect compensating differentials or local amenities.

33The standard deviations of average years of schooling across occupational categories, industries, and
manufacturing industries are 2.2, 1.0, and 0.9, respectively.
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Table 2: Sectoral skill intensities
Skill Skill

SOC Occupational category intensity NAICS Manufacturing industry intensity

45 Farming, Fishing, and Forestry 9.3 315 Apparel 10.7

37 Building & Grounds Cleaning 10.9 314 Textile Product Mills 11.4

35 Food Preparation and Serving 11.4 316 Leather and Allied Product 11.7

47 Construction and Extraction 11.5 313 Textile Mills 11.7

51 Production 11.6 337 Furniture and Related Products 11.7

29 Healthcare Practitioners and Technical 15.6 312 Beverage and Tobacco Products 13.1

21 Community and Social Services 15.8 336 Transportation Equipment 13.2

25 Education, Training, and Library 16.5 324 Petroleum and Coal Products 13.5

19 Life, Physical, and Social Science 17.1 334 Computer & Electronic Products 14.1

23 Legal 17.3 325 Chemical 14.1

Source: Census 2000 microdata via IPUMS-USA

4.5 Pairwise weights

The most disaggregate implications of Corollary 1 are inequalities describing the number

of individuals residing (employed) in two cities and two skill groups (sectors). Empirically

testing these pairwise predictions involves evaluating as many as eight million of these in-

equalities and summarizing the results. An important question is whether each of these

comparisons should be considered equally informative.

An unweighted summary statistic assigns equal weight to correctly predicting that Chicago

(population 9 million) is relatively more skilled than Des Moines (population 456 thousand)

and correctly predicting that Des Moines is relatively more skilled than Kalamazoo (popu-

lation 453 thousand). Given the numerous idiosyncratic features of the real world omitted

from our parsimonious theory, the former comparison seems much more informative about

the relevance of our theory than the latter. Similarly, an unweighted summary statistic treats

comparisons involving high school graduates (24 percent of the workforce) and comparisons

involving PhDs (1 percent of the workforce) equally, while these differ in their economic

import.

Following Trefler (1995), we report weighted averages of success rates in addition to un-

weighted statistics. In describing skill distributions, we weight each pairwise comparison by

the two cities’ difference in log population.34 When we consider nine skill groups, we also

report a case where we weight by the product of the two skill groups’ population shares.

Figure 4 shows the distribution of differences in log population across city pairs. Since the

majority of city pairs have quite small differences in log population, the unweighted and

34Appendix C shows that, if ln f(ν, c) is the sum of a log-supermodular function and idiosyncratic errors,
the probability of obtaining the correct inequality is increasing in the difference in log population.
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weighted statistics may yield substantially different results. In describing sectoral distri-

butions, we weight pairwise comparisons by the product of the two cities’ difference in log

population and the two sectors’ difference in skill intensity.35 Figure 5 shows the distribution

of differences in skill intensity across occupational pairs. While not as right-skewed as the

distribution of differences in log population, this distribution may cause the unweighted and

weighted statistics to differ. Figure 6 shows the distribution of differences in skill intensity

across industries. The median difference between occupations is 2.3 years while the median

difference between manufacturing industries is only 0.9 years. This relative compression in

skill differences in the industrial data suggests that it may prove harder to make strong state-

ments about differences across cities in industries than in occupations. Figures 4 through 6

underscore the importance of looking at weighted comparisons.

Figure 4: Differences in population across city pairs
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35Appendix C shows that, if ln f(ν, c) is the sum of a log-supermodular function and idiosyncratic errors,
the probability of obtaining the correct inequality is increasing in the product of the difference in log popula-
tion and the difference in population elasticities. The latter are increasing in the difference in skill intensities
in our theory.
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Figure 5: Differences in skill intensities across occupational pairs
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Figure 6: Differences in skill intensities across industrial pairs0
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5 Empirical results

In this section, we test our predictions relating cities’ sizes to their distributions of skill, oc-

cupational employment, and industrial employment. First, we examine whether populations

are log-supermodular in educational attainment and city size. This prediction is a much

stronger characterization of cities’ skill distributions than the well known fact that larger

cities typically have a greater share of college graduates. Second, we examine whether the

spatial pattern of sectoral employment is governed by this spatial pattern of skills. Our

theory’s predictions are more realistic than completely specialized or perfectly diversified

cities and more specific than theories allowing arbitrary patterns of interindustry spillovers.

Finally, we examine whether larger cities are larger in all industries or whether different
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industries attain their maximal employment at different points in the city-size distribution.

The data are broadly consistent with our novel predictions. Skill distributions regularly

exhibit the monotone likelihood ratio property, although international migration plays an

important role in the largest US cities that is omitted from our model. More skill-intensive

sectors are relatively larger in more populous cities, on average. However, cities’ sectoral

distributions do not exhibit the monotone likelihood ratio property as often as cities’ skill

distributions do. One interpretation of this result could be that skill-driven comparative

advantage plays an important role in determining the spatial pattern of production, but lo-

calization and coagglomeration economies may also play some role.36 We show that there are

not systematic violations of our predicted pattern of comparative advantage, and consistent

with our model there is a strong tendency for larger cities to be larger in all industries.

5.1 Larger cities are relatively more skilled

This subsection tests our prediction that larger cities have relatively more skilled populations.

We empirically describe skill abundance using the two tests described in section 4.1. We first

do these exercises using three skill groups defined by educational attainment levels and then

repeat them using nine very disaggregated skill groups.

5.1.1 Three skill groups

The elasticity test applied to the three skill groups across 270 metropolitan areas is re-

ported in Table 3. The results match our theory’s prediction that larger cities will have

relatively more people from higher skill groups. The population elasticities are monotoni-

cally increasing in educational attainment and the elasticities differ significantly from each

other.37 In anticipation of issues related to international immigration that arise when we

examine nine skill groups, the second column of the table reports the population elasticities

of US-born individuals for these three educational categories. The estimated elasticities are

slightly lower, since foreign-born individuals are more concentrated in larger cities, but the

differences between the elasticities are very similar.

The pairwise comparison test examines ordered groups of cities to see if the relative

population of the more skilled is greater in larger cities. Following section 4.1, implementing

this test involves defining bins of cities. Ordering cities by population, we partition the

36Since the employment data do not distinguish employees by birthplace, another possibility is that the
disproportionate presence of low-skill foreign-born individuals in larger cities influences sectoral composition
in a manner not described by our theory. See footnote 52.

37Younger cohorts have higher average educational attainment. The results in Tables 3 and 4 are robust
to estimating the elasticities for educational groups within 10-year age cohorts. Thus, our results are not
due to the young being both more educated and more likely to live in large cities.
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Table 3: Population elasticities of educational groups
Dep var: ln f(ω, c) All US-born
βω1 HS or less 0.96 0.90
× log population (0.011) (0.016)

βω2 Some college 1.00 0.97
× log population (0.010) (0.012)

βω3 BA or more 1.10 1.07
× log population (0.015) (0.017)

Standard errors, clustered by MSA, in parentheses.

Sample is all full-time, full-year employees residing in 270 metropolitan areas.

270 metropolitan areas in our data into 2, 3, 5, 10, 30, 90, and 270 bins of cities. Making

pairwise comparisons between three skill groups and as many as 270 metropolitan areas

involves computing up to 108,945 inequalities.38 Note that prior work typically describes a

contrast between large and small cities for skilled and unskilled, whereas our most aggregated

comparison is between large and small cities for three skill groups.

