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ABSTRACT

We consider a principal-agent model in which the agent needs to raise capital from the principal to

finance a project. Our model is based on DeMarzo and Fishman (2003), except that the agent's cash

flows are given by a Brownian motion with drift in continuous time. The difficulty in writing an

appropriate financial contract in this setting is that the agent can conceal and divert cash flows for

his own consumption rather than pay back the principal. Alternatively, the agent may reduce the

mean of cash flows by not putting in effort. To give the agent incentives to provide effort and repay

the principal, a long-term contract specifies the agent's wage and can force termination of the

project. Using techniques from stochastic calculus similar to Sannikov (2003), we characterize the

optimal contract by a differential equation. We show that this contract is equivalent to the limiting

case of a discrete time model with binomial cash flows. The optimal contract can be interpreted as

a combination of equity, a credit line, and either long-term debt or a compensating balance

requirement (i.e., a cash position). The project is terminated if the agent exhausts the credit line and

defaults. Once the credit line is paid off, excess cash flows are used to pay dividends. The agent is

compensated with equity alone. Unlike the discrete time setting, our differential equation for the

continuous-time model allows us to compute contracts easily, as well as compute comparative

statics. The model provides a simple dynamic theory of security design and optimal capital structure.
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1. Introduction 
In this paper, we consider a dynamic contracting environment in which a risk-neutral 
agent or entrepreneur with limited resources manages an investment activity.  While the 
investment is profitable, it is also risky, and in the short-run can generate large losses.  
The agent will need outside financial support to cover these losses and continue the 
project.  The difficulty is that while the distribution of the cash flows is publicly known, 
the agent may distort these cash flows by taking a hidden action that leads to a private 
benefit.  Specifically, the agent may (i) conceal and divert cash flows for his own 
consumption, and/or (ii) stop providing costly effort, which reduces the mean of the cash 
flows.  Therefore, from the perspective of the principal or investors funding the project, 
there is the concern that a low cash flow realization may be a result of the agent’s actions, 
rather than the project fundamentals.  To provide the agent with appropriate incentives, 
investors control the agent’s wage, and may withdraw their financial support for the 
project and force its early termination.  We seek to characterize an optimal contract in 
this framework and relate it to the firm’s choice of capital structure. 

A discrete-time model of this sort is considered by DeMarzo and Fishman (2003), 
hereafter denoted DF.  Here we extend their analysis to a continuous-time setting in 
which the cumulative cash flows generated by the investment follow a Brownian motion 
with a positive drift.  With Brownian motion, the losses on the project over any interval 
of time can be arbitrarily large.  An optimal contract must specify the level of losses that 
investors will tolerate before terminating their support.  A key advantage of the 
stationary, continuous-time model considered here is that the optimal contracts and 
payoffs can be characterized in terms of an ordinary differential equation, making the 
solution and comparative statics simpler to quantify.  It also makes the model easier to 
calibrate and embed within other standard finance models. 

Another important contribution of the paper is methodological.  We solve the model in 
two ways.  First, we represent the project cash flows as a discrete-time binomial tree.  
The agency problem is that the agent may report low cash flows when they are really 
high, and/or stop providing costly effort, which affects the probability of the high cash 
flow.  Given the discrete-time setting, we can apply the results of DF to describe the 
solution.  We show that the limit of this solution as the time increments vanish leads to an 
ordinary differential equation that characterizes equilibrium payoffs. 1   Second, we 
formulate the model directly in continuous time. Using techniques similar to those 
introduced by Sannikov (2003), we again characterize the solution in terms of an ordinary 
differential equation, and show that it coincides with the limit of the discrete case.  These 
techniques are quite powerful and may prove useful in other dynamic contracting models. 

In the discrete-time setting, DF demonstrate that the optimal contract can be implemented 
using a combination of standard securities:  equity, long-term debt, and a credit line.  
Dividends are paid when cash flows exceed long-term debt payments and the credit line 
                                                           
1 While using a binary-tree to approximate Brownian motion is natural when modeling payoffs, in the 
context of an agency problem there is no guarantee that the optimal contract in the binary case will 
approximate the optimal contract in continuous time.  See, for example, Hellwig and Schmidt (2002) for a 
discussion of the difficulties of this approach in the Holmstrom-Milgrom (1987) continuous-time principal-
agent model. 
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is paid off.  If long-term debt payments are not made or the credit line is overdrawn, the 
project is terminated with a probability that depends on the size of the cash shortfall. 

In the setting of this paper we obtain a similar implementation with some distinctions.  
First, termination is no longer stochastic, but occurs the moment the credit line is 
overdrawn or there is a default on the long-term debt.  Another distinction is that because 
the project can generate large short-term losses, projects that are very risky will not use 
long-term debt but instead require a compensating balance with the credit line.  (A 
compensating balance is a cash deposit that the firm must hold with the lender to 
maintain the credit line.)  The compensating balance serves two roles.  First, it allows for 
a larger credit line, which is valuable given the risk of the project.  Second, it provides an 
inflow of interest payments to the project that can be used to somewhat offset operating 
losses.  The model therefore provides an explanation for why firms might hold substantial 
cash balances at low interest rates while simultaneously borrowing at higher rates.  

After characterizing the implementation of the optimal contract, we compute a number of 
comparative statics as well as determine the dynamics of security prices.  In both cases, 
our differential equation characterization proves very useful for the analysis.   

For the bulk of our analysis, we focus on the case in which the agent can conceal and 
divert cash flows.  We show in Section 5 that the characterization of the optimal contract 
is unchanged if the agent makes a hidden binary effort choice.  We also consider the 
possibility of contract renegotiation in Section 6, and characterize the optimal 
renegotiation-proof contract. 

1.1. A Simple Example 

We illustrate briefly the nature of our results with a simple example.  Suppose the 
cumulative cash flows of the project follow a Brownian motion with a mean of 10 and 
volatility of 20 per period.  Figure 1 illustrates a possible sample path. 

Figure 1:  Sample Path of Cumulative Project Cash Flows 
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Suppose the market interest rate is 10%.  Then the first best value of the project is 
10/10% = 100.  If the assets are worth 65 if liquidated, the project should be run forever.   

Now introduce the agency problem.  Suppose the agent who works for the firm can divert 
cash flows at a cost of 20% of the amount diverted.  Or suppose that the agent can shirk 
and earn a private benefit of 8 per period, but that shirking reduces the mean of the cash 
flows from 10 to 0 per period.  Assume that the agent’s subjective discount rate is 15%.  
Then, by the methods of our paper, the following combination of securities solves the 
agency problem optimally:2 

Long-term Debt:  The firm issues debt with face value of 10 and coupon rate of 
10%. 

Credit line:  The firm opens a credit line with a credit limit of 60 and an interest 
rate of 15%. 

Equity:  The firm issues 20% of outside equity.  The remaining 80% is held by the 
agent. 

For the sample path shown in Figure 1, the draw on the credit line and the cumulative 
dividends evolve as in Figure 2.  Dividends are paid only if the credit line balance is zero.  
Otherwise operating profits are used to pay down the credit line.  In this example, the 
firm exhausts its credit line and defaults after 2.7 periods.  In default, the creditors 
recover the liquidation value of 65 on total debt (long-term plus credit line) of 70.  

Figure 2:  Dividends and Credit line balance under the optimal contract for the sample path of Figure 1 

Intuitively, because the interest on the credit line equals the agent’s subjective discount 
rate, the agent will not draw from the credit line more than necessary to cover short-term 
operating losses. If the credit line is fully repaid, operating profits are used to pay 
dividends.  The agent will not divert cash flows because he receives 80% of dividends.  If 
                                                           
2 We emphasize that the use of debt and equity is not assumed, but shown to be optimal. 
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the credit line is exhausted, the firm defaults and the project terminates.  Assuming the 
long-term debt has seniority, in this example the long-term debt is riskless and has a 
market value of 10 because the liquidation value of 65 is greater than the face value of 
the debt.  We can compute that the providers of the credit line expect profit of 3 and 20% 
of equity is worth 15. With these securities the agent raises 28 in external capital without 
drawing on the credit line. 

Our analysis will demonstrate the optimality and incentive compatibility of the above set 
of securities for this example and show how the choice between credit line and long-term 
debt is determined.  We will see, for example, that whether the firm issues risky debt, 
riskless debt, or holds a compensating cash balance will depend on the risk of the project 
and its liquidation value. 

1.2. Related Literature. 

Our paper is part of a growing literature on dynamic optimal contracting models using 
recursive techniques that began with Green (1987), Spear and Srivastava (1987), Phelan 
and Townsend (1991), and Atkeson (1991) among others.  (See, for example, the text by 
Ljungqvist and Sargent (2000) for a description of many of these models.)  As previously 
mentioned, this paper builds directly on the model of DeMarzo and Fishman (2003).  
Other recent work developing optimal dynamic agency models of the firm includes 
Albuquerque and Hopenhayn (2001), Clementi and Hopenhayn (2000), DeMarzo and 
Fishman (2003b), and Quadrini (2001). With the exception of DeMarzo and Fishman 
(2003), these papers do not share our focus on an optimal capital structure.  In addition, 
none of these models are formulated in continuous time. 

While discrete time models are adequate conceptually, in many cases a continuous-time 
setting may prove to be much simpler and more convenient analytically.  An important 
example of this is the principal-agent model of Holmstrom and Milgrom (1987), hereafter 
HM, in which the optimal continuous-time contract is shown to be linear. Schattler and 
Sung (1993) develop a more general mathematical framework for analyzing agency 
problems of this sort in continuous time, and Sung (1995) allows the agent to control 
volatility as well. Hellwig and Schmidt (2002) look at the conditions for a discrete-time 
principal-agent model to converge to the HM solution. See also Bolton and Harris (2001), 
Ou-yang (2003), Detemple, Govindaraj and Loewenstein (2001), Cadenillas, Cvitannic 
and Zapatero (2003) for further generalization and analysis of the HM setting. 

Several features distinguish our model from the HM problem: the investor's ability to 
terminate the project, the agent's consumption while the project is running, and the nature 
of the agency problem. In HM, the agent runs the project until date T, and then receives 
compensation.  In our model, the agent receives compensation many times while the 
project is running, until the contract calls for the agent’s termination. Also, HM analyze a 
setting in which the agent takes hidden actions. In our main setting the agent observes 
private payoff-relevant information; we also consider the possibility of a binary hidden 
action choice.  Unlike HM, the termination decision is a key feature of the optimal 
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contract in our setting. Here, as in DF, we demonstrate how this decision can be 
implemented through bankruptcy.3 

Sannikov (2003) and Williams (2004) analyze principal-agent models, in which the 
principal and the agent interact dynamically. Their interaction is characterized by 
evolving state variables. In their models, the agent continuously chooses actions (e.g. 
hidden effort) that are not directly observable to the principal, and the principal takes 
actions (e.g. payments to the agent) that affect the agent's payoff. Besides having a 
dynamic nature in the spirit of Sannikov (2003) and Williams (2004), our paper develops 
a new method to deal with the problem of private observations in continuous time.  Also, 
unlike in Sannikov (2003) and Williams (2004), hidden savings do not pose any 
additional difficulties in our model. We derive an optimal contract in a setting without 
hidden savings, and verify that it remains incentive compatible even when the agent can 
save secretly.  

In contemporaneous work, Biais et al. (2004) consider a dynamic principal-agent 
problem in which the agent’s effort choice is binary (work or shirk).  While they do not 
formulate the problem in continuous time, they do exam the continuous limit of the 
discrete-time model and focus on the implications for the firm’s balance sheet.  As we 
show in Section 5, their setting is a special case of our model and our characterization of 
the optimal contract applies.   

