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ABSTRACT: The method of choice for multivariate representation of community structure is often 
non-metric multi-dimensional scaling (MDS). This has great flexibility in accomn~odating biologically 
relevant (i.e. non correlation-based) definitions of similarity In species composition of 2 samples, and 
in preserving the rank-order relations amongst those similarities in the placing of samples in an 
ordination. Correlation-based techniques (such as  Canonical Correlation) are  then inappropriate in 
linking the observed biotic structure to measured environmental variables; a more natural approach 
is simply to compare separate sample ordinations from biotic and abiotic variables and choose that 
subset of environmental variables which provides a good match between the 2 configurations. In fact, 
the fundamental constructs here are not the ordination plots but the (rank) similarity matrices which 
underlie them: a suitable measure of agreement between 2 such matrices is therefore proposed and 
used to define an optimal subset of environmental variables w h ~ c h  'best explains' the biotic structure. 
This simple technique is illustrated wlth 3 data sets, from studles of macrobenthic, meiobenthic and 
diatom communities in estuarine and coastal waters. 

INTRODUCTION 

An increasingly accepted paradigm for the analysis of 
marine community data is that outlined by Field et al. 
(1982). An array of species abundance or biomass data for 
a number of samples taken at different sites and/or times 
is (a) transformed, to achleve a desired balance of the con- 
tributions of common and rarer species; (b) converted to a 
triangular matrix of similarity between every pair of 
samples (using a similarity or dissimilarity coefficient 
which is not a function of 'joint absences', such as that of 
Bray & Curtis 1957); (c) the similarities then permit a 
low-dimensional display of biotic relationships among 
the samples by non-metric Multi-Dimensional Scaling 
(MDS, Kruskal & Wish 1978); (d) the patterns in the biotic 
analysis are interpreted in terms of the environmental 
data, e.g. by superimposing the values for each physical 
or chemical variable in turn on the MDS ordnation. 

The merits of MDS techniques for ordination are now 
well-established in ecological applications, and com- 
parative studies have consistently demonstrated their 
reliability (e.g. Kenkel & Orloci 1986). The wider Field 
et al. (1982) strategy has been much quoted (about 
80 'non-self' citations are listed in the Science Citation 

Index), and Clarke (1993) reviews some practical expe- 
riences with this approach in the intervening decade; 
inevitably, some of the procedures have proved of less 
utility than others and certain classes of problem were 
not comprehensively addressed in the original work. 
The current paper concentrates on one of these - the 
linking of environmental data to biotic patterns. 

The asymmetric approach of the above paradigm, 
allowing the biota to 'tell their own story' before de- 
ducing links to specific environmental variables, has 
been adopted in a number of practical studies (e.g. 
Gray et al. 1988, 1990, Warwick et  al. 1990, Warwick & 
Clarke 1993). The graphical techniques for elucidating 
these links (e.g. as seen in Fig. 9 of Field et al. 1982) 
have tended to be rather inadequate however, in that 
only one environmental variable at a time is related to 
the biotic ordination. Thus, in a manner consistent with 
the above strategy, it has not been readily possible to 
answer questions such as: (i) How well is the commu- 
nity structure 'explained' by the full set of environ- 
mental variables measured? (ii) Which variables are 
redundant in the sense of failing to strengthen the 
'explanation' of biotic patterns once certain other vari- 
ables are taken into account? 
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The intention of this paper is to propose a simple 
method for addressing such questions and to examine 
its performance for several literature data sets. 

METHOD 

Concept 

Our approach relies on the premise that pairs of 
samples which are rather similar in terms of a suite of 
physico-chemical variables would be expected to have 
rather similar species composition, provided the rele- 
vant variables determining community structure (and 
only these variables) have been included in the analy- 
sis. Thus an ordination of these abiotic variables, rep- 
resenting the mutual environmental similarities among 
samples, should closely resemble the ordination of 
samples based on the biota. Selecting different combi- 
nations of the full environmental vaiiable set should 
allow us to determine an 'optimal' match of the sepa- 
rate biotic and abiotic ordinations. The omission of 
a key determinant will degrade the match, as will 
the inclusion of environmental variables that differ 
markedly between the samples but have no effect 
on community composition. 

Two related advantages are conferred by separating 
the construction of environmental and biotic ordina- 
t i o n ~ ,  only linking the two by a 'pattern matching' 
stage. 