Figure 7 and Appendix Table 6 summarize the results of these tests using various sets

of cities, weights, and birthplaces. In the unweighted comparisons, the success rate ranges

from 60 percent when comparing individual cities to 97 percent when comparing five bins of

cities to 100 percent for the standard case of two groups of cities. Weighting the comparisons

by the population difference generally yields a higher success rate.39 When we weight by

population differences, the success rate is 67 percent when comparing individual cities, 98

percent for five bins of cities, and 100 percent for the simple comparison of large versus small

cities.40

38With n city bins and m skill groups, we make n(n−1)
2

m(m−1)
2 comparisons. For example, 270×269

2
3×2

2 =
108, 945.

39Despite the fact that the success rate of the Des-Moines-Kalamazoo comparisons is actually higher than
the Chicago-Des-Moines comparisons.

40Our comparisons of two or five bins of cities are analogous to the empirical exercises presented in
Eeckhout, Pinheiro, and Schmidheiny (2014) and Bacolod, Blum, and Strange (2009).
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Figure 7: Pairwise comparisons of three skill groups
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5.1.2 Nine skill groups

We next examine our tests for the case with nine skill groups. Starting with the elasticity

test, Table 4 shows, contrary to our model’s prediction, that those not completing high

school are highly prevalent in larger cities. The second column reveals that this result is

due to the presence of foreign-born individuals with low educational attainment in larger

cities. If we restrict attention to US-born individuals, we can only reject the hypothesis that

βω ≥ βω′ ⇐⇒ ω ≥ ω′ in one of thirty-six comparisons, the case where βω2 = 0.94 > 0.90 =

βω3 .41 In short, the elasticity test provides strong support for our theory when we examine

the US-born population.42

How should we interpret the difference between the spatial distribution of skills among the

population as a whole and among US-born individuals? One possibility is that immigrants

strongly prefer larger cities for reasons omitted from our model, causing less-skilled foreign-

born individuals to disproportionately locate in larger cities. This would be consistent with

41The estimated elasticities for the tails of the skill distribution have larger standard errors. This likely
reflects greater sampling noise for scarce educational categories; for example, the median (C)MSA had 34
observations of full-time, full-year employees with a PhD in the 5 percent public-use 2000 Census microdata.

42Interestingly, among US-born individuals, the nine estimated elasticities naturally break into the three
more aggregate educational attainment categories that we used above: βω1 , βω2 , βω3 ∈ (0.90, 0.94);βω4 , βω5 ∈
(0.96, 0.98);βω6

, βω7
, βω8

, βω9
∈ (1.06, 1.09).
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Table 4: Population elasticities of educational groups, 2000
Population Percent Population elasticities

share US-born Dep var: ln f(ω, c) All US-born
.03 .21 βω1 Less than high school 1.17 0.91

× log population (0.039) (0.028)

.07 .69 βω2 High school dropout 1.03 0.94
× log population (0.017) (0.020)

.24 .87 βω3 High school graduate 0.93 0.90
× log population (0.013) (0.016)

.24 .89 βω4 College dropout 1.00 0.98
× log population (0.011) (0.013)

.08 .87 βω5 Associate’s degree 1.00 0.96
× log population (0.014) (0.016)

.21 .86 βω6 Bachelor’s degree 1.10 1.07
× log population (0.015) (0.017)

.08 .83 βω7 Master’s degree 1.12 1.09
× log population (0.018) (0.019)

.03 .81 βω8 Professional degree 1.12 1.09
× log population (0.018) (0.019)

.01 .69 βω9 PhD 1.11 1.06
× log population (0.035) (0.033)

Standard errors, clustered by MSA, in parentheses.

Sample is all full-time, full-year employees residing in 270 metropolitan areas.

an established literature that describes agglomeration benefits particular to unskilled foreign-

born individuals, such as linguistic enclaves (Edin, Fredriksson, and Aslund, 2003; Bauer,

Epstein, and Gang, 2005).43

Eeckhout, Pinheiro, and Schmidheiny (2014) articulate another possibility, in which an

economic mechanism they term “extreme-skill complementarity” causes less skilled indi-

viduals, foreign-born or US-born, to disproportionately reside in larger cities. Larger cities’

benefits for immigrants merely serve as a “tie breaker” that causes the foreign-born to choose

larger cities in equilibrium. This theory predicts that in the absence of foreign-born low-

skilled individuals, US-born low-skilled individuals would disproportionately locate in larger

cities.

We attempt to distinguish between these hypotheses by looking at the skill distributions

of US cities two decades earlier. In 2000, foreign-born individuals were 11 percent of the

US population, while in 1980 they constituted about 6 percent. More importantly, in 2000,

foreign-born individuals constituted nearly 80 percent of the lowest skill group, while in

43Another potential mechanism is that immigrants may find larger cities’ combination of higher nominal
wages and higher housing prices more attractive than natives (Diamond, 2012), possibly because they remit
their nominal incomes abroad or demand less housing than US-born individuals.
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Table 5: Population elasticities of educational groups, 1980
Population Percent Population elasticities

share US-born Dep var: ln f(ω, c) All US-born
.06 .67 βω1 Less than grade 9 0.99 0.89

× log population (0.028) (0.030)

.11 .91 βω2 Grades 9-11 1.00 0.98
× log population (0.019) (0.021)

.33 .94 βω3 Grade 12 0.97 0.95
× log population (0.013) (0.015)

.08 .94 βω4 1 year college 1.04 1.03
× log population (0.018) (0.018)

.13 .92 βω5 2-3 years college 1.09 1.07
× log population (0.018) (0.018)

.13 .92 βω6 4 years college 1.10 1.08
× log population (0.018) (0.018)

.13 .90 βω7 5+ years college 1.13 1.11
× log population (0.022) (0.022)

Standard errors, clustered by MSA, in parentheses

Sample is full-time, full-year employees residing in 253 metropolitan areas.

1980 they were only one third of the lowest skill group. If our hypothesis that foreign-born

individuals are particularly attracted to larger cities is correct, then the population elasticity

of less-skilled types should be lower when foreign-born shares are lower. Table 5 demonstrates

that this is the case in 1980.44 It does not provide any evidence that the least skilled were

overrepresented in larger cities in 1980, among either the population as a whole or US-born

individuals. The contrast between 1980 and 2000 for the population as a whole reflects the

increasing foreign-born share in the least skilled groups.45 Reconciling these results with the

model of Eeckhout, Pinheiro, and Schmidheiny (2014) would require that the production

function changed from top-skill complementarity in 1980 to extreme-skill complementarity

in 2000.

We now turn to the pairwise comparisons for the case with nine skill groups in 2000.

These test inequalities for 36,315 city pairs for each pairing of the nine skill groups and

are summarized in Figure 8 and Appendix Table 7. In both the unweighted and weighted

comparisons, our theory does best in predicting comparisons of skill groups that have a high

school degree or higher attainment. Fewer than 50 percent of the comparisons yield the

correct inequality when the “less than high school” skill group is involved in the comparison.

44The educational categories in Table 5 differ from prior tables because Census microdata collected prior
to 1990 identify coarser levels of educational attainment in terms of years of schooling rather than highest
degree attained.

45The population elasticities of foreign-born individuals in the two least skilled categories are 1.4 and 1.3
in 1980 and 1.4 and 1.4 in 2000.
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Figure 8: Pairwise comparisons of nine skill groups
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As would be expected from the previous results, these comparisons are considerably more

successful when restricted to the US-born population. When these are also weighted by

population differences and education shares, the overall success rate in comparing individual

cities rises to 64 percent.