This paper is organized as follows. Section 2 presents a discrete-time model with binary 
cash flows, summarizes the optimal contract that was found by DF, and derives the form 
of the contract in the limit as cash flows arrive more frequently. Section 3 presents a 
continuous-time model, in which cash flows arrive via a Brownian motion with a positive 
drift. The optimal contract in the continuous-time setting is then derived, and shown to 
coincide with the contract in the limit of the discrete-time settings. Section 4 discusses 
the implementation of the optimal contract in terms of familiar securities: credit line, debt 
and equity.  The pricing of these securities and comparative statics results are also 
considered.  Sections 5 shows the optimality of our contract with hidden binary effort and 
Section 6 considers several extensions, including renegotiation-proof contracts. Section 7 
concludes the paper. 

2. The Discrete Time Model 
There is an agent and investors. Investors are risk neutral, have unlimited capital, and 
value a cash flow stream {dCt} as E ∑t e−rt dCt, where r is the riskless interest rate.  The 
agent is also risk neutral, has limited capital, and values a cash flow stream {dCt} as 
E ∑t e−γ t dCt, where γ > r is the agent’s subjective discount rate.4 

The agent has a risky project that requires capital K. The agent has initial wealth Y0 ≥ 0.  
If K > Y0, the agent must borrow to finance the project. Alternatively, even if Y0 ≥ K, 

                                                           
3 Spear and Wang (2002) also analyze the decision of when to fire an agent in a discrete-time model. They 
do not consider the implementation of the decision through standard securities. 
4 The case γ < r is not appropriate given an infinite horizon, as the agent could earn unbounded utility by 
saving at the riskless rate.  If there exists a dispersion of subjective discount rates in the population, then in 
equilibrium investors will be the most patient types.  See also the discussion at the end of Section 2.1. 
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given γ > r the agent would like to borrow for consumption purposes. If the project is 
funded, it produces cash flows at interval dt.  The cash flow at date t is given by the 
random variable dYt. We assume that the cash flows {dYt} are i.i.d. with distribution 
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That is, each cash flow has a Bernoulli distribution with mean µ dt and variance σ2 dt.  
Note that y0 may be negative.  In this case the firm must have cash, or established credit, 
of at least −y0 at the start of each period for the project to continue. 

At the end of each period, the project may be terminated.  If it is terminated, the agent 
receives a reservation payoff R ≥ 0, and the assets of the firm can be liquidated for L ≤ K.  
We also assume that the investment is efficient, so that rK + γR < µ, and therefore that 
termination is inefficient.  

We assume that cash flows up to y0 are observable and collectible by investors, but 
investors do not know whether y0 or y1 has occurred.  Specifically, the agent privately 
observes the realization of dYt. Investors must rely on the agent to report this realization. 
Of course, the agent may lie about the cash flow in order to cheat investors.  If the cash 
flow in period t is y1, the agent may conceal the excess y1 − y0. The diversion of cash 
flows may be costly: the agent obtains only a fraction λ ∈ (0,1] of concealed cash flows.  
When λ = 1, diversion is costless.  As λ → 0, diversion becomes impossible and the 
agency problem disappears.  The diverted cash may be consumed immediately or saved 
at interest rate ρ ≤ r. The agent’s savings are unobservable to the principal, and can be 
used for future consumption or to exaggerate future cash flows.5   

In contrast to the operating cash flows, liquidation of the assets is observable and 
contractible.  This modeling reflects the idea that the agent can divert the profits but not 
the assets.  The agent’s reservation payoff R is a private benefit that is not contractible; at 
any time the agent may quit and terminate the project in order to receive R.  

Suppose investors fund the agent. Investors do not observe the actual cash flows or their 
diversion, and do not observe the agent's consumption or any savings.  Investors only 
observe the agent's payments and reports.  A contract therefore specifies payments made 
from investors to the agent as a function only of messages sent and past payments made 
by the agent to investors.  The contract can also specify circumstances under which 
control of the project passes from the agent to investors, who then terminate the project. 
It is this threat of termination of the project that induces the agent to pay investors some 
share of the cash flows. Finally, we assume the contract signed at date 0 remains in force 
for the life of the project.  That is, the agent and investors can commit not to renegotiate.  
We discuss the consequences of renegotiation in Section 6.  

                                                           
5 We can also allow the agent to costlessly conceal and save cash flows within the firm and use them to 
exaggerate future cash flows.  That is, the proportional cost of diversion, (1−λ), need only be borne if the 
agent diverts the funds for personal consumption.  This possibility does not alter the form of an optimal 
contract, and is formally considered in Section 3.1 (see Proposition 5). 
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2.1. The Optimal Contract 

DeMarzo and Fishman (2003), or DF, describe a recursive method for determining the 
optimal contract in a general discrete-time setting that includes the model described 
above.6  Because the future cash flows of the project are history independent, the optimal 
contract at any date t depends only on the promised payoff to the agent, Wt.  That is, Wt is 
a sufficient statistic for the history of the interaction, and so is the only state variable 
necessary to describe an optimal contract. 

There are three regions that govern the behavior of the optimal contract, determined by a 
liquidation boundary WL ≥ R and a dividend boundary W1 ≥ WL.    For Wt ∈ [R, WL), the 
project is (stochastically) terminated.  For Wt > W1, the agent receives compensation 
Wt − W1 in the form of cash dividends. For W ∈ [WL, W1], all cash flows are paid to 
investors, and the agent is rewarded through the promise of future payoffs only. Since the 
agent is only compensated through the future payoff, the expected future payoff must be 
higher than the agent’s current payoff to account for the agent's discount rate, γ.  In 
addition, in order to maintain incentive compatibility, the agent’s payoff must increase by 
λ for each dollar paid to investors.  Thus, the agent's promised payoff evolves according 
to 

 ( )dt
t dt t tW e W dY dtγ
+ = + λ − µ   (1) 

The investor's future payoff can then be given in terms of the agent's through the 
continuation function, 

b(W) = maximal investor payoff given agent earns payoff W ∈ [R, ∞). 

DF demonstrate that this continuation function is concave and, in the region W ∈ [WL, 
W1], satisfies 

 ( )( ) [ ( )]rdt
t t dtb W e dt E b W−

+= µ +   (2) 

The intuition for equation (2) is straightforward:  the investors' current payoff is the 
present value (at discount rate r) of this period's expected cash flow plus their expected 
future payoff.  The future payoff is also described by the continuation function, evaluated 
at the agent’s future payoff. 

DF show that the dividend boundary W1 is determined by the lowest payoff for the agent 
such that b′(W1) = −1.  That is, for W < W1, b′(W) > −1, so that it is cheaper to 
compensate the agent using future promises than with cash.  On the other hand, to 
provide the agent with payoff W > W1, it is optimal to give the agent an immediate cash 
transfer from the investors of W − W1.  That is, in the dividend region, W ≥ W1, the 
continuation function is linear with b′(W) = −1.  Since immediate compensation is better 
than deferred compensation, this implies that in this region, 

 ( )( ) [ ( )]rdt
t t dtb W e dt E b W−

+≥ µ +   (3) 

                                                           
6 In particular, DF do not restrict the distribution of the cash flows, or require stationarity, etc. 
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Finally, in the liquidation region W ≤ WL, the project is terminated with probability 
( ) ( )L LW W W R− − , or continued with the agent receiving payoff WL.  Thus, b(R) = L 

and the continuation function is linear with slope ( )'( )
L

L
b W L

W R
b W l −

−
= ≡  until WL.  Since 

stochastic termination is better than continuing, equation (3) holds for this region as well. 

DF show that when γ = r, the dividend boundary is such that no dividends are paid until 
the firm becomes self-financing (i.e., it can meet all future commitments solely from 
operating cash flows).  Since in our setting operating losses over any interval are 
unbounded, if γ = r it would be optimal to delay dividends and payments to the agent 
indefinitely.  It is for this reason that we must restrict attention to the case γ > r.   

2.2. The Continuous Limit 

Using the characterization of the optimal contract in discrete time, we now decrease the 
length of the period to determine the characterization for the continuous-time limit.  As 
dt → 0, the binomial-tree process for the cash flows converges to Brownian motion with 
mean µ and volatility σ.  In this case, equation (2) becomes a second-order differential 
equation for the optimal continuation function (see (4)). The liquidation and dividend 
boundaries determine the boundary conditions for this differential equation.  Liquidation 
occurs if and only if the agent's payoff equals the outside option R, so that the liquidation 
boundary becomes b(R) = L.  The dividend boundary is determined implicitly (see(5)). 

PROPOSITION 1.  Let b be the limit of the optimal continuation function as dt → 0.  Then 
b is concave and twice continuously differentiable.  The liquidation boundary WL → R 
and b(R) = L.  In the region W ∈ [R, W1],  

 2 21
2( ) '( ) ''( )rb W Wb W b W= µ + γ + λ σ  (4) 

and ( )tdW W dt dY dt= γ + λ − µ .  Finally, W1 satisfies  

 b′(W1) = −1 and 1 1( )rb W W+ γ = µ . (5) 

For W ≥ W1, the agent receives an immediate cash payment of W − W1 and 
b(W) = b(W1) − (W − W1). 

SKETCH OF PROOF:  First, dW follows immediately from (1).  For b, the limit of concave 
functions is concave.  Since the agent’s future continuation payoff is noisy (λ2σ2 > 0), b′ 
must be continuous since otherwise there would be no way to achieve the payoff at a 
“kink.”   First we show that (4) holds in the region W ∈ [WL, W1].  Using Taylor 
expansions and ignoring terms that are o(dt), we can rewrite (2) as follows: 

 ( )21
2( ) (1 ) ( ) '( ) ''( )b W r dt dt E b W b W dW b W dW = − µ + + +  , 

Since E[dW] = γW dt and E[dW2] = λ2 σ2 dt + o(dt), 

 ( )2 21
2( ) (1 ) ( ) '( ) ''( )b W r dt dt b W Wb W dt b W dt= − µ + + γ + λ σ  
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which reduces to (4) on elimination of dt2 terms and dividing by dt.  Note that (4) also 
implies that b′′ is continuous on (WL, W1). 

Next we verify (5).  For W > W1, we can use (3) and Taylor expansions to derive 

 
( )
( )

2 21
2( ) (1 ) ( ) '( ) ''( )

(1 ) ( ) '( )

b W r dt dt b W Wb W dt b W dt

r dt dt b W Wb W dt

≥ − µ + + γ + λ σ

= − µ + + γ
 

where we use the fact that b is linear in this region.  Collecting terms and dividing by dt 
yields  

 ( ) '( )rb W Wb W− γ ≥ µ .   (6) 

On the other hand, for W ≤ W1, from (4), 

 2 21
2( ) '( ) ''( )rb W Wb W b W− γ = µ + λ σ ≤ µ  (7) 

Since b′(W1) = −1 by definition, together these imply b′′(W1) = 0, or equivalently (5). 

Finally, we verify the liquidation boundary WL = R.  If R ≤ W < WL, (6) also holds.  But 
since b′(W) = l ≥ −1, this implies that rb(W) + γW ≥ µ.  But this contradicts the fact that 
liquidation is inefficient and therefore that rb(R) + γR = rL + γR < µ.  � 

The intuition for (4) is as follows:  To receive b, investors must earn total return rb.  They 
earn this return by receiving the expected cash flow µ, less the cost of paying the agent 
his required return, γWb', less the incentive cost associated with the agent’s risk, 

2 21
2 ''bλ σ .  The boundary conditions (5) are “smooth pasting” and “super contact” 
conditions for the optimality of W1; at the dividend boundary both first and second 
derivatives are matched.  Alternatively, we can interpret the condition rb(W1) + γ W1 = µ 
as the point at which satisfying the agent’s and investor’s rents just exhausts the expected 
cash flows.  Finally, note that unlike the discrete-time model of DF, in continuous-time 
termination is no longer stochastic.  Stochastic termination is required in discrete-time in 
order to maintain incentives when the agent's promised payoff is too close to R, since if 
the project is continued the agent can at a minimum steal next period’s cash flow and 
then receive R.  This is not an issue when the decision to terminate can be made 
continuously.  An example of the optimal continuation function is shown in Figure 3. 