(1) Separate definitions of among-sample similarity 
can be used for each. As noted earlier, species data 
requires a rather careful formulation of similarity, with 
appropriate trade-offs between the contributions of 
common and rarer species, and independence of the 
chosen coefficient from joint absences (as Field et al. 
1982 put it: 'estuarine and abyssal samples are [no 
more] similar because both lack outer shelf species'). 
A typical species abundance matrix is dominated by 
zero counts and this makes correlation (or Euclidean 
distance) a poor basis for assessing similarity. By con- 
trast, physico-chemical data matrices can usually be 
handled by conventional multivariate statistics. The 
variables can often be transformed to approximate 
normality - sometimes with different transformations 
needed for separate classes of variables - and corre- 
lation-based definitions of similanty are then to be 
preferred. 

(2) Few constraints are implied on the nature of the 
link between biota and environment. It is clear that the 
original premise of this section could be met under a 
typical mix of conditions in which the numbers (or bio- 
mass) of some species are linearly related to an 
environmental gradient, other species are non-linearly 
but still monotonically related to the gradient, and the 

remainder are strongly non-monotonic (unirnodal) over 
different ranges of one or several abiotic variables. In 
contrast, 'classical' statistical methods such as Canonical 
Correlation (e.g. Mardia et al. 1979) would compute 
correlations, and thus assume linear relationships, 
among and between the biotic and abiotic variables. 
This is quite unrealistic. 

How then should the 'pattern matching' be under- 
taken? One possibility is to use a Procustes analysis 
(Gower 1971) on the separate ordinations for biota and 
environmental variables. This is a technique for opti- 
mal matching of 2 different configurations of points 
with the same set of labels, using only rotation, rever- 
sal and shrinking of one plot in relation to the other, i.e. 
preserving the relative position of the points within 
each plot. Their goodness-of-fit is then assessed by 
some criterion involving 'squared distance apart' of the 
2 configurations. However, this has the disadvantage 
that it operates on ordinations in a specified number 
of dimensions. Thus the particuiar combination of 
environmental variables giving an optimal match of 
biotic and abiotic patterns may vary, depending on 
whether we view the sample relationships in 2- 
or 3-dimensional ordinations. This is undesirable. The 
complex data typically encountered scarcely ever 
admits of a perfect representation (zero stress) in a 
specified number of dimensions, so choice of dimen- 
sionality for convenient viewing of the patterns is 
inevitably somewhat arbitrary. A more objective crite- 
rion would be based on the triangular similarity (or 
dissimilarity) matrices underlying both ordinations. 
The definition of similarity of 2 samples will have been 
carefully selected, in an appropriately different way for 
biotic and abiotic variables, and it can therefore be 
argued that the similarity matrices are the funda- 
mental constructs, representing all that is known about 
sample relationships. 

Coefficient 

How then should one define a coefficient of agree- 
ment between the biotic and abiotic (dis)similarity 
matrices? An obvious candidate is a rank correlation 
computed between all the elements of the 2 triangu- 
lar matrices. A rank coefficient is an appealing choice 
because of the differing units and modes of construc- 
tion of the biotic and abiotic matrices (e.g. Bray- 
Curtis dissimilarities and Euclidean distances respec- 
tively); their common denominator is the relative 
ordenng of dissimilarities within each matrix. The 
argument for using only these ranks is further 
strengthened by the knowledge that the displays of 
sample relationships, through accurate (low stress) 
MDS ordinations, are effectively functions only of 
the rank (dis)similarities. 
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We have studied the performance in this context 
of standard rank correlation coefficients, such as 
Spearman's p, or Kendall's T (Kendall 1970), for 
several literature data sets, including the illustrations 
of the following section. Spearman's coefficient is 
defined as  

where (r,; i = 1, ..., N ]  = ranks of all the sample simi- 
larities calculated using the biotic data and (si; i = 

1, ..., N} = ranks of sample similarities defined from 
abiotic data. This correlation is computed by first 'un- 
peeling' the 2 triangular similarity (or dissimilarity) 
matrices in the same way, to give 2 vectors of length 
N = n(n - 1)/2, where n = number of samples. Each 
vector is then replaced by its ranks (the integers 1 to N, 
in some order) and Eq.  1 applied. 