Figure 8 and Appendix Table 8 show how the pairwise comparison success rate varies

when we bin cities by size. When we restrict attention to the US-born, the unweighted success

rate for individual cities, five bins, and two bins of cities are 56 percent, 71 percent, and

81 percent, respectively. If, in addition, we weight successes by population differences, the

success rates for individual cities, five bins, and two bins of cities are 61 percent, 77 percent,

and 81 percent, respectively. Weighting by population differences and education shares

yields success rates of 64, 87, and 88 percent. In short, for the case of nine skill groups, the

raw comparisons for individual cities including the foreign born show very modest success.

As in the elasticities test, restricting attention to the US-born population yields significant

improvement. Likewise, there is considerably greater success as we group cities and as we

weight them by the overall prevalence of the education group in the labor force. Overall, we

consider this solid support for our theory.
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5.2 Larger cities specialize in skill-intensive sectors

This section examines the spatial pattern of sectoral employment. In our theory, larger cities

are relatively more skilled, cities’ equilibrium productivity differences are Hicks-neutral, and

sectors can be ordered by their skill intensity, so larger cities employ relatively more labor in

skill-intensive sectors. We established that larger cities are relatively more skilled in section

5.1. We now examine whether larger cities are relatively specialized in skill-intensive sectors.

Since employment levels in both industries and occupations are readily available in the data,

we test the employment implications of Corollary 1.46

5.2.1 The spatial distribution of occupations

We first implement the elasticities test and the pairwise comparisons test interpreting sectors

as occupations. We begin with a visualization of the elasticity results. Figure 9 plots the

22 occupational categories’ estimated population elasticities of employment against their

skill intensities, measured as the average years of schooling of individuals employed in that

occupation.47 There is a clear positive relationship. Outliers in the figure include close-to-

unitary elasticities for the relatively skilled occupations in education, healthcare, and social

services, which may reflect non-traded status. On the other side, computer and mathematical

occupations have an elasticity that is quite high relative to their average schooling.

We can also look at this more formally. With the population elasticities of occupations

in hand, the hypothesis that βσ ≥ βσ′ ⇐⇒ σ ≥ σ′ involves 231 (= 22× 21/2) comparisons

of the estimated coefficients.48 This hypothesis is rejected at the five-percent significance

level in 46 comparisons, so the success rate is 80 percent.

The results for pairwise comparisons for occupations appear in Figure 10 and Appendix

Table 10. When we do this for 276 cities and 22 occupations, we have a total of more than

8 million pairwise comparisons, of which 54 percent are correct.49 This is low compared to

our results for skills. When we stay with individual cities but weight by population and

skill differences, this rises above 59 percent. We can maintain the weighting and consider it

for cities grouped by size into, for example, 30, 5, or 2 bins. The corresponding proportion

of successes rises respectively to 66, 76, and 78 percent. While the results for occupations

46Section 5.1 showed that US-born individuals better match our model’s predictions about the distribution
of skills. Unfortunately, the County Business Patterns and Occupational Employment Statistics data describe
employment counts, not individual employees’ characteristics, so we cannot address the birthplace issues in
this section.

47These elasticities are estimated without including zero-employment observations. The results obtained
when including those observations are similar.

48The elasticity estimates appear in Appendix Table 9.
49These pairwise comparisons omit zero-employment observations. The results obtained when including

those observations are similar.

32



Figure 9: Occupations’ population elasticities and skill intensities
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are not as strong as the results for skills, there are nonetheless quite informative patterns

– even when we group cities into five size-based bins, we get three quarters of the pairwise

comparisons correct across the 22 occupational categories.
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Figure 10: Pairwise comparisons of 22 occupational categories
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5.2.2 The spatial distribution of industries

We now implement the elasticities test and the pairwise comparisons test interpreting sectors

as manufacturing industries.50 A visualization of the elasticity test appears in Figure 11.51

Again, as predicted by our theory, there is a clear positive relationship so that the population

elasticity of industry employment is rising with the skill intensity of the industry. The

apparel industry is an outlier, with low average education and a high population elasticity

of employment. This may reflect the share of apparel industry employees who are less-

skilled foreign-born individuals, consistent with our previous discussion of skills.52 Testing

the hypothesis that βσ ≥ βσ′ ⇐⇒ σ ≥ σ′ for the 21 manufacturing industries involves 210

(= 21 × 20/2) comparisons of these estimated elasticities.53 This hypothesis is rejected in

26 comparisons, so the elasticity implication holds true for manufacturing industries about

50We focus on manufacturing industries since we believe they have the lowest trade costs, but we have
found broadly similar results when using all industries.

51As for occupations, these elasticities are estimated without including zero-employment observations. The
results obtained when including those observations are similar.

52Fifty-seven percent of apparel-manufacturing employees are foreign-born. Fifty-eight percent of foreign-
born and 15% of US-born apparel-manufacturing employees have less than a high-school degree.

53The elasticity estimates appear in Appendix Table 11.
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Figure 11: Industries’ population elasticities and skill intensities
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87 percent of the time.54 This success rate is higher than the corresponding statistic for

occupational elasticities.

The pairwise comparisons results for industries appear in Figure 12 and Appendix Table

12. When we do this for 276 individual cities and 21 industries, we have a total of more

than 6 million pairwise comparisons, of which just over half are correct.55 Weighting this by

skill and population differences raises this to 56 percent, again low compared to our results

for pairwise comparisons of skills. We can maintain the weighting and consider this for

cities grouped by size into 30, 5, or 2 groups. The corresponding proportion of successes

rises respectively to 63, 72, and 77 percent. These are modestly low relative to the prior

results on occupations and even more so relative to the results on skills. Nonetheless, they

do show that there is systematic variation across cities of different sizes in the composition of

manufacturing.56 Note that prior work contrasting large and medium-size cities, Henderson

(1997), is analogous to our comparisons of two or three groups of cities ordered by population.

54If we restrict the data to uncensored observations, which reduces the sample considerably, this hypothesis
is rejected in 32 comparisons, for an 85 percent success rate. See appendix D for a discussion of censoring
in County Business Patterns data.

55These pairwise comparisons omit zero-employment observations. The results obtained when including
those observations are similar.

56These results are not driven solely by the largest metropolitan areas; excluding the ten largest cities
from pairwise comparisons of occupations and industries yields similar success rates.

35



Figure 12: Pairwise comparisons of 21 manufacturing industries
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5.3 Testing for systematic failures of comparative advantage

Our results for the cross-city distributions of skills, industries, and occupations demonstrate

systematic patterns in line with our theory’s predictions. While demonstrating predictive

power, the pairwise comparisons also fall well short of 100 percent success. This is not sur-

prising, given that our model’s parsimony stems from making strong assumptions that omit

various features that influence the real world. An important question is whether our the-

ory’s unsuccessful pairwise predictions are merely idiosyncratic deviations from the pattern

of comparative advantage or are systematic violations of our predicted pattern.

Sattinger (1978) develops an approach to test for such systematic violations in the form

of systematic intransitivity in the pattern of comparative advantage. It is possible for the

data to exhibit, for c > c′ > c′′ and σ > σ′ > σ′′, f(σ,c)
f(σ′,c)

≥ f(σ,c′)
f(σ′,c′)

and f(σ′,c′)
f(σ′′,c′)

≥ f(σ′,c′′)
f(σ′′,c′′)

without exhibiting f(σ,c)
f(σ′′,c)

≥ f(σ,c′′)
f(σ′′,c′′)

. With hundreds of metropolitan areas and dozens of

sectors, it is easy to find three cities and three sectors in the data exhibiting such intransi-

tivity. But do intransitivities arise systematically? Sattinger (1978) shows that if ln f(σ, c)

is a polynomial function of β̂σ and lnL(c), then there can be systematic intransitivity only

if ln f(σ, c) is a function of higher-order interactions of β̂σ and lnL(c). We therefore added

quadratic terms and their interactions to our elasticity regressions. These did little to im-
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prove the regression’s adjusted R2, and F-tests yielded p-values that did not come close to

rejecting the null that these additional terms were uninformative. There is no evidence of

systematic intransitivity in comparative advantage. While our theory’s predictive successes

are systematic, the empirical departures from our theory appear to be idiosyncratic.