Proposition 1 provides a characterization of the optimal contract and payoff dynamics for 
the limit of the discrete-time model.  In this limit, cumulative cash flows follow a 
Brownian motion with drift µ and volatility σ.  Before discussing further the properties of 
this solution, we first formulate the problem directly in continuous-time, and show that 
the characterization of the optimal contract is preserved. 
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Figure 3:  The Optimal Continuation Function b 

3. The Continuous-Time Model 
In this section we develop a continuous-time formulation of the contracting problem.  
There are two important reasons for this. First, the discrete-time method of the previous 
section relies on the considerable machinery developed in DeMarzo and Fishman (2003).  
Here we propose a methodology that can be used directly to analyze the continuous-time 
model, which will prove useful in extensions of this analysis.  Second, while the previous 
section approximates the optimal contract for each model in the sequence of discrete time 
models, there is the possibility that the continuous-time setting may introduce superior 
contracting possibilities not available in discrete time.  Here we develop a continuous-
time framework and show that the convenient characterization of an optimal contract 
described in Section 2.2 holds precisely in continuous time.   

In the continuous-time model, the agent manages a project that generates a stochastic 
stream of cash flows, given by 

dYt = µ dt + σ dZt,  

where Z is a standard Brownian motion on a probability space { }, ,Ω    with an 
augmented filtration t , 0 ≤ t ≤ ∞ generated by the Brownian motion. The cash flows Y 
from the project are observable only by the agent and not the principal. The agent makes 
a report ˆ{ ; 0}tY t ≥  of the realized cash flows to the principal. The principal does not know 
whether the agent is lying or telling the truth. The principal extracts the reported cash 

L 

Agent Payoff   W 
 µ/r 0 

µ/r 

Investor 
Payoff 
b(W) 

First Best  (b = µ/r − W)

R  

W1

r b = µ + γW b′ + ½ λ2 σ2 b′′ 

r b = µ − γW  

slope b′ = −1  
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flows dŶt from the agent and gives him back transfers of dIt that are based on the agent's 
reports. Formally, the agent’s income process It is non-decreasing and ˆ-measurableY . If 
the agent underreports realized cash flows, he steals the difference. Stealing may be 
costly: the agent is able to enjoy only a fraction λ ∈ (0,1] of what he steals. Also, the 
agent can overreport and put his own money back into the project. As a result, the agent 
receives a flow of income of7 

 ˆ[ ]t t tdY dY dIλ− + ,   where ˆ ˆ ˆ[ ] ( ) ( )t t t t t tdY dY dY dY dY dYλ + −− ≡ λ − − −  (8) 

To make sure that the agent does not receive income of minus infinity, we assume that 
process t̂ tY Y−  has to have bounded variation. 

The agent is risk-neutral and discounts his consumption at rate γ.  This continues until a 
termination time τ that is contractually specified by the principal. During this time, the 
agent chooses a nondecreasing consumption process C = {Ct; 0 ≤ t ≤ τ}.  He also 
maintains a private savings account, from which he consumes and into which he deposits 
his income. The principal cannot observe the balance of the agent’s savings account. The 
agent’s balance St grows at interest rate ρ < γ: 

 ˆ[ ]t t t t t tdS S dt dY dY dI dCλ= ρ + − + −   (9) 

The agent must maintain a nonnegative balance on his account. 

Once the contract is terminated, the agent receives payoff R from an outside option 
available for him. Assume that R ≥ 0. Therefore, the agent’s total expected payoff from 
the contract at date 0 is given by8 

 0 0
s

sW E e dC e R
τ −γ −γτ = +  ∫ .  (10) 

The principal discounts cash flows at rate r, such that γ > r ≥ ρ. Once the contract is 
terminated, he receives expected liquidation payoff L ≥ 0. The principal’s total expected 
profit at date 0 is 

 0 0
ˆ( )rs r
s sb E e dY dI e L

τ − − τ = − +  ∫ . 

The project requires an investment of K ≥ L in order to be started. The agent has initial 
wealth Y0. The principal specifies a contract before date 0. A contract (τ, I) specifies a 
termination time τ and payments {It; 0 ≤ t ≤ τ} that are based on reports Ŷ .  Formally, I 
is a ˆ-measurableY  continuous process, and τ is a ˆ-measurableY  stopping time. 

                                                           
7 Note that (8) implies that the agent pays a proportional cost (1−λ) to divert funds, but does not recover the 
cost if the funds are put back into the firm.  We could also allow the agent to conceal and save funds within 
the firm, avoiding the cost (1−λ) if the funds are ultimately used to boost future reported cash flows (i.e., 
the cost is only paid if the funds are diverted to the agent’s personal account).  As we show in Section 3.1, 
this does not change the results in any way. 
8 We can ignore consumption beyond date τ because γ ≥ r implies it is optimal for the agent to consume all 
savings at termination (i.e., Sτ = 0). 
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In response to a contract (τ, I), the agent chooses a strategy. A feasible strategy is a pair 
of processes (C, Ŷ ) adapted to Y, such that 

(i) process Yt − t̂Y  has bounded variation, 

(ii) process Ct is nondecreasing, and 

(iii) the savings process, defined by (9), stays nonnegative. 

The agent chooses a feasible strategy to maximize his expected payoff.  Therefore, the 
agent’s strategy (C, Ŷ ) is incentive compatible if it maximizes his total expected payoff 
W0 given a contract (τ, I). 

We have not explicitly modeled the agent’s option to quit and receive the outside option 
R at any time.  We could incorporate this by including an individual rationality constraint 
requiring that the agent’s future payoff from continuing at date t, Wt, is no worse than his 
outside option R for all t.  However, in our setting this is not necessary as the individual 
rationality constraint will never bind.  The agent can always under-report and steal at rate 
of γ R/λ, consuming γ R until termination, and this strategy gives the agent a payoff of R 
under any contract.  Thus any incentive compatible strategy yields the agent at least R. 

Thus, the optimal contracting problem is to find a contract (τ, I) and an incentive-
compatible response strategy (C, Ŷ ) that maximize the principal’s profit subject to 
delivering to the agent an initial required payoff W0. By varying W0 we can use this 
solution to consider different divisions of bargaining power between the agent and the 
investors. 

3.1. Solving the Continuous-Time Model 

We solve the problem of finding an optimal contract in several steps.  First, we show that 
it is sufficient to look for an optimal contract within a smaller class of contracts, namely 
contracts in which the agent chooses to report cash flows truthfully and maintain zero 
savings.  After that, we consider a relaxed problem by ignoring the possibility that the 
agent can save secretly. We show how to conveniently represent the truth-telling 
conditions in continuous time and prove that the contract characterized in Section 2 is 
optimal when the agent cannot save.  Finally, we show that the contract is fully incentive 
compatible even when the agent can save secretly. 

We begin with a revelation principle type of result: 

PROPOSITION 2.  There exists an optimal contract in which the agent chooses to tell the 
truth, and maintains zero savings. 

PROOF:  See Appendix. � 

The intuition for this result is straightforward – it is inefficient for the agent to conceal 
and divert cash flows (λ ≤ 1) or to save them (ρ ≤ r).  We can improve the contract by 
having the investors save and make direct payments to the agent.  Thus, we can look for 
an optimal contract in which truth telling and zero savings is incentive compatible.  
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Note that if the agent could not save, then he would not be able to over-report cash flows 
and would consume all income as it is received. Thus,  

 ˆ( )t t t tdC dI dY dY= + λ − .  (11) 

We can relax the problem by restricting the agent’s savings so that (11) holds.  After we 
find an optimal contract for the relaxed problem, we show that it remains incentive-
compatible even if the agent can save secretly.  

One difficulty with working in a dynamic setting is the complexity of the contract space.  
The contract can depend on the entire path of reported cash flows Ŷ , making it difficult 
to evaluate the agent’s incentives in a tractable way.  Our first task is to find a convenient 
representation for the agent’s incentives.  To do so, define Vt as the total expected payoff 
the agent receives, from transfers and termination utility, if he tells the truth:9  

 
0

s
t s tV E e dI e R

τ −γ −γτ ≡ +  ∫   

The following result provides a useful representation for Vt. 

LEMMA A.  There is a Y-measurable process {βt; 0 ≤ t ≤ τ} such that 

  0 0

s

t s s
t s

dZ

dY dsV V e−γ − µ= + β
σ∫  (12) 

PROOF:  The process Vt is a martingale.  By the Martingale Representation Theorem, 
there is a process β such that dVt = e−γt βt dZt and thus (12) holds.  � 

When the agent reports truthfully, then the agent’s payoff at termination is given by 

 00 0

t t t
t t

dY dtV e dI e R V e
τ τ−γ −γτ −γ

τ
− µ= + = + β
σ∫ ∫  

Because I and τ depend exclusively on the agent’s report, when the agent reports Ŷ  then 
he gets utility 

 

0 0 0 0

payoff from stealingpayoff from contract

0 0 0

incentives

ˆ ˆ( )

ˆ( )

t tt
t t t

V

t tt t
t t t

dY dtW E V e e dY dY

dY dtE V e e dY dY

τ

τ τ−γ −γ

=

τ τ−γ −γ

 
 − µ= + β + λ − σ 
 

 
 − µ β = + β + λ − −  σ σ  
 

∫ ∫

∫ ∫

 (13) 

This representation allows us to formulate our incentive compatibility condition: 
                                                           
9 In the analysis that follows we assume that the contract does not use additional randomization (beyond 
that in the agent’s report).  A remark after the proof of Proposition 4 shows that randomization would not 
improve the principal’s profit, so that this assumption is not restrictive. 
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PROPOSITION 3.  If the agent cannot save, truth-telling is incentive compatible if and 
only if βt ≥ λσ. 

PROOF:  If βt ≥ λσ for all t then (13) is maximized when the agent chooses t̂ tdY dY= , 
since the agent cannot over-report cash flows.  If βt < λσ on a set of positive measure, 
then the agent is better off underreporting on this set than always telling the truth.  � 

In order to construct an optimal contract and verify that no other contract does better, it is 
convenient to work with the agent’s continuation value 

 ( ) ( )s t t
t s tt

W E e dI e R
τ −γ − −γ τ− = +  ∫  . 

Because 
0

t s t
t s tV e dI e W−γ −γ= +∫ , using (12) we have that Wt evolves according to  

 t t t t tdW W dt dI dZ= γ − + β   (14) 

The Optimal Contract 

We now show that the principal’s profit in continuous time is the same as in the limit of 
the discrete model described in Proposition 1 and illustrated in Figure 3.  Specifically, the 
principal’s profit b(W) is concave, twice continuously differentiable, and there is a 
“dividend point” W1 such that 

 2 21
2( ) '( ) ''( )rb W Wb W b W≥ µ + γ + λ σ  (15) 

with equality if and only if W ∈ [R, W1].  At the boundaries of this interval, b(R) = L and 
rb(W1) = µ − γW1, and in the dividend region, W ≥ W1, b′(W) = −1.  Intuitively, this 
reflects the fact that the principal compensates the agent solely through promises of 
future payments for W < W1, and pays the agent immediately for W > W1.  

This leads to the following characterization of the optimal contract: 

PROPOSITION 4.  A contract that maximizes the principal’s profit and delivers to the 
agent value W0 ∈ [R, W1] takes the following form: Wt evolves as 

ˆ( )t t t tdW W dt dI dY dt= γ − + λ − µ  

When Wt ∈ [R, W1), dIt = 0.  When Wt = W1, payments dIt cause Wt to reflect at W1.  If W0 
> W1, an immediate payment W0 − W1 is made.  The contract is terminated at time τ when 
Wt hits R.  The principal’s expected payoff at any point is given by b(Wt).  

