Skip to main content
Log in

Synthesis and thermoelectric properties of n-Type Mg2Si

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Group BV(Bi, Sb)- and BVI(Te, Se)-doped Mg2Si compounds were synthesized by solid state reaction and mechanical alloying. Electronic transport properties (Hall coefficient, carrier concentration and mobility) and thermoelectric properties (Seebeck coefficient, electrical conductivity, thermal conductivity and figure-of-merit) were examined. Mg2Si powder was synthesized successfully by solid state reaction at 773 K for 6 h and doped by mechanical alloying for 24 h. Powder was fully consolidated by hot pressing at 1073 K for 1 h. All doped Mg2Si compounds showed n-type conduction, indicating that the electrical conduction is due mainly to electrons. The electrical conductivity increased greatly by doping due to an increase in the carrier concentration. However, the thermal conductivity did not change significantly by doping, which was due to the much larger contribution of the lattice thermal conductivity over the electronic thermal conductivity. Group BV (Bi, Sb) elements were much more effective at enhancing the thermoelectric properties of Mg2Si than group BVI(Te, Se) elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi, J. Cryst. Growth 304, 196 (2007).

    Article  Google Scholar 

  2. E. N. Nikitin, V. G. Bazanov, and V. I. Tarasov, Sov. Phys. Solid State 3, 2648 (1961).

    Google Scholar 

  3. J. L. Corkill and M. L. Cohen, Phys. Rev. B 48, 17138 (1993).

    Article  Google Scholar 

  4. V. K. Zaitsev, M. I. Fedorov, I. S. Eremin, and E. A. Gurieva, Thermoelectrics Handbook (ed., D. M. Rowe), ch. 29, CRC Press, Boca Raton, USA (2006).

    Google Scholar 

  5. C. R. Whitsett and G.C. Danielson, Phys. Rev. 100, 1261 (1955).

    Google Scholar 

  6. R. G. Morris, R. D. Redin, and G. C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  Google Scholar 

  7. R. J. LaBotz, D. R. Mason, and D. F. O’Kane, J. Electrochem. Soc. 110, 127 (1963).

    Article  Google Scholar 

  8. P. M. Lee, Phys. Rev. 135, 1110 (1964).

    Article  Google Scholar 

  9. T. C. Harman, P. J. Taylor, D. L. Spears, and M. P. Walsh, J. Electron. Mater. 29, L1 (2000).

    Article  Google Scholar 

  10. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics, p. 146, Springer-Verlag, Berlin, Germany (2000).

    Google Scholar 

  11. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  Google Scholar 

  12. S. Bose, H. N. Acharya, and H. D. Banerjee, J. Mater. Sci. 28, 5461 (1993).

    Article  Google Scholar 

  13. C. B. Vining, Handbook of Thermoelectrics (ed., D. M. Rowe) p. 277, CRC Press, New York, USA (1995).

    Google Scholar 

  14. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Mater. Trans. JIM 33, 845 (1992).

    Article  Google Scholar 

  15. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Mater. Trans. JIM 33, 851 (1992).

    Article  Google Scholar 

  16. M. W. Heller and G. C. Danielson, J. Phys. Chem. Solids 23, 601 (1962).

    Article  Google Scholar 

  17. J. Tani and H. Kido, Intermetallics 16, 418 (2008).

    Article  Google Scholar 

  18. Q. Zhang, X. B. Zhao, H. Yin, and T. J. Zhu, J. Alloy Compd. 464, 9 (2008).

    Article  Google Scholar 

  19. M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M Fukano, and Y. Takanashi, J. Crys. Growth 304, 196 (2007).

    Article  Google Scholar 

  20. J. Tani and H. Kido, Physica B 364, 218 (2005).

    Article  Google Scholar 

  21. J. Schilz, M. Riffel, K. Pixius, and H.-J. Meyer, Powder Tech. 105, 149 (1999).

    Article  Google Scholar 

  22. J. H. Yang, S. Chen, W. J. Yin, and X. G. Gong, Phys. Rev. B 79, 245202 (2009).

    Article  Google Scholar 

  23. 23. $ U. Lunz, C. Schumacher, J. Schull, A. Gerhard, U. Schüssler, B. Jobst, W. Fashinger, and G. Landwehr, Semicond. Sci. Technol. 12, 970 (1997).

    Article  Google Scholar 

  24. G. Busch and U. Winkler, Physica 20, 1067 (1954).

    Article  Google Scholar 

  25. P. S. Kireev, Semiconductor Physics, p. 253, Mir Publishers, Moscow, Russia (1978).

    Google Scholar 

  26. H. J. Goldsmid, Electronic Refrigeration, p. 42, Pion Limited, London, UK (1985).

    Google Scholar 

  27. C. Kittel, Introduction to Solid State Physics 6 th ed., p. 152, John Wiely & Sons, Inc., USA (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, JY., Kim, IH. Synthesis and thermoelectric properties of n-Type Mg2Si. Electron. Mater. Lett. 6, 187–191 (2010). https://doi.org/10.3365/eml.2010.12.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3365/eml.2010.12.187

Keywords

Navigation