5.4 Larger cities are larger in all sectors

As described in section 2, different agglomeration theories have different implications for the

relationship between city size and sectoral employment levels. Localization theories make

the trade-off between industry-specific agglomeration economies and general congestion costs

the foundation of the city-size distribution, with cross-city variation in size reflecting cross-

industry variation in the strength of agglomeration economies. Our theory, by contrast,

focuses on urbanization economies and allows that large cities may be the largest site of

economic activity for all sectors (Corollary 3). Our empirical exercise asks what weight

should be placed on the predictions flowing from each of these archetypes.

In the data, larger cities tend to have larger sectoral employment in all activities. This

tendency is clear from the population elasticities plotted in Figures 9 and 11, as they are all

strongly positive. Amongst the 21 3-digit NAICS manufacturing industries, the prediction

that c > c′ ⇒ f(σ, c) ≥ f(σ, c′) is true in 77 percent of 796,950 cases. Sixteen manufacturing

industries attain their maximal size in the three largest of 276 metropolitan areas (New

York, Los Angeles, and Chicago), and all but one do so in the ten largest cities.57 The

exception is textile mills, which employ the most people in the Greenville-Spartanburg-

Anderson metropolitan area, the 52nd largest city. The analogous results for occupational

categories show an even stronger tendency for larger cities to have higher employment levels

in all occupations.58

These findings are more consistent with urbanization economies than localization mecha-

nisms at the city level. While particular examples such as South Carolina’s concentration of

textile mills are consistent with localization economies, the typical manufacturing industry

exhibits larger employment levels in more populous cities. Our theory, which parsimoniously

assumes only urbanization economies, matches the data on cities’ sectoral composition and

sectoral sizes quite well relative to existing models.

57We find similar results for 4-digit NAICS manufacturing industries, though there is considerably more
censoring at this more disaggregated level of observation. Larger cities have larger employment levels in 80
percent of comparisons. Sixty percent of 4-digit manufacturing industries attain their maximal size in the
five largest cities, and nearly 80 percent do so in the fifty largest cities.

58The c > c′ ⇒ f(σ, c) ≥ f(σ, c′) prediction holds true in 88 percent of occupational comparisons, and 19
of the 22 occupations attain their maximal size in the largest metropolitan area, New York.
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6 Discussion and conclusions

In this paper, we introduce a model that simultaneously characterizes the distribution of

skills and sectors across cities. We describe a high-dimensional economic environment that

is a system of cities in which cities’ internal geographies exhibit substantive heterogeneity and

individuals’ comparative advantage governs the distribution of sectoral employment. Our

model achieves two aims. First, we obtain “smooth” predictions, in the sense that cities’

skill and sectoral distributions will be highly overlapping. These are more realistic than

prior theories describing cities that are perfectly sorted along skills or polarized in terms

of sectoral composition. Second, we obtain “strong” predictions, in the sense that cities’

skill and sectoral distributions will exhibit systematic variation according to the monotone

likelihood ratio property. These are more precise than the predictions of many prior theories

of the spatial organization of economy activity and guide our empirical investigation.

Examining data on US metropolitan areas’ populations, occupations, and industries in

the year 2000 reveals systematic variation in the cross-city distribution of skills and sectors

that is consistent with our theory. Larger cities are skill-abundant. Our results using three

equal-sized categories of educational attainment are quite strong. Even disaggregated to nine

educational categories, the cross-city distribution of US-born individuals is well described by

our theory.

Empirically, we find that larger cities specialize relatively in skill-intensive activities.

More skill-intensive occupations and industries tend to have higher population elasticities

of employment. In making pairwise comparisons, our model does better in describing the

pattern of occupational employment than industrial employment. This is consistent with a

recent emphasis in the literature on workers performing tasks. Our results demonstrate that

metropolitan skill distributions shape the comparative advantage of cities. Consistent with

our approach based on urbanization economies, larger cities tend to have larger absolute

employment in all industries.

We believe that our framework is amenable to both theoretical and empirical applications

and extensions. The “smoothness” resulting from the simultaneous consideration of cross-

and within-city heterogeneity in a continuum-by-continuum environment would make our

model amenable to theoretical analyses of the consequences of commuting costs, globaliza-

tion, and skill-biased technical change. The “strong” character of our predictions and their

demonstrated relevance for describing US cities in 2000 suggest that their examination in

other settings, such as economies at different stages of development or in different historical

periods, would be interesting.
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A Appendix: Consumption interpretation

The production and consumption interpretations yield very similar results but differ slightly

in notation. In the consumption interpretation, an individual’s productivity and utility are

q(c, τ, σ;ω) = A(c)H(ω, σ) (13)

U(c, τ, σ;ω) = T (τ) [A(c)H(ω, σ)p(σ)− r(c, τ)] (14)

where T (τ) determines the value of the individual’s disposable income after paying his or her

locational price.59 In this interpretation, preferences are non-homothetic in a manner akin to

that of Gabszewicz, Shaked, Sutton, and Thisse (1981). Higher-income individuals are more

willing to pay for higher-quality locations because a more desirable location complements

their higher consumption of tradables.

59Recall that the final good is the numeraire.
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In this case, instead of γ = A(c)T (τ) = A(c′)T (τ ′) ⇐⇒ r(c, τ) = r(c′, τ ′) = rΓ(γ),

the appropriate equivalence between two locations is their “amenity-amplified price”, which

is T (τ)r(c, τ). So the equivalence statement is now γ = A(c)T (τ) = A(c′)T (τ ′) ⇐⇒
T (τ)r(c, τ) = T (τ ′)r(c′, τ ′) = rΓ(γ). The results in lemma 1 are unaltered, though the proof

is modified to use the relevant U(c, τ, σ;ω). The expressions for K : Γ → Ω, γ̄, and γ

are unaltered. This leaves the conclusions of lemmas 4 and 5 intact. The locational price

schedule is given by r(c, τ) = rΓ(A(c)T (τ))
T (τ)

= A(c) rΓ(γ)
γ

.

These locational prices do not appear in the endogenous definition of A(c) nor the proofs

of Lemma 6 and subsequent results. When evaluated at equilibrium, occupied locations’

productivities q(c, τ, σ;ω) = A(c)H(ω, σ) differ across cities in a Hicks-neutral fashion that

satisfies Costinot’s Definition 4 (see footnote 23), so Corollary 2 holds true. As a result,

the predictions about cities’ population, sectors, and productivities described in sections 3.5

and 3.6 are unaltered by interpreting T (τ) as describing consumption benefits rather than

production benefits.

B Appendix: Proofs

Proof of Lemma 1:

Proof. Suppose that ∃τ ′ < τ̄(c) : S(τ ′) > L
´ τ ′

0

´
σ∈Σ

´
ω∈Ω

f(ω, c, x)dωdσdx. Then ∃τ ≤
τ ′ : S ′(τ) > L

´
σ∈Σ

´
ω∈Ω

f(ω, c, τ)dωdσ. Then r(c, τ)) = 0 ≤ r(c, τ̄(c)), so U(c, τ, σ;ω) >

U(c, τ̄(c), σ;ω) ∀ω∀σ since T (τ) is strictly decreasing. This contradicts the definition of

τ̄(c), since τ̄(c) is a location that maximizes utility for some individual. Therefore S(τ) =

L
´ τ

0

´
σ∈Σ

´
ω∈Ω

f(ω, c, x)dωdσdx ∀τ ≤ τ̄(c).