PROOF:  Define  

0
( ) ( )

t rs rt
t s s tG e dY dI e b W− −≡ − +∫ . 

Under an arbitrary incentive-compatible contract, Wt evolves according to (14).  Then 
from Ito’s lemma, 
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( )21
2

00

'( ) ''( ) ( ) (1 '( )) ( '( ))rt
t t t t t t t t t t te dG W b W b W rb W dt b W dI b W dZ

≤≤

= µ + γ + β − − + + σ + β  

From (15) and the fact that b′(Wt) ≥ −1, Gt is a supermartingale.  It is a martingale if and 
only if βt = λσ, Wt ≤ W1 for t > 0, and It is increasing only when Wt ≥ W1.  

We can now evaluate the principal’s payoff for an arbitrary incentive compatible 
contract.  Note that b(Wτ) = L.  For all t < ∞, 

( )
[ ]
0 0

0

( ) ( )

( )  first best

( ) 1 ( ) ( )

1 ( ) ( )

t

rs r rs r rt
s s t t s s tt

rt r s t r t
t t s s tt

G b W r W

E e dY dI e L E G e dY dI e L e b W

E G e E e dY dI e L b W

τ τ− − τ − − τ −
∧τ ≤τ

τ− − − − τ−
∧τ ≤τ

≤ = ≤µ − =

  − + = + − + −     
  
  = + − + −  

    

∫ ∫

∫

Now, since b′(W) ≥ −1, µ/r − W − b(W) ≤ µ/r − R − L.  Therefore, letting t → ∞,  

00
( ) ( )rs r

s sE e dY dI e L b W
τ − − τ − + ≤  ∫  

Finally, for a contract that satisfies the conditions of the proposition, Gt is a martingale 
until time τ because b(Wt) stays bounded. Therefore, the payoff b(W0) is achieved with 
equality.  � 

Remark.  It is easy to modify this proof to show that the principal cannot improve his 
profit by adding additional randomization.  Such randomization would add an extra term 
to the expression for dGt, but the process Gt would still be a supermartingale since b(W) 
is a concave function. 

Hidden Savings 

Thus far, we have restricted the agent from saving.  We now show that the contract of 
Proposition 4 remains incentive compatible even when we relax this restriction.  The 
intuition for the result is that because the marginal benefit to the agent of reporting or 
consuming cash is constant over time, and since private savings grow at rate ρ < γ, there 
is no incentive to delay reporting or consumption.  In fact, in the proof we show that this 
result holds even if the agent can save within the firm without paying the diversion cost. 

PROPOSITION 5.  Suppose Wt solves 
  ( )ˆ

t t t tdW W dt dI dY dt= γ − + λ − µ  (16) 

until stopping time τ = min{t | Wt = R}.  Then the agent earns payoff of at most W0 from 
any feasible strategy in response to a contract (τ, I).  Furthermore, if Wt is bounded 
above, the payoff W0 is attained if the agent reports truthfully and maintains zero 
savings. 

PROOF:  See Appendix.  � 

This result confirms that the even with savings, the contract characterized in Proposition 
1 and Proposition 4 remains optimal even if the agent has access to hidden savings.  
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Thus, our continuous-time solution corresponds to the limit of the discrete time model as 
the period between cash flows shortens. 

4. Optimal Capital Structure 
DeMarzo and Fishman (2003) demonstrate that the optimal discrete-time contract can be 
implemented using standard securities:  equity, long-term debt, and a credit line.  
Specifically, the firm has long-term debt with a predetermined coupon payment due each 
period, a credit line with a fixed credit limit and interest rate γ, and outside equity for a 
fraction (1 − λ) of the firm.  The agent is compensated solely through holding the 
remaining fraction λ of the firm’s equity.  The agent uses the firm’s cash flows to pay the 
debt coupons and credit line first.  Once the credit line is fully repaid, cash flows are paid 
out as dividends to equity holders.  If the credit limit is exceeded, stochastic termination 
results. 

We extend this implementation to the continuous-time setting.  First we describe the 
securities: 

Long-term Debt.  In our infinite-horizon, stationary setting, long-term debt is 
represented by a consol bond with required coupon payments x dt.  We normalize the 
coupon rate on the debt to be r, so that the face value of debt is D = x/r.  If the coupon 
payment is not made, the firm defaults, the contract is terminated, and the face value of 
the debt D is due.   

Credit Line.  The credit line has a fixed credit limit CL and charges interest rate γ.  The 
firm may draw on this credit line at any time.  Once the credit line is exhausted, the firm 
defaults, the contract is terminated, and the face value of the credit line CL is due. 

Equity.  At the agent’s discretion, the firm may pay dividends to the equity holders.  
Excess cash flows not used to pay dividends or the credit line can accumulate in the firm 
earning interest rate r.   

The agent holds the fraction λ of the equity and receives dividends on this equity stake 
prior to default.  In the event of default, the liquidation value L is used to pay back the 
debt and the credit line first. If any cash remains, the outside equity holders receive a 
liquidating dividend of  max(0, L – D – CL).10  Note that the agent does not receive any 
liquidating dividend.  That is, the agent is compensated with an equity stake, together 
with a zero interest loan from the firm with a face value, due upon termination, that 
equals or exceeds the agent’s share of any liquidating dividend.11 

To complete this implementation, the remaining parameters are the amount D of long-
term debt and the size CL of the credit line.  Note that with this implementation, the agent 
has discretion regarding when to use the credit line and when to pay dividends (in 

                                                           
10 The firm could have cash in addition to L at the time of default.  But it is optimal for equity holders to 
use this cash to pay down the credit line and avoid default and/or pay a dividend.  Thus we can ignore this 
possibility. 
11 Specifically, when λ < 1 the loan has face value of at least λ max(0, L − D − CL)/(1−λ).  Lemma E in the 
appendix shows that L − D − CL < 0 in the optimal contract when λ = 1, so the loan is not needed unless the 
agent’s equity stake is sufficiently small. 
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addition to stealing cash flows directly from the firm).  We begin with the following 
result, which describes a family of incentive compatible contracts: 

PROPOSITION 6.  Suppose the firm’s capital structure satisfies 

  LrD C R+ γ = µ − γ λ  (17) 

Then it is incentive compatible for the agent to refrain from stealing, and to use the 
project cash flows to pay the debt coupons and credit line before issuing dividends.  Once 
the credit line is fully repaid, all excess cash flows are issued as dividends.  The agent’s 
continuation payoff is determined by the current draw Mt on the credit line: 

  ( )L
t tW R C M= + λ −  (18) 

PROOF:  See Appendix.  � 

The fact that the agent does not steal is not surprising.  Given a fraction λ of the equity, 
the agent is indifferent between stealing and paying dividends.  The problem is that the 
agent may pay dividends prematurely (exploiting creditors) or delay them (to build an 
additional cash reserve).  The proposition states that for the agent to pay dividends 
appropriately, incentive compatibility requires an appropriate balance between the level 
of long-term debt and the credit line.  The intuition for condition (17) is that at the credit 
limit, the agent’s “share” of expected cash flows after paying interest on debt, λ(µ − rD − 
γCL), is just equal to the flow he would earn on his outside option, γR.  Therefore, this is 
the maximum possible liability such that the agent has an interest in continuing rather 
than quitting. 

Note that by (18), the credit line balance Mt serves as a state variable that tracks the 
agent’s continuation payoff Wt at each point in time.  While (17) determines an incentive 
compatible capital structure, it need not be optimal.  An optimal capital structure will 
choose a credit line with a limit high enough to provide flexibility, but not so high as to 
delay dividend payments too long.  That is, the range of Mt should correspond to the 
range of Wt in the optimal contract.  This requires that W1 correspond to Mt = 0 in 
equation (18), leading to the following result: 

PROPOSITION 7.  The optimal contract of Section 3 is implemented by choosing the 
capital structure: 

  1 1( )LC W R−= λ −   and  1 11 ( )rD W−= µ − λ γ  (19) 

PROOF:  See Appendix.  � 

The intuition for this result is as follows.  The credit line balance evolves as follows: 

ˆ
t t t tdM M dt x dt dDiv dY= γ + + − , 

where dDiv are excess cash flows paid out as dividends when the credit line balance is 
zero.  Equation (18) that relates the agent’s value and the balance on the credit line, and 
equation (19) relates the lengths of the credit line and the interval [R, W1], on which Wt 
evolves for the duration of the contract. These two equations imply that 

dWt = γWt dt – λ dDivt + λ (dŶt − µ dt), 
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where λ dDivt = dIt  is the income process that makes Wt reflect at W1.  Thus, the 
evolution of the credit line induces the optimal dynamics for the agent’s continuation 
payoff. 

The optimal capital structure has a particularly simple interpretation when the there is no 
diversion cost (λ = 1).  Note that with λ = 1, the book value of the debt is D + Mt (face 
value of long-term debt plus the draw on the credit line), and the total market value of the 
long-term debt and the credit line is b(Wt), the principal’s expected payoff.  In that case, 
given the boundary condition (5) that rb(W1) = µ − γ W1, we have the following: 

COROLLARY.  If λ = 1, the optimal capital structure has CL = W1 − R and D = b(W1).  
Thus, at the dividend point the market and book value of the firm’s aggregate debt 
coincides. 

Of course, our implementation is not unique in the following sense:  any combination of 
securities that in aggregate provide for the same payments is also optimal.  (For example, 
the long-term debt could be “stripped” into zero-coupon bonds, or the face value and 
coupon rate could altered in a way that leaves the coupon payment x unchanged.)  We 
believe this implementation is quite natural however, and corresponds well to observed 
securities.12 

Finally, note that this implementation corresponds to the continuous-time limit of the 
implementation in DeMarzo and Fishman (2003).  In the stationary version of their 
model, 

 1 1( )L LC W W−= λ −   and  1 1(1 )dtx rD e W− γ= = µ + λ −  

which corresponds to (19) as dt → 0 and WL → R. 

4.1. Security Market Values 

We now consider the market values of the credit line, long-term debt and equity that 
implement the optimal contract.  For this we need to make an assumption regarding the 
prioritization of the debt in default.  We assume that the long-term debt is senior to the 
credit line; similar calculations could be performed for different assumptions regarding 
seniority.13 With this assumption, the long-term debtholders get LD = min(L, D) upon 
termination.  The market value of long-term debt is therefore 

0
( ) rt r

D DV M E e x dt e L M
τ − − τ = +  ∫  

Note that we compute the expected discounted payoff for the debt conditional on the 
current draw M on the credit line, which measures the firm’s “distance to default” in our 
implementation. 

                                                           
12 An alternative implementation is given in Biais et al. (2004).  They suppose the firm retains cash, and 
that the coupon payment on the debt varies contractually with the level of the cash reserves. 
13 Recall that only the aggregate payments to investors matter for incentives; the division of the payments 
between the securities is only relevant for pricing. 
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Until termination, the equity holders get dividends dDivt, of which the agent owns 
fraction λ. At termination, the outside equity holders receive the remaining part of 
liquidation value, max(0, L − D − CL), after debt and credit line have been paid off.  Thus, 
when λ < 1, on a per share basis outside equity holders receive14 

 1 max(0, )
1

L
EL L D C= − −

− λ
. 

The value of equity (per share) to outside equity holders is then 

 
0

( ) rt r
E t EV M E e dDiv e L M

τ − − τ = +  ∫  

Finally, the market value of the credit line is 

 
0

( ) ( )rt r
C t t CV M E e dY x dt dDiv e L M

τ − − τ = − − +  ∫  

where LC = min(CL, L − LD).  Note that for the optimal capital structure, the aggregate 
value of the outside securities equals the principal’s continuation payoff.  That is, from 
(18), 

 b(R + λ(CL − M)) = VD(M) + VC(M) + (1−λ) VE(M). 