Some points of clarification are  needed here. Firstly, 
similarities and dissimilarities are  always defined to be 
exactly complementary (whatever the coefficient used), 
in the sense that the rank order of similarities is the 
inverse of the rank order of dissimilarities. Secondly. 
high similarities correspond to low rank similarities, 
following the usual convention that the highest similar- 
ity is given a rank of 1,  the next highest a rank of 2 ,  and 
so on. Thirdly, note that the rank similarities (r,] (or { S , ] )  

are not a set of mutually independent variables, since 
they are  based on a large number (N)  of strongly inter- 
dependent similarity calculations. Standard statistical 
tests and confidence intervals for p, or T, derived for the 
case where the (r;}  and {S,] are ranks of independent 
and identically distributed observations, a re  therefore 
totally invalid. 

In itself, the above does not compromise the use of 
p,, say, as an  index of agreement of the 2 triangular 
matrices. One might expect, however, that it would be 
a less than ideal measure because of the fact that 
few of the equally-weighted difference terms in Eq. 1 
involve 'nearby' samples. In contrast, the premise at 
the beginning of this section makes it clear that we 
are  seeking a combination of environmental variables 
which attains a good match of the high similarities 
(low rank similarities) in the biotic and abiotic matri- 
ces. This is more a mechanistic point than an  inter- 
pretational one; it is simply that the value of p,, when 
computed from triangular similarity matrices, will 
tend to be swamped by the larger number of terms 
involving 'distant' pairs of samples. These have high 
rank values and the squaring of differences in the 
numerator of Eq. 1 makes the coefficient sensitive to 
small relative differences in these large ranks. For 
example, 15 community samples, strongly clustered 
into 5 groups of size 3, generate only 15 within-group 

similarities but 90 between-group terms; of impor- 
tance here would seem to be a search for abiotic vari- 
ables which discriminate the same 5 clusters - the 
precise disposition of the groups in relation to each 
other then seems of less significance, though this 
feature would tend to dominate the unweighted co- 
efficient. The point is seen again in the first example 
of the next section. 

Down-weighting of the larger ranks in Eq .  1 can be 
achieved by adding a denominator term, inside the 
summation, which is a n  increasing (and symmetric) 
function of ri and S;. Amongst a number of possibilities 
(inevitably), the algebraically simplest choice of 
weighting term is (r, + S,), giving coefficient 

where c is  chosen so that p, (like p,) takes values in the 
range -1 to + l .  More (or less) severe weighting could 
be achieved by higher (or lower) powers of (ri + S,) in 
the denominator. 

Algebraic manipulation shows that 

with extreme values p = -1 and +I corresponding 
respectively to the cases where the 2 sets of ranks are  
in complete opposition or complete agreement. The 
former case is unlikely to be attainable in practice be- 
cause of the constraints inherent in a similarity matrix; 
p will take values around zero if the match between the 
2 patterns is effectively random but p will typically be 
positive. 

The algebra also yields the alternative, and entirely 
equivalent, formulation 

where 

is the average over all i = 1, ...., N matrix elements of 
the harmonic mean of the ranks r, and S;. This suggests 
the use of the term harmonic rank correlation for the 
weighted Spearman coefficient p,, and this alternative 
formulation is (arguably) helpful in visualising the 
behaviour of p,, for example the fact that it is min- 
imised when the ranks (r,] and { S , }  are  exact reversals 
of each other. Ultimately, the efficacy of this (or a more 
severe) down-weighting of the larger rank similarities 
can only be judged by its performance in real and 
simulated applications; this issue is returned to in the 
later examples. 
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Procedure 

The above elements can now be put together to 
define the procedural steps, sketched in Fig. 1. 

(i) Biotic and abiotic data matrices are handled 
separately, initially transforming each according to the 
needs of the differing similarity measures (discussed 
further in 'Results'). 

(ii) The among-sample similarity matrix for the biota 
is constructed only once but the equivalent triangular 
matrix for the abiotic data is computed many times, in 
fact for all possible combinations of environmental 
variables at  each 'level of complexity' of explanation 
(variables taken singly, 2 at  a time, 3 at a time, etc.). 