Suppose that ∃τ ′, τ ′′ : τ ′ < τ ′′ ≤ τ̄(c) and r(c, τ ′) ≤ r(c, τ ′′). Then U(c, τ ′, σ;ω) >

U(c, τ ′′, σ;ω) ∀ω∀σ since T (τ) is strictly decreasing. This contradicts the result that τ ′′

maximizes utility for some individual. Therefore r(c, τ) is strictly decreasing in τ ∀τ ≤ τ̄(c).

Suppose r(c, τ̄(c)) > 0. Then by its definition as a populated location, ∃ω : A(c)T (τ̄(c))G(ω)−
r(c, τ̄(c)) ≥ A(c)T (τ̄(c) + ε)G(ω) ∀ε > 0. This inequality is false for all ω for sufficiently

small ε, by the continuity of T (τ). Therefore r(c, τ̄(c)) = 0.

Proof of Lemma 2:

Proof. Nearly all of our argument follows the proof of Lemma 1 in Costinot and Vogel

(2010). Define f(ω, c, τ) ≡
´
σ∈Σ

f(ω, c, τ, σ)dσ. Define Ω(τ) ≡ {ω ∈ Ω|f(ω, c, τ) > 0} and

T (ω) ≡ {τ ∈ [0, τ̄(c)]|f(ω, c, τ) > 0}.

1. T (ω) 6= ∅ by equation (11) and f(ω) > 0. Ω(τ) 6= ∅ ∀τ ≤ τ̄(c) by lemma 1.
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2. Ω(τ) is a non-empty interval for τ ∈ [0, τ̄(c)]. Suppose not, such that ω < ω′ < ω′′ with

ω, ω′′ ∈ Ω(τ) and ω′ /∈ Ω(τ). ∃τ ′ : ω′ ∈ Ω(τ ′). Suppose τ ′ > τ. By utility maximization

A(c)T (τ ′)G(ω′)− r(c, τ ′) ≥ A(c)T (τ)G(ω′)− r(c, τ)

A(c)T (τ)G(ω)− r(c, τ) ≥ A(c)T (τ ′)G(ω)− r(c, τ ′)

These jointly imply (T (τ ′)− T (τ))(G(ω′)−G(ω)) ≥ 0, contrary to τ ′ > τ and ω′ > ω.

The τ ′ < τ case is analogous, using ω′ and ω′′. Therefore Ω(τ) is a non-empty interval.

The same pair of inequalities proves that for τ < τ ′ ≤ τ̄(c), if ω ∈ Ω(τ) and ω′ ∈ Ω(τ ′),

then ω ≥ ω′.

3. Ω(τ) is a singleton for all but a countable subset of [0, τ̄(c)]. Since Ω(τ) ⊂ Ω is a

non-empty interval for any τ ∈ [0, τ̄(c)], Ω(τ) is measurable for any τ ∈ [0, τ̄(c)]. Let

T0 denote the subset of locations τ such that µ[Ω(τ)] > 0, where µ is the Lebesgue

measure over R. T0 is a countable set. For any τ ∈ T0, define ω(τ) ≡ inf Ω(τ) and

ω̄(τ) ≡ sup Ω(τ). Because µ[Ω(τ)] > 0, we know ω̄(τ) > ω(τ). Thus, for any τ ∈ T0,

there exists a j ∈ N such that ω̄(τ) − ω(τ) ≥ (ω̄ − ω)/j. From the last result in step

2, we know that for any τ 6= τ ′, µ[Ω(τ) ∩ Ω(τ ′)] = 0. Thus, for any j ∈ N, there can

be at most j elements {τ1, . . . , τj} ≡ T j0 ⊂ T0 for which ω̄(τi) − ω(τi) ≥ (ω̄ − ω)/j

for i = 1, . . . , j. By construction, T0 = ∪j∈NT j0 , where T j0 is a countable set. Since

the union of countable sets is countable, T0 is a countable set. The fact that Ω(τ) is

a singleton for all but a countable subset of [0, τ̄(c)] follows from the fact that T0 is a

countable set and the fact that only the nonempty intervals of Ω with measure zero

are singletons.

4. T (ω) is a singleton for all but a countable subset of Ω. This follows from the same

arguments as in steps 2 and 3.

5. Ω(τ) is a singleton for τ ∈ [0, τ̄(c)]. Suppose not, such that there exists τ ∈ [0, τ̄(c)] for

which Ω(τ) is not singleton. By step two, Ω(τ) is an interval, so µ[Ω(τ)] > 0, where µ

is the Lebesgue measure over R. By step four, we know that T (ω) = {τ} for µ-almost

all ω ∈ Ω(τ). Hence condition (11) implies

f(ω, c, τ) =f(ω)δDirac[1− 1Ω(τ)] for µ-almost all ω ∈ Ω(τ), (15)

where δDirac is a Dirac delta function. Combining equations (9) and (15) with µ[Ω(τ)] >

0 yields S ′(τ) = +∞, which contradicts our assumptions about S(τ).

Step 5 means there is a function N : T → Ω such that f(ω, c, τ) > 0 ⇐⇒ N(τ) = ω.
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Step 2 says N is weakly decreasing. Since Ω(τ) 6= ∅ ∀τ ≤ τ̄(c), N is continuous and satisfies

N(0) = ω̄ and N(τ̄(c)) = ω. Step 4 means that N is strictly decreasing on (0, τ̄(c)).

Proof of the explicit expression of N(τ) that follows Lemma 2:

S(τ) = L

ˆ τ

0

ˆ
σ∈Σ

ˆ
ω∈Ω

f(ω, c, x, σ)dωdσdx

= L

ˆ τ

0

ˆ
ω∈Ω

f(ω)δDirac[x−N−1(ω)]dωdx

= L

ˆ τ

0

ˆ
τ ′
f(N(τ ′))δDirac[x− τ ′]N ′(τ ′)dτ ′dx

= −L
ˆ τ

0

f(N(x))N ′(x)dx = L(1− F (N(τ)))

⇒ N(τ) = F−1

(
L− S(τ)

L

)
Proof of Lemma 3:

Proof. By utility maximization

A(c)T (τ)G(N(τ))− r(c, τ) ≥ A(c)T (τ + dτ)G(N(τ))− r(c, τ + dτ)

A(c)T (τ + dτ)G(N(τ + dτ))− r(c, τ + dτ) ≥ A(c)T (τ)G(N(τ + dτ))− r(c, τ)

Together, these inequalities imply

A(c)T (τ + dτ)G(N(τ))− A(c)T (τ)G(N(τ))

dτ
≤ r(c, τ + dτ)− r(c, τ)

dτ

≤ A(c)T (τ + dτ)G(N(τ + dτ))− A(c)T (τ)G(N(τ + dτ))

dτ

Taking the limit as dτ → 0, we obtain ∂r(c,τ)
∂τ

= A(c)T ′(τ)G(N(τ)). Integrating from τ to

τ̄(c) and using the boundary condition r(c, τ̄(c)) = 0 yields r(c, τ) = −A(c)
´ τ̄(c)

τ
T ′(t)G(N(t))dt.

Proof of Lemma 4:

This proof is analogous to the proof of lemma 2.