We show in the appendix how to represent these market values in terms of an ordinary 
differential equation, so that they may be computed easily.  See Figure 4 for an example.  
In this example, L < D so that the long-term debt is risky.  Note that the market value of 
debt is decreasing towards L as the balance on the credit line increases towards the credit 
limit. Similarly the value of equity declines to 0 at the point of default.  The figure also 
shows that the initial value of the credit line is positive – the lender earns a profit by 
charging interest rate γ > r.  However, as the distance to default diminishes, additional 
draws on the credit line result in losses for the lender (for each dollar drawn, the value of 
the credit line goes up by less than one dollar, and eventually declines). 

                                                           
14 Lemma E in the Appendix shows that L < D + CL when λ = 1 and there are no outside equity holders, so 
in that case we can set LE = 0 to compute the “shadow price” of outside equity. 
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Figure 4:  Market Values of Securities for µ = 10, σ = 10, λ = 50%, r = 10%, γ = 15%, L = 10, R = 0 

Figure 4 also illustrates several other interesting properties of the security values.  Note, 
for example, that the leverage ratio of the firm is not constant over time.  When cash 
flows are high, the firm will payoff the credit line and its leverage ratio will decline.  On 
the other hand, during times of low profitability, the firm increases its leverage.  This 
pattern is broadly consistent with the empirical behavior of leverage. 

One surprising observation from Figure 4: the value of equity is concave in the credit line 
balance, which implies that the value of equity would decline if the cash flow volatility 
were to increase.  In fact, we can show: 

PROPOSITION 8.  When debt is risky (L < D), for the optimal capital structure the value of 
equity decreases if cash flow volatility increases.  Thus, equity holders would prefer to 
reduce volatility.  

PROOF:  See appendix.  � 

This is counter to the usual presumption that risky debt implies that equity holders benefit 
from an increase in volatility due to their option to default.  That is, in our setting, there is 
no “asset substitution problem” related to leverage.  Note also that the agent’s payoff is 
linear in the credit line balance, so that the agent is indifferent regarding changes to 
volatility. 
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4.2. Initiating the Contract 

The defining features of an optimal contract are the credit limit and the coupon rate on 
long-term debt. These features of an optimal contract are uniquely defined by the model’s 
parameters: the liquidation value L, the agent’s outside option R, mean and volatility of 
cash flows µ and σ, and the agent’s discount rate γ.  

Note that the optimal capital structure does not depend on the agent’s and the principal’s 
respective bargaining powers.  Bargaining power will affect the agent’s payoff, which we 
will see manifests itself as the firm paying an initial dividend or starting with a draw on 
the credit line.  To focus our discussion we will assume that the agent has no capital and 
investors are perfectly competitive, so that the agent’s payoff W0 is highest payoff such 
that investors break-even if they provide the required capital K; that is, it is the largest 
solution to b(W0) = K. 

Figure 5:  Initiating the Contract (L = 25, R = 0, µ =10, σ = 5, r = 10%, γ = 15%, λ = 1) 

Figure 5 shows an example with λ = 1, illustrating the size of the credit line (CL = W1 
− R) and the debt (D = b(W1)) for a small volatility of cash flows (σ = 5).  In the figure, D 
> L, so the debt is risky.  The firm requires K = 30 in external capital, which implies the 
agent’s initial payoff is W0 > W1.  This payoff is achieved by giving the agent W0 − W1 in 
cash, and starting the firm with zero balance on the credit line (providing the agent with 
continuation payoff W1).  The start-up capital and the agent’s initial consumption 

K + W0 − W1 = b(W1)  
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are raised by issuing the debt and initiating the credit line.  Given the high interest rate γ 
on the credit line, the lender earns an expected profit from the credit line, and so will pay 
this to the firm upfront.  This payment offsets the discount on the debt due to credit risk. 

Recall that the optimal credit line results from the following trade-off: a large credit line 
delays the agent’s consumption, but also gives more flexibility to delay termination. 
Payments on debt are chosen to give the agent incentives to report truthfully:  if payments 
on debt were too burdensome, the agent would draw down the credit line immediately 
and quit the firm; if they were too small, the agent would delay termination by saving 
excess cash flows when the credit line is paid off. 

Let us illustrate how these intuitive considerations affect the optimal contract for different 
values of σ. In Figure 6, we change the parameters of the example in Figure 5 by 
increasing σ.  When volatility rises to 12.5 (left panel), the principal’s profit drops. In this 
case, b(W1) ∈ (0,K).  Riskier cash flows require more financial flexibility, so the credit 
line becomes longer.  As the principal can extract less cash through coupon payments, the 
debt shrinks, and is now riskless (D < L).  The agent’s payoff W0 is lower than before. In 
this case, the project cannot raise initial capital through debt only; the agent will also 
have to draw on the credit line to raise K.  Because b′ > −1 on (W0, W1), the agent must 
draw more than K − D to fund the difference.  This can be interpreted as an initial fee 
charged by the lender to open the credit line with this initial balance; this fee 
compensates the lender for the negative NPV of the credit line due to the firm’s greater 
credit risk. 

 
Figure 6:  The Effect of Higher Volatility (σ = 12.5, σ = 19.07) 
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If σ increases further to 19.07 as shown in the right panel of Figure 6, the principal’s 
profit falls further.  This very risky project requires a very long credit line. Note that D = 
b(W1) < 0.  We interpret D < 0 as a compensating balance requirement – that is, the firm 
must hold cash in the bank equal to −D as a condition of the credit line.  Both the 
required capital K and the compensating balance −D are funded through a large initial 
draw on the credit line.  Thus the agent usually runs the project for a long time before he 
can consume. 

The compensating balance provides additional operating income of rD to the firm.  This 
income increases the attractiveness of the project to the agent, preventing the agent from 
drawing the entire credit line and running away. By funding the compensating balance 
upfront, investors are committed to providing the firm with income rD even when the 
credit line is paid off.  This commitment is necessary since investors’ continuation payoff 
at W1 is negative, which would violate their limited liability.  The compensating balance 
therefore serves to tie the agent and the investors to the firm in an optimal way. 

Note that for σ > 19.07, the maximal profit for the principal falls below K.  Thus, while 
such a project is positive NPV, it cannot be financed due to the incentive constraints. 

Remark.  While we have focused on the case in which investors are competitive, other 
possibilities are straightforward to consider.  For example, if the principal were a 
monopolist hiring the agent to run the firm, the contract would be initiated at the value 
W∗ that maximizes the principal’s payoff b(W∗).  This would not change the optimal debt 
and credit limit, but in this case the firm would always start with a draw on the credit line.  
Interestingly, as can be seen in Figure 6, while higher volatility decreases b(W∗), the 
effect on the agent’s payoff W∗ is not monotonic.  Thus the agent might prefer to manage 
a higher risk project.  

4.3. Comparative Statics 

Figure 7 shows more general comparative statics for our model.  As we saw above, the 
credit limit increases and the debt decreases with volatility (σ).  Note in particular that the 
credit line goes to 0 as σ → 0.  In this case the project becomes riskless and no flexibility 
is need; indeed, the debt is equal to the first best value of the project.   

How about the other parameters of the model? Let us focus on the case where λ = 1 and 
the project is profitable even if the agent does not have any initial cash, which implies 
that b′(R) > 0. If the liquidation value L increases, the credit line shortens because 
termination becomes less costly. This reduces the agent’s temptation to draw the entire 
credit line and default, so the principal can extract greater coupon payments on debt. If 
the agent’s outside option R increases, the agent becomes more tempted to draw down the 
credit line. The length of the credit line decreases to reduce this temptation, and payments 
on debt decrease to make it more attractive for the agent to run the project, as opposed to 
taking the outside option. If the mean of cash flows µ increases, the credit line increases 
to delay termination and debt increases because the principal can extract more cash flows 
from the agent. If the agent’s discount rate γ increases, then the credit line decreases 
because it becomes costlier to delay the agent’s consumption. The effect on debt is 
ambiguous. On one hand, a shorter credit line reduces the agent’s temptation to draw the 
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entire credit line and default. On the other hand, because the agent becomes more 
impatient, this temptation is stronger. As a result the optimal level of debt increases and 
then decreases with γ.  The figure also shows the extreme sensitivity of the optimal 
capital structure near γ = r. 

 
Figure 7:  Comparative Statics (base case: L = 0, R = 0, µ = 10, σ = 10, r = 10%, γ = 15%, λ = 1) 

Finally, what is the effect of λ, which measures the degree of the agency problem in our 
model?  When λ = 1, the agent can steal cash flows costlessly, and the agency problem is 
most severe.  As λ gets close to zero, the agent receives little benefit from stealing cash 
flows, and the agency problem diminishes.   

In our implementation, the degree of agency manifests itself directly through the size of 
the agent’s equity stake.  It also has an indirect effect on the amount of debt and the credit 
line.  For example, if R > 0, (17) implies that the maximum total interest payments 
declines as λ declines.  The following result shows that the effect on the optimal debt 
structure of changing λ is equivalent to the effect of an appropriate change of the 
termination payoffs.15 

PROPOSITION 9.  The optimal debt and credit line with agency parameter and 
termination payoffs (λ, R, L) are the same as with parameters (1, Rλ, Lλ) where 

1R Rλ
λ=   and  1 1(1 ) rL L µλ

λ λ= + − . 

PROOF:  See Appendix.  � 

                                                           
15 DeMarzo and Fishman (2003) demonstrate this result as well in discrete time. 
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Thus, we can focus our discussion on the case λ = 1, and rely on Proposition 9 to 
translate the results to other settings.  For example, the effect of raising λ when R = 0 (see 
Figure 7) follows from Proposition 9:  increasing λ raises Lλ, and thus lowers the credit 
line and raises debt (if R > 0, the effect on debt is ambiguous).   

Using the characterization of an optimal contract by a differential equation, we can derive 
these and many other comparative statics results analytically.  In the appendix, we 
describe a new methodology for explicitly calculating comparatives statics.  First, we 
derive the effect of parameters on the principal’s profit. We differentiate equation (4) that 
describes the principal’s profit with respect to parameters and apply a generalization of 
the Feynman-Kac formula to write the solution as an expectation.  In particular, we can 
represent the sensitivity of the principal’s profit to the underlying parameters in terms of 
the following three functions: 
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Once we know the effect of parameters on the principal’s profit, we deduce their effect 
on debt and credit line from condition rb(W1) = µ − γW1, and on the agent’s starting value 
from b(W0) = K.  Using these techniques, we have the following results:16 
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Figure 8:  Comparative Statics for the Optimal Contract 

When we sign these comparative statics, we focus on the case when the project is 
profitable even when the agent does not have any initial wealth, which implies that 

                                                           
16 Recall that b(W∗) is the maximum payoff the principal can achieve, and so represents the maximum 
amount of external capital the firm can raise. 
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b′(R)>0.  Many signs are immediate from the facts that Gτ∈(0,1), G1 > −W1/r and G2 < 0.  
The less obvious cases are in parentheses, and are proved in the appendix. 

5. Hidden Effort 
Throughout our analysis we have concentrated on the setting in which the cash flows are 
privately observed, and the agent may divert them for his own consumption.  In this 
section we discuss the relationship between this model and a standard principal-agent 
model in which the agent makes a hidden binary effort choice.  This model is also studied 
by Biais et al. (2004) in contemporaneous work.  Our main result is that, subject to 
natural parameter restrictions, the solutions are identical for both models.  Thus, all of our 
results apply to both settings. 

In the standard principal-agent model with hidden effort, the principal observes the cash 
flows.  Based on the cash flows, the principal decides how to compensate the agent, and 
whether to continue the project.  Thus, there are only two key changes to our model.  
First, since cash flows are observed, there is no issue of the agent saving and using the 
savings to over-report future cash flows.  Second, we assume that at each point in time, 
the agent can choose to shirk or work.  Depending on this decision, the resulting cash 
flow process is 

 t̂ tdY dY a dt= + ,  where 
0 if the agent works

if the agent shirks
a

A


= −
 

We assume that working is costly for the agent, or equivalently that shirking results in a 
private benefit.17  Specifically, we suppose the agent receives an additional flow of utility 
equal to λA dt if he shirks. The agent cannot misreport the cash flows, since r < γ the 
agent will consume all payments immediately.  Thus, if the agent shirks, 

 t tdC dI Adt= + λ .  