(iii) The rank correlation (e.g. p,) between the biotic 
and abiotic triangular matrices is calculated in every 
case. The highest few coefficients at each level of 
complexity are tabulated, allowing the extent of irn- 
provement or deterioration in the match to be traced, as 
further variables are added. The examples given later 
suggest that p, will reach a maximum for some (proper) 
subset of the v abiotic variables, and the maximum p at 
each level will usually increase monotonically as the 
number of variables increases, up to the optimum com- 
bination, and then decrease monotonically (though with 
shallower slope) as more variables are added. This 
makes the optimum combination a very natural set of 
'best explanatory variables' of the biotic pattern. 

(iv) The final step is to display the biotic MDS in 
conjunction with ordinations of the most important 
environmental variable combinations; a sensible policy 
is often to plot the best (maximum p) k-variable config- 
uration, for k = 2, 3, 4, ..., v. This achieves 2 things: it 
places the absolute values of p in context (for example, 
p,, of 0.8 or more seems to correspond to a very close 
match), and it demonstrates the importance or other- 
wise of small improvements in p that may arise from 
increasing the complexity of the abiotic description (for 
example, it appears not to be appropriate to quote p, to 
more than 2 decimal places). 

Species 
numbers 
/b~omass 

Samples 
Dissimilarities 
between samples 

MDS ordination 

l 1 12 
Bray-Curtrs . . 

l l 4 l:::. + 
i I ..... 

l l l 1  I...... 

It should not be forgotten that this final display step 
is not definitive in the selection of the 'best match'. 
Indeed, if a 2-dimensional MDS is a rather poor repre- 
sentation of the sample relationships in the biotic data 
(stress >0.15, say) then there is no guarantee that 
the optimal p combination will 'look best' in visual 
comparisons of 2-dimensional ordination plots. The 
examples of the following section show, however, that 
where stress is low there is a high degree of concor- 
dance between conclusions suggested by ordinations 
and by formal comparison of p values: even modest 
increases in p, are reflected in improvements in the 
placing of one or more points in the abiotic plot relative 
to the biotic MDS. Note that such comparisons are 
aided if compatible ordination techniques are used for 
the separate biota and environmental analyses. Thus, 
whilst Principal Component Analysis (PCA) is the 
natural means of displaying the (suitably transformed) 
environmental data, corresponding to dissimilarities 
based on Euclidean distance, non-ri~eiric MDS of 
this Euclidean distance matrix will give a more strictly 
comparable ordination to the biotic MDS (the latter 
from Bray-Curtis dissimilarities). The comparative 
plots are then based largely on the data (rank similari- 
ties) that are used to define the p coefficient. This 
approach has therefore been adopted for the environ- 
mental data of the later illustrations though, in these 
cases, there are only minor differences between MDS 
on Euclidean distance and the corresponding PCA; 
this is to be expected when the higher-dimensional 
structure is well-represented in 2 dimensions. 

RESULTS AND DISCUSSION 

The methodology is dustrated by 3 examples of data 
analysis, covering different groups of marine biota 
(macrofauna, meiofauna and diatom communities), a 
spread of locations (in estuarine and coastal waters) 
and contrasting types of abiotic data (structuring of 
communities by pollution impact and by natural 
environmental variables). 

Exe estuary nematodes 

An instructive starting point is the data set used as 
I 1 "NK $ "r;""AT/ON an example in Field et al. (1982). The nematode com- 

j, 
: 

: ;l Eucl~dean ponent of benthic meiofaunal communities at several 
Abiotic , 4 1.. - I 2 l  74 

• • • inter-tidal locations in the Exe estuary, UK, was 
varlables ;--;I I I I i jj Using a 

5 

subset of l enumerated by Warwick (1971). Fourth-root trans- 
variables ' g 3 

formed abundances of 182 nematode species in 19 

Fig 1 Schematic hagram of the linking of biotic pattern to samples (each a total over 6 seasonal 'replica.tesl) were 

environmental variables: selection of abiotic variable subset subjected by et MDS, 
maximising rank correlation (p) between (dis)similaritymatrices employing Bray-Curtis sunilarities. The resulting ordi- 
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Fig. 2. Exe estuary nematodes. 
Non-metric multi-dimensional 
scaling (MDS) ordinations of 
the 19 sampling sites, based on: 
(A) transformed abundances of 
182 nematode species; (B) to 
(F) selected subsets of the 6 
environmental variables (see 
text). The associated 'matching 
coefficients' pw of environ- 
mental to biotic similarity 
patterns (Table 1A)  are: (B) 
0.76, (C) 0.80, (D) 0.40, (E)  
0.79 and (F) 0.77, Stress values 
for the 2-dimensional ordina- 
tions, using Kruskal's stress 
formula 1, are: (A) 0.05; (B) 0; 
(C) 0.04; (D) 0.07; (E) 0.04; and 

(F) 0.06 

MPD, WT, Ht  

10 
15 5 

H2S. Sat, MPD, %0rg 

1'- 
nation is shown in Fig. 2A a 2-dimensional plot pro- , ( 

viding an  excellent representation (stress is very low 
at 0.05). 