Proof of Lemma 5:
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Proof. By utility maximization

γG(K(γ))− rΓ(γ) ≥(γ + dγ)G(K(γ))− rΓ(γ + dγ)

(γ + dγ)G(K(γ + dγ))− rΓ(γ + dγ) ≥γG(K(γ + dγ))− rΓ(γ)

Together, these inequalities imply

(γ + dγ)G(K(γ + dγ))− γG(K(γ + dγ))

dγ
≥rΓ(γ + dγ)− rΓ(γ)

dγ
≥ (γ + dγ)G(K(γ))− γG(K(γ))

dγ

Taking the limit as dγ → 0, we obtain ∂rΓ(γ)
∂γ

= G(K(γ)). Integrating from γ to γ and

using the boundary condition rΓ(γ) = 0 yields rΓ(γ) =
´ γ
γ
G(K(x))dx.

Proof of Lemma 6:

Proof. In city c, the population of individuals with skills between ω and ω + dω is

L

ˆ ω+dω

ω

f(x, c)dx = S

(
T−1

(
K−1(ω)

A(c)

))
− S

(
T−1

(
K−1(ω + dω)

A(c)

))
.

Taking the derivative with respect to dω and then taking the limit as dω → 0 yields the

population of ω in c. Using the definition of s(γ, c) yields the desired expression.

Proof of Lemma 7:

Proof. In city c, the population of individuals employed in sectors between σ and σ + dσ is

L

ˆ σ+dσ

σ

f(x, c)dx = S

(
T−1

(
K−1(M−1(σ))

A(c)

))
− S

(
T−1

(
K−1(M−1(σ + dσ))

A(c)

))
.

Taking the derivative with respect to dσ and then taking the limit as dσ → 0 yields the

population employed in σ in c. Using the definition of s(γ, c) yields the desired expression.

In the course of proving Proposition 1, we use the following lemma.

Lemma 8. Let f(z) : R → R++ and g(x, y) : R2 → R++ be C2 functions. If g(x, y) is

submodular and log-modular, then f(g(x, y)) is log-supermodular in (x, y) if and only if f(z)

has a decreasing elasticity.

Proof. f(g(x, y)) is log-supermodular in (x, y) if and only if

∂2 ln f(g(x, y)

∂x∂y
=

[
∂ ln f(z)

∂z
gxy +

∂2 ln f(z)

∂z2
gxgy

]
|z=g(x,y)

> 0
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If g(x, y) is submodular (gxy < 0) and log-modular (g = gxgy
gxy

), this condition can be written

as [
∂ ln f(z)

∂z
+
∂2 ln f(z)

∂z2

gxgy
gxy

]
|z=g(x,y)

=
∂

∂z

[
∂ ln f(z)

∂ ln z

]
< 0.

Proof of Proposition 1:

Proof. Recall that the supply of locations with attractiveness γ in city c is

s(γ, c) =


1

A(c)
V
(

γ
A(c)

)
if γ ≤ A(c)T (0)

0 otherwise
.

It is obvious that γ > γ′, c > c′ ⇒ s(γ, c)s(γ′, c′) ≥ s(γ, c′)s(γ′, c) is true when γ > A(c′)T (0).

For γ ≤ A(c′)T (0), the inequality holds true if and only if V
(

γ
A(c)

)
is log-supermodular in

(γ, c). Note that γ
A(c)

is submodular and log-modular in (γ, c). Therefore, by lemma 8, s(γ, c)

is log-supermodular if and only if V (z) has a decreasing elasticity.

Proof of Proposition 2:

Proof. s(γ, c) ≥ s(γ, c′) is trivially true for γ > A(c′)T (0). For γ ≤ A(c′)T (0),

s(γ, c) ≥ s(γ, c′) ⇐⇒ lnV

(
γ

A(c)

)
− lnV

(
γ

A(c′)

)
≥ lnA(c)− lnA(c′)

This condition can be rewritten as

ˆ lnA(c)

lnA(c′)

−∂ lnV (z)

∂ ln z |z= γ
x

d lnx ≥
ˆ lnA(c)

lnA(c′)

d lnx

ˆ lnA(c)

lnA(c′)

{
−∂ lnV (z)

∂ ln z |z= γ
x

− 1

}
d lnx ≥0

Thus, a sufficient condition for the larger city to have more locations of attractiveness γ

when V (z) has a decreasing elasticity is ∂ lnV (z)
∂ ln z

≤ −1 at z = γ
A(c)

.

C Appendix: Empirical Tests

This section describes the relationship between our two empirical tests in more detail.
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If f(ν, c) is log-supermodular and f(ν, c) > 0 ∀ν∀c,

ν > ν ′, c > c′ ⇒ ln f(ν, c) + ln f(ν ′, c′) ≥ ln f(ν ′, c) + ln f(ν, c′).

If C and C ′ are distinct sets and C is greater than C ′ (infc∈C L(c) > supc′∈C′ L(c′)), then∑
c∈C

ln f(ν, c) +
∑
c′∈C′

ln f(ν ′, c′) ≥
∑
c∈C

ln f(ν ′, c) +
∑
c′∈C′

ln f(ν, c′) ∀ν > ν ′

Suppose that the world is noisy. Consider the following form for ln f(ν, c), which is a

first-order approximation for any form,

ln f(ν, c) =αν + βν lnLc + εν,c

where εν,c is an error term with E(εν,c) = 0. The probability of obtaining the expected

inequality when ν > ν ′, C > C ′ is

Pr

(∑
c∈C

ln f(ν, c) +
∑
c′∈C′

ln f(ν ′, c′) ≥
∑
c∈C

ln f(ν ′, c) +
∑
c′∈C′

ln f(ν, c′)

)

= Pr

(∑
c∈C

εν′,c − εν,c +
∑
c′∈C′

εν,c′ − εν′,c′ ≤ (βν − βν′)(
∑
c∈C

lnLc −
∑
c′∈C′

lnLc′)

)
.

To illustrate the properties of this probability, consider the special case in which the error

term is normally distributed, εν,c ∼ N (0, σ2), so that the sum of the error terms is also

normally distributed.60 Then this probability P is

P = Ω

(
βν − βν′√

2σ2

∑
c∈C lnLc −

∑
c′∈C′ lnLc′√∑

c∈C 1 +
∑

c′∈C′ 1

)
,

where Ω(·) denotes the cumulative distribution function of N (0, 1). The probability of

obtaining the inequality depends on the difference in population size

(∑
c∈C lnLc−

∑
c′∈C′ lnLc′√∑

c∈C 1+
∑
c′∈C′ 1

)
,

the difference in population elasticities (βν − βν′), and the noisiness (σ2) of the relationship.

When the deterministic function is log-supermodular (c > c′ ⇒ Lc ≥ Lc′ ; ν > ν ′ ⇒ βν ≥ βν′),

P → 1 as σ2 → 0 (and P → 1/2 as σ →∞). When the function is log-modular, P → 1/2 as

60This specification assumes that the errors are homoscedastic. Empirically, we estimate that the residuals’
variance does not increase with population size; if anything, there is a slight negative relationship. Even in
the heteroscedastic case in which the variance increases with population size, with εν,c ∼ N (0, σ2 lnLc) and

P = Ω

(
βν−βν′√

2σ2

∑
c∈C lnLc−

∑
c′∈C′ lnLc′√∑

c∈C lnLc+
∑
c′∈C′ lnLc′

)
, the probability P = Ω

(
βν−βν′√

2σ2
· √nC · ln L̄C−ln L̄C′√

ln L̄C+ln L̄C′

)
exhibits the

same desirable properties as the homoscedastic case.
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σ2 → 0, and when the function is log-submodular, P → 0 as σ2 → 0.