Again, λ parameterizes the cost of effort and therefore the degree of the moral hazard 
problem.  We assume λ ≤ 1 so that working is efficient. 

Our first result establishes the equivalence between this setting and our prior model: 

PROPOSITION 10.  The optimal Principal-Agent contract implementing high effort is the 
optimal contract of Section 3.   

PROOF:  The incentive compatibility condition in PROPOSITION 3 is unchanged: to 
implement high effort at all times, we must have βt ≥ λ σ.  But then Proposition 4 shows 
that our contract is the optimal contract subject to this constraint.  � 

It is not surprising that our original contract is incentive compatible in this setting, since 
shirking is equivalent stealing cash flows at a fixed rate.  What is perhaps more surprising 
is that the additional flexibility the agent has in the cash flow diversion model does not 
require a “stricter” contract. 

                                                           
17 The difference between the two interpretations amounts to shifting the agent’s utility by a constant. 
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Of course, PROPOSITION 10 does assume that implementing high effort at all times is 
optimal.  Under what circumstances is this the case?  If a contract were to call for the 
agent to shirk at some point, this would result in diminished cash flows, but would have 
the benefit that we would no longer need to provide the agent with incentives.18  Thus, in 
these states the agent’s continuation payoff would no longer need to be sensitive to the 
realized cash flows, so that 

 
ˆ(  ) if 0

(  ) if 
t t t

t
t t

W dt dI dY dt a
dW

W dt dI A dt a A
γ − + λ − µ == 

γ − + λ = −
 

Because the principal’s continuation function is concave, this reduction in the volatility 
of Wt could be beneficial. For that not to be the case, and for high effort to remain 
optimal, it must be that for all W, 

 ( ) ( ) ( ) '( )rb W A W A b W≥ µ − + γ − λ   (20) 

Intuitively, this equation states that the principal’s flow payoff from having the agent 
shirk would be less than under our existing contract.19  Define  

ws = λA/γ and bs = (µ − A)/r = (µ − γws/λ)/r,  

the agent and principal’s payoff if the agent shirks forever and receives no other payment.  
Then we have the following necessary and sufficient condition, as well as a simple 
sufficient condition, for high effort to remain optimal at all times: 

PROPOSITION 11.  Implementing high effort at all times is optimal in the Principal-Agent 
setting if and only if ( )s sb f w≤  where ( ) min ( ) ( ) '( )w rf z b w z w b wγ≡ + − .  A simpler 

sufficient condition is  

  ( ) *1 ( )s sb b w b W
r r
γ γ ≤ + − 

 
 (21) 

Given λ, both of these conditions imply a lower bound on A, or equivalently, ws. 

PROOF:  See Appendix.  �  

We can interpret Proposition 11 as follows.  The point ( , )s sw b  represents the agent’s and 
principal’s payoff if the agent shirks forever.  Thus, shirking is never optimal if and only 
if this point lies below the function f.  The function f is concave and below b, with 
equality only at the maximum.  This is illustrated in Figure 9.  The factor γ/r increases the 
steepness of f relative to b; when γ = r, f and b coincide.  As can be seen from the figure, 
Proposition 11 puts a lower bound on ws, or equivalently on A, the magnitude of the cash 
flow impact of shirking. For example, in Figure 9, if ws ≥ ws, then high effort is always 
optimal.  This is the case for (ws

1, bs
1).   

                                                           
18 Specifically, in Proposition 3 we can set βt = 0 in states where the contract called for the agent to shirk.     
19 Formally, condition (20) is required in the proof of Proposition 4 for Gt to remain a supermartingale for 
either effort choice. 



 28

Figure 9:  Example showing Optimality of High Effort  

On the other hand, if A is too small so that ws < ws, then the optimal principal-agent 
contract will involve shirking after some histories.  However, in some cases the optimal 
contracting techniques of this paper may still apply.  For example, see (ws

2, bs
2) in Figure 

9.  In this case, high effort is optimal until the point (ws
2, bs

2) is reached, in which case it 
is optimal to shirk forever.  Thus, the optimal contract is again as in our model, but with 
shirking forever replacing termination so that (R, L) = (ws

2, bs
2).20 

Remark.  We can also consider a hybrid model, in which the agent can both divert cash 
flows and choose whether to work or shirk.  In this case, let λd parameterize the benefit 
the agent receives from diverting cash flows, and let λa represent the benefit from 
shirking.  Then we can show that the optimal contract implementing high effort is the 
optimal contract of Section 3 with λ = max(λd, λa). 

                                                           
20 This will be the case whenever shirking yields the highest possible payoff for the investors; i.e., when A 
is sufficiently small.  For intermediate values of A, an optimal contract calls for shirking only temporarily.  
In that case, a more complicated contract than the one described in this paper will be necessary to achieve 
optimality. 
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6. Further Extensions of the Model 
In this section we consider various extensions of the basic model. First, we allow the 
termination payoffs (R, L) to be determined endogenously by either the principal’s option 
to hire a new agent or the agent’s option to start a new project.  Second, we consider the 
construction of an optimal renegotiation-proof contract.  Third, we consider the case in 
which the agent and principal disagree about key parameters of the model, such as the 
project’s profitability, or the agent’s impatience.   

6.1. Endogenous Termination 

Thus far, we have treated the termination payoffs (R, L) as exogenous.  Suppose, 
however, that they are endogenously determined as in the following to examples: 

Unique Assets, Replaceable Agent:  Suppose the assets of the firm are unique, but the 
agent can be fired and replaced at cost ca to the principal/investors.  The agent’s 
termination payoff if fired is R, but the investor’s payoff on firing the agent is 

 *( ) aL b W c= −   (22) 

Unique Agent, Replaceable Assets:  Suppose the agent can quit the firm a start a new 
firm by raising external capital K = L from new investors.  If the agent quits, the old 
investors liquidate and receive L, while the agent receives 

 0
tR e W−γ∆=   (23) 

where ∆t is the time required to start a new firm and W0 satisfies b(W0) = L. 21 

The optimal contract in either case takes exactly the same form as described in 
Proposition 4.  The only change is that now the boundary condition (22) or (23) replaces 
b(R) = L.  The solution is illustrated in Figure 10.  Because db(W∗)/dL = Gτ (W∗) < 1, 
when assets are unique the liquidation value L is decreasing in ca with dL/dca = 
Gτ(W∗) − 1.  From the results of Section 4.3, the credit line increases and the debt 
decreases in ca.  This is intuitive, because the project requires more financial flexibility 
when it is more difficult to replace the agent.  Similarly, when the agent is unique, as ∆t 
falls and it becomes easier for the agent to start a new firm, R rises.  This leads to a 
decrease in both the credit line and in debt.  Note that as ∆t → ∞ and starting a new firm 
becomes impossible, R → 0, and as ∆t → 0 and restarting is costless, R → R∗, the point at 
which b′(R∗) = 0. 

                                                           
21  This setting is similar to Hart and Moore’s (1994) notion of “inalienable human capital” and its 
relationship to optimal debt structure. 
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Figure 10:  Determining L or R endogenously 

6.2. Renegotiation-Proofness 

Note that the optimal contracts in the basic model are generally not renegotiation-proof. 
When b′(R) > 0, then both the principal and the agent would like to renegotiate at 
termination time. Instead of termination, which gives the agent and the principal payoffs 
of R and L, they could renegotiate by restarting the contract from with the agent’s value 
W > R, which gives the principal profit b(W) > L.  

To be renegotiation-proof, the principal’s profit function b(W) cannot have positive slope 
anywhere. To find this function we must solve the optimality equation from boundary 
conditions b′(W1) = −1 and rb(W1) = µ − γW1 for an appropriate choice of W1, such that 
the maximum of the resulting function is b(R∗) = L.  This is equivalent to the case in 
Section 6.1 of a unique agent that can restart the firm immediately (∆t = 0).  Let us set 
b(W) = L on the interval [R, R*].   

A renegotiation-proof contract, under which the principal breaks even, exists only if the 
agent has initial wealth Y0 ≥ K − L. In that case, the agent’s continuation value W0 is such 
that b(W0) = K − Y0. Until termination the agent’s continuation value W0 evolves in the 
interval [R∗, W1] as 

ˆ( )t t t t tdW W dt dY dt dI dP= γ + λ − µ − + , 

where processes I and P reflect Wt at endpoints W1 and R∗ respectively. The project is 
terminated stochastically whenever Wt is reflected at R∗. The probability that the project 
continues at time t is  
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Then Wt is the agent’s true expected future payoff. Indeed, whenever Wt hits R∗ and dPt is 
added to the agent’s continuation value, the project is terminated with probability 
dPt / (R∗−R) to account for this increment to the agent’s value.  

The implementation of a renegotiation-proof contract involves a credit line and debt as in 
the optimal contract of Proposition 7 with R∗ in place of R.  Since R∗ > R, both the credit 
line and debt decrease.  This is intuitive, because renegotiation-proofness reduces the 
profitability of the project.22  

6.3. Private Benefits and Differing Opinions 

Suppose the agent receives private benefits of control from running the project.  
Specifically, suppose that prior to termination the agent earns additional utility at rate γω.  
In this case, the agent’s continuation value should evolve according to 

 ˆ( ) ( )t t t tdW W dt dI dY dt= γ − ω − + λ − µ  

How does this alter the form of the optimal contract?  Interestingly, as the following 
result shows, this is equivalent to simply adjusting the agent’s payoff under the contract 
by ω. 

PROPOSITION 12.  Suppose the agent earns private benefits at rate γω while running the 
project.  Then the optimal contract is the same as the optimal contract without private 
benefits and termination payoff for the agent of R − ω.  That is, while the project is 
running, the principal accounts for the agent’s payoff through state variable Ŵt that 
evolves as 

dŴt = γŴt dt – dIt + λ(dŶt − µ dt) 

in the interval [R, W1]. Under this contract, given a value of the state variable Ŵt, the 
agent’s total payoff including private benefits is Wt = Ŵt + ω. 

PROOF:  See Appendix.  � 

Thus, using our comparative statics results for R from Section 4.3, increasing the agent’s 
private benefits increases the credit limit and amount of debt in the optimal capital 
structure.  Intuitively, the potential threat of losing the private benefits in termination 
enhances the agent’s incentives and hence increases the debt capacity of the firm.  
Moreover, Ŵ0 rises, so that the agent’s total payoff rises by more than a dollar for each 
dollar of private benefits, all else equal. 

A similar result follows if the agent and the investor have different beliefs about the mean 
of the cash flows, µ.  For example, suppose the agent believes the mean is µ + δ.  Holding 
these beliefs fixed, the agent’s continuation payoff should evolve according to 

 
ˆ( ( ) )

ˆ( / ) ( )
t t t t

t t t

dW W dt dI dY dt

W dt dI dY dt

= γ − + λ − µ + δ

= γ − λδ γ − + λ − µ
 

                                                           
22  Gromb (1999) also considers renegotiation-proofness in a related discrete-time model.  While not 
providing a complete characterization, he does show that in an infinite-horizon stationary setting the 
maximum external capital the firm can raise is the liquidation  value L. 
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Thus, a discrepancy δ between the agent’s and investor’s beliefs is therefore equivalent to 
a private benefit of magnitude ω = λδ/γ. 

6.4. Misestimating γ 

What happens if an agent whose subjective discount factor is 'γ ≠ γ  receives contract 
),( τI , which is optimal for the agent with discount factor γ ?  How will the agent 

behave? It depends on whether γ′ is greater or less than γ. We focus on the case when λ = 
1.  