This probability increases with aggregation by summation. Denote the number of ele-

ments in C and C ′ by nC and nC′ , respectively, and define the average ln L̄C′ ≡ 1
nC′

∑
c′∈C′ lnLc′ .

If we aggregate into bins with equal numbers of cities so that nC = nC′ , the probability of

obtaining the inequality simplifies to

P = Ω

(
βν − βν′√

2σ2
·
√
nC · (ln L̄C − ln L̄C′)

)
,

which is increasing in the number of cities in the “bin”.

Thus, our finding that βν is increasing in ν when estimated in the population elasticity

test implies that this pairwise comparison test will tend to have the correct inequality, and

its success rate will increase with differences in city size and aggregation. The success of

the elasticity test implies success of the pairwise comparison test (with aggregation) to the

extent that the log-linear approximation of f(ν, c) is a good approximation. The figures in

section 1 suggest that these are reasonable approximations. They also show noise, such that

σ2 � 0, so we should not expect the pairwise comparison test to have a 100% success rate.

D Appendix: Data

Data sources: Our metropolitan population data are from the US Census website (2000).

Our data on individuals’ demographics, educational attainments, geographic locations, and

sectors of employment come from the 5 percent sample of the 2000 US Census and the

1 percent metro sample of the 1980 US Census made available by IPUMS-USA (Ruggles,

Alexander, Genadek, Goeken, Schroeder, and Sobek, 2010). Our data on industrial employ-

ment come from the 2000 County Business Patterns, available from the US Census Bureau

website. Our data on occupational employment come from the 2000 Occupational Employ-

ment Statistics, available from the Burea of Labor Statistics website.

Geography: We use (consolidated) metropolitan statistical areas as defined by the OMB

as our unit of analysis.

The smallest geographic unit in the IPUMS-USA microdata is the public-use microdata

area (PUMA), which has a minimum of 100,000 residents. We map the PUMAs to metropoli-

tan statistical areas (MSAs) using the MABLE Geocorr2K geographic correspondence engine

from the Missouri Census Data Center. In some sparsely populated areas, a PUMA is larger

than a metropolitan area. We drop six MSAs in which fewer than half of the residents of

the only relevant PUMA live within the metropolitan area. As a result, there are 270 MSAs

when we use these microdata.
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The 1980 Census of Population IPUMS-USA microdata do not identify PUMAs, so we

use the “metarea” variable describing 253 consolidated MSAs for the regressions in Table 5.

The County Business Patterns data describe 318 metropolitan statistical areas. These

correspond to a mix of OMB-defined primary and consolidated metropolitan statistical ar-

eas outside New England and New England county metropolitan areas (NECMAs). We

aggregate these into OMB-defined (consolidated) metropolitan statistical areas to obtain

276 MSAs.

The Occupational Employment Statistics data describe 331 (primary) metropolitan sta-

tistical areas. We aggregate these into OMB-defined (consolidated) metropolitan statistical

areas to obtain observations for 276 MSAs.

Skill distribution: Our sample of individuals includes all full-time, full-year prime-age

workers, defined as individuals 25 to 55 years of age who reported working at least 35 hour

per week and 40 weeks in the previous year. Using the “educd” variable from IPUMS, we

construct nine levels of educational attainment: less than high school, high school dropout,

high school graduate, some college, associate’s degree, bachelor’s degree, master’s degree,

professional degree, and doctorate. There is at least one observation in every educational

category in every metropolitan area.

Sectoral skill intensity: Using the same sample of full-time, full-year prime-age work-

ers, we measure a sector’s skill intensity by calculating the average years of schooling of its

employees after controlling for spatial differences in average schooling. We calculate years of

schooling using the educational attainment “educd” variable from IPUMS at its finest level

of disaggregation. For instance, this means that we distinguish between those whose highest

educational attainment is sixth grade or eighth grade. We use the “indnaics” and “occsoc”

variables to assign individuals to their 3-digit NAICS and 2-digit SOC sectors of employ-

ment. Aggregating observations to the MSA-sector level, weighted by the IPUMS-provided

person weights, we regress the average years of schooling on MSA and sectoral dummies.

The sectoral dummy coefficients are our measure of skill intensities.

Industrial employment: There 96 3-digit NAICS industries, of which 21 are manufac-

turing industries. 75 of these industries, including all 21 manufacturing industries, appear

in both the Census of Population microdata and the County Business Patterns data. The

County Business Patterns data are an almost exhaustive account of US employer establish-

ments. When necessary to protect the confidentiality of individual establishments, employ-

ment in an industry in a location is reported as falling within an interval rather than its exact

number. In our empirical work, we use the midpoints of these intervals as the level of em-

ployment. There are 390 (C)MSA-manufacturing-industry pairs, out of 5796 = 21× 276, in

which there are zero establishments. The County Business Patterns data omit self-employed
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individuals and employees of private households, railroads, agriculture production, the postal

service, and public administrations. See the CBP methodology webpage for details.

Occupational employment: There are 22 2-digit SOC occupations. Across 331 (P)MSAs,

there should be 7282 metropolitan-occupation observations. The 2000 BLS Occupational

Employment Statistics contain employment estimates for 7129 metropolitan-occupation ob-

servations, none of which are zero. The 153 omitted observations “may be withheld from

publication for a number of reasons, including failure to meet BLS quality standards or the

need to protect the confidentiality of [BLS] survey respondents.”

E Appendix: Tables
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Table 6: Pairwise comparisons of three skill groups
College vs College vs Some college Total

Bins Birthplace Weights some college HS or less vs HS or less comparisons Average

2 All Unweighted 1 1 1 3 1

2 All Population difference 1 1 1 3 1

2 US-born Unweighted 1 1 1 3 1

2 US-born Population difference 1 1 1 3 1

3 All Unweighted 1 1 1 9 1

3 All Population difference 1 1 1 9 1

3 US-born Unweighted 1 1 1 9 1

3 US-born Population difference 1 1 1 9 1

5 All Unweighted 1 1 .900 30 .967

5 All Population difference 1 1 .955 30 .985

5 US-born Unweighted 1 1 .900 30 .967

5 US-born Population difference 1 1 .955 30 .985

10 All Unweighted .844 .844 .711 135 .800

10 All Population difference .927 .944 .852 135 .908

10 US-born Unweighted .844 .889 .756 135 .830

10 US-born Population difference .927 .956 .870 135 .918

30 All Unweighted .768 .726 .632 1305 .709

30 All Population difference .887 .853 .716 1305 .819

30 US-born Unweighted .782 .784 .694 1305 .753

30 US-born Population difference .893 .898 .812 1305 .868

90 All Unweighted .684 .667 .58 12,015 .644

90 All Population difference .804 .779 .627 12,015 .737

90 US-born Unweighted .679 .693 .639 12,015 .670

90 US-born Population difference .799 .809 .727 12,015 .778

270 All Unweighted .629 .616 .556 108,945 .600

270 All Population difference .717 .695 .588 108,945 .667

270 US-born Unweighted .624 .635 .589 108,945 .616

270 US-born Population difference .712 .726 .647 108,945 .695
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Table 7: Pairwise comparisons of nine skill groups with one city per bin
Unweighted comparisons

LHS HSD HS CD AA BA MA Pro
HSD .423
HS .399 .413
CD .428 .486 .587
AA .43 .483 .571 .483
BA .476 .555 .644 .619 .602
MA .484 .558 .643 .614 .615 .528
Pro .484 .57 .645 .617 .604 .524 .499
PhD .49 .548 .598 .576 .577 .521 .501 .511
Population-difference weighted comparisons of US born

LHS HSD HS CD AA BA MA Pro
HSD .568
HS .488 .435
CD .583 .569 .649
AA .552 .53 .616 .453
BA .644 .65 .738 .695 .682
MA .648 .651 .738 .686 .695 .544
Pro .654 .654 .73 .676 .676 .533 .493
PhD .611 .605 .651 .605 .617 .502 .476 .497
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Table 8: Pairwise comparisons of nine skill groups
Total All individuals US-born

Bins Weights comparisons success rate success rate
2 Unweighted 36 .583 .778
2 Population difference 36 .583 .778
2 Pop diff x edu shares 36 .766 .860
3 Unweighted 108 .574 .713
3 Population difference 108 .609 .771
3 Pop diff x edu shares 108 .773 .847
5 Unweighted 360 .581 .714
5 Population difference 360 .622 .768
5 Pop diff x edu shares 360 .768 .837
10 Unweighted 1620 .575 .662
10 Population difference 1620 .620 .733
10 Pop diff x edu shares 1620 .742 .800
30 Unweighted 15,660 .567 .616
30 Population difference 15,660 .610 .691
30 Pop diff x edu shares 15,660 .719 .763
90 Unweighted 144,180 .547 .582
90 Population difference 144,180 .585 .647
90 Pop diff x edu shares 144,180 .666 .698
270 Unweighted 1,307,340 .536 .559
270 Population difference 1,307,340 .564 .605
270 Pop diff x edu shares 1,307,340 .614 .636

Table 9: Occupational employment population elasticities
βσ1 Farming, Fishing, and Forestry Occupations 0.803 βσ12 Sales and Related Occupations 1.037
× log population (0.048) × log population (0.010)

βσ2 Building and Grounds Cleaning and Maintenance 1.039 βσ13 Management occupations 1.082
× log population (0.011) × log population (0.015)

βσ3 Food Preparation and Serving Occupations 0.985 βσ14 Arts, Design, Entertainment, Sports, and Media 1.158
× log population (0.011) × log population (0.019)

βσ4 Construction and Extraction Occupations 1.037 βσ15 Business and Financial Operations Occupations 1.204
× log population (0.014) × log population (0.018)

βσ5 Production Occupations 1.045 βσ16 Architecture and Engineering Occupations 1.209
× log population (0.025) × log population (0.026)

βσ6 Transportation and Material Moving Occupations 1.061 βσ17 Computer and Mathematical Occupations 1.395
× log population (0.014) × log population (0.034)

βσ7 Installation, Maintenance, and Repair Workers 1.015 βσ18 Healthcare Practitioners and Technical Occupations 1.001
× log population (0.011) × log population (0.014)

βσ8 Healthcare Support Occupations 0.980 βσ19 Community and Social Services Occupations 0.986
× log population (0.013) × log population (0.020)

βσ9 Personal Care and Service Occupations 1.065 βσ20 Education, Training, and Library Occupations 1.011
× log population (0.017) × log population (0.017)

βσ10 Office and Administrative Support Occupations 1.081 βσ21 Life, Physical, and Social Science Occupations 1.170
× log population (0.010) × log population (0.030)

βσ11 Protective Service Occupations 1.123 βσ22 Legal Occupations 1.200
× log population (0.014) × log population (0.022)

Observations 5943
R-squared 0.931

Occupation fixed effects Yes
Standard errors, clustered by MSA, in parentheses

54



Table 10: Pairwise comparisons of occupations
Bins Weights Comparisons Success rate
2 Unweighted 231 .714
2 Population difference 231 .714
2 Population difference × skill difference 231 .775
3 Unweighted 693 .688
3 Population difference 693 .694
3 Population difference × skill difference 693 .736
5 Unweighted 2,310 .684
5 Population difference 2,310 .71
5 Population difference × skill difference 2,310 .756
10 Unweighted 10,395 .653
10 Population difference 10,395 .689
10 Population difference × skill difference 10,395 .735
30 Unweighted 100,485 .599
30 Population difference 100,485 .628
30 Population difference × skill difference 100,485 .662
90 Unweighted 925,155 .564
90 Population difference 925,155 .582
90 Population difference × skill difference 925,155 .606
276 Unweighted 8,073,382 .543
276 Population difference 8,073,382 .571
276 Population difference × skill difference 8,073,382 .598
Note: The number of cities per “bin” may differ by one, due to the integer constraint.

Table 11: Industrial employment population elasticities
βσ1 Apparel Manufacturing 1.237 1.024 βσ11 Nonmetallic Mineral Product Manufacturing 1.018 0.955
× log population (0.070) (0.148) × log population (0.036) (0.042)

βσ2 Textile Product Mills 1.125 0.905 βσ12 Paper Manufacturing 0.901 0.539
× log population (0.056) (0.135) × log population (0.063) (0.104)

βσ3 Leather and Allied Product Manufacturing 0.743 0.147 βσ13 Printing and Related Support Activities 1.202 1.122
× log population (0.099) (0.284) × log population (0.036) (0.047)

βσ4 Furniture and Related Product Manufacturing 1.120 1.000 βσ14 Electrical Equipment, Appliance & Component 1.159 0.813
× log population (0.050) (0.076) × log population (0.074) (0.111)

βσ5 Textile Mills 0.823 0.352 βσ15 Machinery Manufacturing 1.071 0.960
× log population (0.105) (0.208) × log population (0.055) (0.069)

βσ6 Wood Product Manufacturing 0.848 0.608 βσ16 Miscellaneous Manufacturing 1.224 1.208
× log population (0.055) (0.085) × log population (0.044) (0.059)

βσ7 Fabricated Metal Product Manufacturing 1.094 1.036 βσ17 Beverage and Tobacco Product Manufacturing 1.168 1.010
× log population (0.048) (0.050) × log population (0.065) (0.147)

βσ8 Food Manufacturing 0.953 0.864 βσ18 Transportation Equipment Manufacturing 1.254 0.940
× log population (0.050) (0.067) × log population (0.075) (0.101)

βσ9 Plastics and Rubber Products Manufacturing 1.105 0.975 βσ19 Petroleum and Coal Products Manufacturing 0.951 0.393
× log population (0.056) (0.070) × log population (0.074) (0.308)

βσ10 Primary Metal Manufacturing 0.997 0.449 βσ20 Computer and Electronic Product Manufacturing 1.453 1.254
× log population (0.078) (0.107) × log population (0.075) (0.108)

βσ21 Chemical Manufacturing 1.325 0.992
× log population (0.065) (0.098)

Observations 5406 2130 Observations 5406 2130
R-squared 0.564 0.541 R-squared 0.564 0.541
Industry fixed effects Yes Yes Industry fixed effects Yes Yes
Only uncensored observations Yes Only uncensored observations Yes

Standard errors, clustered by MSA, in parentheses
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Table 12: Pairwise comparisons of manufacturing industries
Bins Weights Comparisons Success rate
2 Unweighted 210 .648
2 Population difference 210 .648
2 Population difference × skill difference 210 .767
3 Unweighted 630 .637
3 Population difference 630 .64
3 Population difference × skill difference 630 .736
5 Unweighted 2100 .63
5 Population difference 2100 .629
5 Population difference × skill difference 2100 .715
10 Unweighted 9450 .589
10 Population difference 9450 .604
10 Population difference × skill difference 9450 .678
30 Unweighted 91,350 .559
30 Population difference 91,350 .577
30 Population difference × skill difference 91,350 .631
90 Unweighted 817,344 .536
90 Population difference 817,344 .545
90 Population difference × skill difference 817,344 .576
276 Unweighted 6,183,770 .529
276 Population difference 6,183,770 .538
276 Population difference × skill difference 6,183,770 .558
Note: The number of cities per “bin” may differ by one, due to the integer constraint.
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