If γ′ < γ, then when 1WWt <  then the agent will deposit all cash flows from the project 
onto the credit line, and have balance zero in his savings account. The agent does not 
steal because a dollar on the credit line earns a higher rate of interest than the agent’s 
subjective discount rate. Also the agent pays the credit line before saving because the 
credit line has a higher interest rate, and the agent is free to draw from the credit line at 
any time.  

What happens when the balance on the credit line is paid off, i.e. 1WWt = ? It can be 
shown that the agent will choose to save at interest rate ρ as long as 1SSt <  for some 
critical value S1. When 1SSt = , the agent consumes all excess cash flows.  Intuitively, 
for 1SSt < , a dollar saved gives the agent more than a dollar of utility because it makes it 
less necessary to draw on the high-interest credit line to cover potential future losses. 
When 1SSt = , the agent is on the margin indifferent between saving and consuming 
because the savings account earns an interest rate lower than the agent’s subjective 
discount factor.  We show in the following proposition that the principal earns the same 
profit as if the agent had discount factor γ, i.e. bγ(W0).  When γ is close to γ′, then bγ(W0) 
is close to bγ′(W0), so the mistake of overestimating the agent’s discount factor is not too 
costly for the principal. 

The following result summarizes this, and shows that the agent’s behavior is drastically 
different if γ′ > γ : 

PROPOSITION 13.  Suppose that the principal offers a contract designed for the agent 
with discount rate γ to an agent whose true discount rate is γ′ < γ. Then this agent would 
derive utility greater than W0, and the principal would receive profit of exactly bγ(W0).  

If the agent’s true discount factor γ′ is greater than γ for which the contract is designed, 
then the agent will draw the entire credit line and default immediately.  The agent earns 
utility W0, whereas the principal earns L − (W0 − R). 

PROOF:  See Appendix.  � 

We conclude that underestimating the agent’s subjective discount factor is a very costly 
mistake for the principal. This drastic difference raises the issue of robustness: what 
contract is optimal if the principal is uncertain about the agent’s rate of time preference? 
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7. Conclusion 
We analyzed a situation in which an agent or entrepreneur needs to raise external capital 
to (i) start-up a profitable project, (ii) cover future operating losses that may occur, and 
(iii) consume.  In our setting, the agent can divert cash flows from the project for personal 
consumption without the investor’s knowledge. To enforce payments, the investors can 
threaten to withhold future funding and terminate the project. We analyze an optimal 
contract between the investors and the agent in this setting.  

An optimal contract takes a similar form both in a discrete-time setting of DeMarzo and 
Fishman (2003) and in our continuous-time setting. The contract involves a credit line, 
debt and equity. Debt, outside equity, and possibly the credit line provide the funds for 
start-up capital and initial consumption for the agent. For the duration of the project, the 
credit line provides the flexibility to cover possible operating losses.  The agent has 
incentives to pay interest and not consume from the credit line because in case of default 
he has to surrender the project to investors.  The agent holds an equity stake and has 
discretion over the payment of dividends. The agent’s equity stake is sufficiently large 
that he does not divert excess cash flows for personal consumption, but pays them out as 
dividends appropriately. 

The continuous-time setting of our paper has several advantages. First, the features of an 
optimal contract are cleaner. Unlike in discrete time, an optimal contract in continuous 
time does not require stochastic termination. Second, some of the analysis is simplified. 
Because time is continuous, we do not have to consider problems associated with 
different points within each time period separately.  Most importantly, a continuous time 
model provides a convenient characterization of the optimal contract, which involves an 
ordinary differential equation. With this characterization we can say a great deal about 
how the optimal capital structure is determined by the specific features of the project.  
Also, we are able to compute the values of securities that are involved in the 
implementation of an optimal contract. Finally, we can easily analyze extensions. For 
example, we show how our contract also solves a standard principal-agent setting with 
costly effort. Other extensions are considered; in many cases the solution only involves 
finding the appropriate boundary conditions for the differential equation that defines an 
optimal contract. 

Our results open several thought-provoking questions for future research.  Here are only a 
few examples. First, we discover that in our setting there is no asset substitution problem. 
That is, increased variance of cash flows does not benefit equity holders because it makes 
agent’s incentive problem more difficult.  Second, we find that it may be very important 
for the principal to assess the characteristics of the project correctly. If an investor makes 
a mistake, the agent may draw the entire credit line for personal consumption and default 
immediately. This raises the question of robust contract design. Finally, the simplicity of 
our characterization opens the possibility of embedding our model within other standard 
finance models. For example, we can consider extending our framework to allow for 
dynamic investment decisions or project choice, and determine how the dynamics of 
these other decisions relate to cash flows and optimal capital structure. 
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8. Appendix 
PROOF  OF PROPOSITION 2:  Follows from Lemmas B and C below. � 

LEMMA B.  Consider any incentive-compatible contract. Then there is another incentive-
compatible contract, which gives the same profit to the agent and the same or greater 
payoff to the principal, under which the agent chooses to reveal cash flows truthfully. 

PROOF:  Our argument has a flavor of the revelation principle. However, the revelation 
principle does not apply directly, because the agent's payoff depends not only on the 
principal's action but also directly on his report (see (8)).  

Consider an incentive-compatible contract with transfer process is I(Ŷ(⋅)) and termination 
time τ(Ŷ(⋅)).  We would like to define a new contract such that 

i) the agent gets the same payoff as under the old contract 

ii) the agent chooses to reveal cash flows truthfully 

iii) the principal gets the same or greater profit as under the old contract 

Given the agent's report Y', define the transfer process I' under the new contract to be 
such that 

dI't(Y') = [ dY't – dŶt(Y') ]λ + dIt(Ŷ(Y')), 

where Ŷ(Y') is the report generated by the agent under the old contract, when he observes 
Y'. Also, define the termination time under the new contract as τ(Ŷ(Y′)).  It is easy to see 
that in the new contract, transfer process I' and termination time τ(Ŷ(Y′)) are measurable 
with respect to the agent’s report Y′. 
First, if the agent tells the truth, then he receives the same stream of income as if he 
reported Ŷ under the old contract. Second, if the agent lies and says Y', he receives less 
income than he would by telling Ŷ(Y') under the old contract, because  

[dYt - dY't ]λ + dI't(Y') = [dYt - dY't ]λ +[ dY't – dŶt(Y') ]λ + dIt(Ŷ(Y')) 

≤ [dYt – dŶt(Y') ]λ + dIt(Ŷ(Y')) 

Because the agent found it optimal to report Ŷ under the old contract, he prefers to tell the 
truth under the new contract.  Third, because 

dYt - dI't(Y) = dYt - [dYt – dŶt(Y) ]λ - dIt(Ŷ(Y)) ≥ dŶt – dIt(Ŷ), 

the principal's profit under the new contract is the same as or greater than under the old 
contract. Therefore, the new contract that we constructed satisfies conditions (i), (ii) and 
(iii), as required.  � 

LEMMA C.  Consider any incentive-compatible contract (τ, I), under which the agent 
reports truthfully and consumes C. Then there new contract (τ, I′) with an alternative 
payment process I′, under which the agent chooses to maintain zero savings (since the 
principal does savings for the agent). This new contract gives the agent the same payoff 
as before; the principal receives the same or higher profit. 
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PROOF:  Let 
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be the savings process under the old contract (τ, I).  For any report Ŷ define 

 I′t(Ŷ) = Ct(Ŷ)   

If the agent tells the truth and consumes Ct under the new contract (τ, I′), then he 
maintains zero savings. The agent's total expected payoff under the new contract is 
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which is the same as under the old contract. 

The principal's profit under the new contract is greater or equal than his profit under the 
old contract. Indeed, when the principal does savings for the agent and the principal's 
interest rate r is greater than the agent's interest rate ρ, then the principal's expected profit 
improves by 
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Lastly, we need to show that the new contract is incentive-compatible.  Incentive 
compatibility follows if we show that the new contract does not allow any new feasible 
strategies for the agent: let us show that if any alternative strategy (Ĉ, Ŷ) is feasible in 
response to (τ, I′), then it is also feasible in response to (τ, I).  A strategy is feasible if it 
generates a nonnegative savings process.  We have 
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This completes the proof that the new contract is incentive-compatible. � 

PROOF OF PROPOSITION 5:  Recall that the rate of return on savings is ρ ≤ r.  We 
consider the case ρ = r in which savings is most attractive without loss of generality.  We 
also generalize the setting to allow the agent to save within the firm and on his own 
account  (this will be useful in our implementation of the optimal contract).  Savings 
within the firm are represented by f

tS  and evolve according to 

ˆ( )f f
t t t t tdS rS dt dY dY dQ= + − −  



 36

Here, dQt represents the agent’s diversion of the cash flows to his own account, which 
evolves according to 

[ ]t t t t tdS rS dt dQ dI dCλ= + + −  

Note that the agent bears the cost of diversion when moving funds outside the firm.  Both 
accounts must maintain non-negative balances.  We show that for an arbitrary feasible 
strategy ˆ( , )C Y  of the agent, 

( )0
ˆ t s t f
t s t t tV e dC e S S W−γ −γ= + + λ +∫  

is a supermartingale.  Now, 
ˆ ( )t f f
t t t t t t t te dV dC dS S dt dS S dt dW W dtγ = + − γ + λ − γ + − γ  

Using (16) and the definitions of dSt and f
tdS ,  

ˆ [ ] ( )( ) ( )

(1 ) ( )( )

t f
t t t t t t

f
t t t t

e dV dQ dQ r S S dt dY dt

dQ r S S dt dZ

γ λ

−

= − λ − γ − + λ + λ − µ

= − − λ − γ − + λ + λσ
 

Because λ ≤ 1, dQt
− is non-decreasing, γ > r, and the savings balances are non-negative, 

V̂  is a supermartingale until time τ because Wt is bounded below.  If Wt is bounded 
above and there is no savings, 0f

t tS S= = , and the agent reports truthfully so that  

t̂ tdY dY=  and dQt = 0, then  V̂  is a martingale.  Thus, 

( )0 0 0
ˆ ˆ s f

sW V E V E e dC e S S R
τ −γ −γτ

τ τ τ
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with equality if the agent maintains zero savings and reports truthfully. � 

PROOFS OF PROPOSITION 6 AND PROPOSITION 7:  Let us prove Proposition 6 first. Let 
Divt be an increasing process representing the cumulative dividends paid by the firm.  
Then the credit line balance evolves according to 

ˆ
t t t tdM M dt x dt dDiv dY= γ + + − . 

where we can assume dDivt and t̂dY  are such that Mt ≥ 0.  Then from (17), 

( )Lx R Cλ = λµ − γ + λ  and 

ˆ

ˆ( ( )) ( ( ))
ˆ( )

t t t t t
L L

t t t

t t t

dW dM M dt x dt dDiv dY

W R C dt R C dt dDiv dY

W dt dDiv dY dt

= −λ = −λγ − λ − λ + λ

= γ − + λ − λµ − γ + λ − λ + λ

= γ − λ + λ − µ

 

Letting dIt = λ dDivt, the result of Proposition 6 follows from Proposition 5. 

To prove Proposition 7, note that dIt = 0 unless Mt = 0 (that is, Wt = W1 under assumptions 
of Proposition 7).  Since dividends cause Mt to reflect at 0, dIt causes dWt to reflect at W1.  
Therefore, we have implemented the optimal contract described in Proposition 4. � 
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Market Values of Securities:  
The following lemma is useful for computation of market values of securities and for 
comparative statics: 

LEMMA D.  Suppose Wt evolves as 

dWt=γWt dt – dIt + λ (dŶt -µ dt) 

in the interval [R, W1] until time τ when Wt hits R, where It is a nondecreasing process 
that reflects Wt at W1. Let k be a real number, and g:[R, W1] →ℜ a bounded function. 
Then the same function G:[R, W1] →ℜ both  solves equation   

  rG(W) = g(W) + γW G′(W) +1/2 λ2σ2G′′(W) (24) 

with boundary conditions G(R) = L and G′(W1)= - k and satisfies  
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PROOF:  Suppose that G solves (24), and let us show that it satisfies (25). Define  
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From equation (24), condition G′(W1)= -k, and the fact that I increases only when 
1WWt = , H is a martingale. Because G is bounded, H is a martingale until time τ, so 

G(W0) = H0 =E[Hτ ] = 
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This completes the proof. � 

The values of credit line, debt and equity can be expressed in terms the following 
functions, which can be computed by Lemma D: 
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rt
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By Lemma D, both of these functions solve differential equation 

  rG(W) =γW G′(W) +1/2 λ2σ2G′′(W) (26) 
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with boundary conditions Gτ(R) = 1, Gτ′(W1)=0 and GI(R) = 0, GI′(W1)=1.  Functions Gτ 
and GI can be easily computed.  To evaluate market values of securities, we also use the 
fact that  

r
WGWWdteE rt )(1| 0

0

τ
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Then, expressed as functions of the agent’s continuation value Wt, market values the 
credit line, debt and equity are 
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PROOF OF PROPOSITION 8:  When L < D, then LE = 0. Then, to demonstrate that equity 
holders prefer less volatility, we need to prove that GI is concave. From the stochastic 
representation, we see that GI is an increasing function.  From (26),  

1/2 λ2σ2GI′′(R) =-γRGI′(R) < 0. 

Suppose that GI were not concave everywhere on [R,W1], and let V = inf{GI′′(W) > 0}. 
Then V>R and GI′′ (V) = 0 by continuity of GI′′.  But then from (26) 

1/2 λ2σ2G′′′(V)=(r-γ) G′(V) -γV G′′(V)= (r-γ) G′(V) < 0, 

so GI′′ (V+ε) < 0 for all sufficiently small ε > 0, contradiction.  � 

The following lemma tells us that when there are no outside equity holders, then no funds 
remain after debt and credit line holders are paid from the liquidation value.   

LEMMA E. If λ = 1, then in the optimal contract, L < D + CL. 

PROOF: When λ = 1, D + CL = b(W1) + W1 − R.  Since b′(W) > −1 for W ∈ (R,W1), b(W1) 
+ W1 > b(R) + R = L + R.  Thus, D + CL > L. � 

PROOF OF PROPOSITION 9:  Let b be the optimal continuation function for parameters (1, 
Rλ, Lλ) and define 

( ) ( ) (1 )( )b W b W rλ = λ λ + − λ µ  

We claim that bλ is the optimal continuation function with parameters (λ, R, L).  To see 
this, we can easily check that bλ(R) = L.  Since  
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'( ) '( )b W b Wλ = λ   and  1''( ) ''( )b W b Wλ
λ= λ , 

then 1 1'( ) 1 '( ) 1b W b Wλ = − ⇒ λ = −  and 1 1''( ) 0 ''( ) 0b W b Wλλ = ⇒ = .  Thus, bλ 
satisfies both boundary conditions at W1.  In addition, for W ∈ [R, W1], 
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so that bλ satisfies (4) and hence is the optimal continuation function.  Thus, W1 is the 
dividend boundary for parameters (λ, R, L) if and only if W1/λ is the dividend boundary 
for (1, Rλ, Lλ).  From (19), this implies that the optimal capital structure is unchanged.  � 

 
Comparative Statics Results:  
LEMMA F. Suppose θ is one of parameters L, µ, γ or σ2 and denote by )(Wbθ the optimal 
continuation function for that parameter value. Then 
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PROOF: Consider a value of W1 and a corresponding incentive-compatible contract of 
Proposition 5: one in which process I reflects Wt at W1. Then the principal’s profit under 
this contract is  
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By Lemma D, )(1, Wb Wθ  solves equation 
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Differentiating (27) with respect to θ at W1 = W1(θ) and using (28) we find that 
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lemma follows from Lemma D.  � 

COROLLARY. From Lemma F and we obtain that 
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Additionally, because the principal’s profit remains the same if the agent’s outside option 
increases by dR and liquidation value decreases by '( )b R dR , the effect of a change in R 
on the principal’s profit is captured by 
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R τ
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To find how parameters affect the optimal choice of W1, note that 
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We can then compute the derivatives of W1
 with respect to parameters using the Corollary 

of Lemma F. Similarly, the derivative of W0 with respect to the parameters can be found 
by differentiating 0( ( ))b W Kθ θ =  with respect to θ and using the Corollary. We obtain 
comparative statics results summarized in Figure 8 in the paper. In Figure 8, we still need 
to sign the non-obvious entries in parentheses. The following Lemma allows us to 
compare the principal’s profit for different γ’s and to sign two entries that involve G1(W).  
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LEMMA G.  Suppose that the principal offers a contract designed for the agent with 
discount rate γ to an agent whose true discount rate is γ′ < γ. Then this agent would 
derive utility greater than W0, and the principal would receive profit of exactly b(W0).  

PROOF:  Let us investigate how an agent with discount rate γ’ responds to a contract 
created for an agent with discount rate γ. First, let us interpret the contract. The agent’s 
value Wt can be interpreted as the agent’s balance on a high-interest savings account. It 
evolves as 

dWt = γWt dt + (dŶt - µ dt) 

where dŶt - µ dt  is the flow of deposits. The high-interest account has a cap of W1. The 
agent’s consumption is  

dCt=dYt  -µ dt – (dŶt - µ dt) – dQt, 

where µ dt is a tax and dQt is the flow of deposits onto the low-interest savings account. 
The balance on that account is 

dSt=ρSt dt + dQt 
When the agent manages these two accounts, it is optimal to never have positive balance 
on the low-interest savings account, unless the high-interest savings account is full (i.e. 
Wt=W1). Also, it is optimal to deposit all cash flows onto the high-interest savings 
account and not consume when Wt<W1, because those cash flows can earn a higher 
interest rate than the agent’s own discount rate. The agent consumes only when Wt=W1 
and the balance on his own savings account is positive. This sort of strategy gives the 
agent of value higher than Wt, which he could get by simply drawing the credit line to the 
end and defaulting immediately. 
Let us show that the principal still gets profit b(Wt) when the agent follows any such 
strategy.  When Wt<W1, the agent deposits all cash flows onto the credit line, just like an 
agent with discount factor γ would do. The only difficulty can come from the fact that 
when Wt=W1, the agent may manage his own savings account with cash flows from the 
project, and keep the balance on the credit line at 0 by paying the principal a flow µ - γW1 
of coupon payments on long-term debt. This modification in the agent’s strategy does not 
alter the principal’s profit because µ - γW1 = rb(W1), which is exactly what the principal 
needs to get to realize a profit of b(W1).   � 
 

Note that the contract in Lemma G is not optimal for agent γ’. An optimal contract would 
give the principal higher profit for the same value of the agent. Therefore, to every point 
(W, bγ(W)) with W≥W*(γ), there is a point (W’, bγ’(W’)) > (W, bγ(W)). We conclude that 
bγ(W) must be increasing as γ falls for all W≥W*(γ), so G1(W) <0. 

COROLLARY.   1 0

0

( ) 0
'( )

G W
b W

− <  and *
1( ) 0G W > . 

For the remaining two entries of Figure 8, we need to relate b’(W) and Gτ(W).  

LEMMA H. The following inequality holds for all W<W1: 
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PROOF:  Differentiating equation (33) with respect to W we find that b’(W) satisfies  
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with boundary conditions b’(W1)=-1 and b’’(W1)=0. Denote the right hand side of (32) 
by g(W)-γ/r. From (30), we know that g(W) satisfies  
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with boundary conditions g(W1)=(γ-r)/r and g’(W1)=0. Denote f(W) = g(W)-γ/r – b’(W). 
To prove the lemma, we need to show that f(W)>0 for all W<W1. Since f(W1)=0, this 
property follows if we show that f’(W)<0 for all W<W1. Subtracting (34) from (35), we 
find that  
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with boundary conditions f(W1)=0 and f’(W1)=0. From (36) we find that  
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Therefore, f’(W)<0 for W<W1 in a small neighborhood of W1.  If f’(W)<0 fails for some 
W<W1, there has to be a largest point V at which it fails. Then f’(V)=0 and f(W) is 
positive and decreasing on [V,W1). But then from (36) 

,0)()()()()(''
2

2
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r
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 since  

r
rVg −> γ)( . 

We conclude that f’(V+ε)>0, which contradicts our definition of V as the largest point at 
which f’(V)≥0.  We conclude that f’(W)<0 and f(W)>0 for W<W1, so (32) holds.  � 

Now we can sign the remaining two fields in Figure 8.  

COROLLARY. Applying (32) at W=R, we have 
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Hidden Effort and Extensions:  

PROOF OF PROPOSITION 11:  Let ws = λA/γ and bs = (µ−A)/r.  We can rewrite (20) as 
( )( ) '( )s s

rb b W w W b Wγ≤ + − , and this must hold for all W, leading to the condition  

 ( )( ) min ( ) '( )s s s
W rb f w b W w W b Wγ≤ = + − . (37) 

To prove that condition (21) of Proposition 11 guarantees (37), it is sufficient to show 
that for all w,  

 ( ) ( )( ) ( )*( ) ( ) '( )s s sr
r rb w b W b w b W w W b Wγ− γ− − ≤ + −  (38) 

Note that since b is concave and γ > r, 

( ) ( )( ) ( ) '( ) ( ) '( )s s s
rb w b W w W b W b W w W b Wγ≤ + − ≤ + −  

if (ws − W)b′(W) > 0, which implies (38) for W not between ws and W*.  For W between 
ws and W∗, note that 
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so that (38) again holds, verifying the sufficiency of condition (21).   

Note that f ′(ws) = γ/r b′(W) ≥ − γ/r, whereas ∂bs/∂ws = −(γ/r)/λ.  Thus, both (37) and (21) 
imply a lower bound on ws (or equivalently A). 

Finally, we note the following properties of f described in the paper:  Setting W = ws in 
(37) implies f(w) ≤ b(w).  Also, since f is the lower envelope of linear functions it is 
concave.  Finally, (21) implies that f(W∗) = b(W∗).  � 
PROOF OF PROPOSITION 12:  Let b be the optimal continuation function given boundary 
condition b(R−ω) = L.  Then define b∗(W) = b(W − ω).  Then b∗(R) = L and 

* 2 21
2

* 2 2 *1
2

( ) ( ) ( ) '( ) ''( )

( ) '( ) ''( )

rb W rb W W b W b W

W b W b W

= − ω = µ + γ − ω − ω + λ σ − ω

= µ + +γ − ω + λ σ
 

Finally, b′(W1) = −1 implies b∗′(W1 + ω) = −1 and b∗′′(W1 + ω) = 0.  Thus, by the same 
arguments as in the proof of Proposition 4, b∗ is the optimal continuation function for the 
setting with private benefits. � 
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PROOF OF PROPOSITION 13:  The first result holds by Lemma G.  Next, suppose the 
agent’s true discount factor γ′ is greater than γ. The process 
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is a strict supermartingale. Indeed, 
ˆ ˆ(1 )( ) ( ' ) ( ' )t
t t t t t te dV dY dY W dt S dt dZγ −= − − λ − − γ − γ − γ − ρ + λσ , 

so V̂  has a negative drift. Since Wt and St are bounded from below, V̂ is strict 
supermartingale until time τ. If the agent draws the entire credit line and defaults at time 
0, then he gets a payoff of W0.  If he follows any other strategy, then τ > 0 and the agent’s 
payoff is  

[ ] 00
'

0

' ˆˆ)( WVVEWSedCeE s
s =<=








++ −−∫ τττ

τγ
τ

γ  

Therefore, the agent will draw the entire credit line immediately if γ′>γ.  � 
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