A suite of 6 environmental variables was recorded 
for each of the 19 sites (again averaged over the 6 
sampling occasions, where appropriate): median par- 
ticle diameter of the sediment (MPD), its organic 
content (% Org), depth of the blackened H2S layer 
(H2S), interstitial salinity (Sal), depth of the water table 
(WT) and height up the shore (Ht), the latter being 
appropriately scaled to tidal positions. 

Field et al. (1982) superimposed these variables one 
at a time on the faunal MDS, as symbols whose sizes 
reflect the magnitude of the environmental variable at  
each site. Their Fig. 9 shows consistent patterns in 
some variables but, to return to the questions posed in 
the 'Introduction', a re  there changes in these variables 
in combination which could be sufficient to account for 
division of the 19 sites into the 5 groups observed in 
Fig. 2A? (These 5 groups are also clearly delineated in 
the corresponding cluster analysis, Fig. 3 of Field et 
al. 1982). A corollary would ask if any of the abiotic 
variables were irrelevant to the biotic description, or 
positively prejudicial to a good explanation because 
they vary at  odds with the faunal pattern. Answering 
these questions by the procedure in the 'Method' 
section leads to the results of Table 1 and the plots of 
Fig. 2B to F. The latter are 2-dimensional MDS ordina- 
tions of several abiotic variable subsets, based on 
Euclidean distance matrices (or they can be regarded 
as PCA plots of environmental variables, since the 
difference is small in this case). 

Table 1A shows the combinations of variables which 
give rise to the largest rank correlations (pw) between 
the biotic and abiotic sample similarities, a s  the size of 

H2S, Sal, MPD 

17 
All 6 variables 

Table 1. Exe estuary nematodes. Combinations of environ- 
mental variables, taken k at a time, yielding the 'best 
matches' of biotic and abiotic similarity matrices for each k, as 
measured by (A) harmonic rank correlation pa, (weighted 
Spearman), and (B) standard Spearman coefficient ps. Bold 
type indicates the combination with maximum p overall. Sedi- 
ment variables are H2S: depth of H2S layer; Sal: interstitial 
salinity; MPD: median particle diameter; %0rg:  % organic 
content; Ht: height up the shore; WT: depth of water table 

A: Harmonic rank correlation 
k Best variable combinations (pa , )  

4 H2S, Sal, ,791 MPD, %Org H2S, Sal, . 7 8 )  MPD, Ht 

5 H2S, Sal, MPD, %Org, Ht ,,, 

,791 
6 H2S, Sal, MPD, %Org, Ht, WT 

,771 

B: Spearman rank correlation 
k Best variable combinations (ps) 

1 HzS % 0 r g  Sal ... 
(.71) (.64) (258) 

2 HiS,Sal His .  'X00rg H2S,MPD Sal, % 0 r g  ... 

. 8 0 )  (.76) ,731 . 68 )  
3 Has. Sa1,MPD H2S,SaI, %Org Has,  Y00rg. ~t ... 

,821 ,801 ,771 
4 H2S,Sal,MPD, %Org H2S, MPD, %Org,Ht 

( 3 3 )  ,801 
5 H2S,Sal, MPD, %Org,Ht ... 

,821 
6 H2S, Sal, MPD, %Org, Ht, WT 

,791 
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the subset of environmental variables increases. Thus, 
on its own, the variable which best groups the sites, in 
a manner consistent with the faunal pattern, is the 
depth of the H2S layer (p, = 0.62); next best is the 
organic content of the sediment (p, = 0.54), etc. Of 
course, since the faunal ordination is not essentially 
l-dimensional (Fig. 2A), one would not expect a single 
environmental variable to provide a very successful 
match, though knowledge of the H,S variable alone 
does distinguish points to the left and right of Fig. 2A 
(Sites 1 to 4 and 6 to 9 have lower values than for Sites 
5, 10 and 12 to 19, with Site 11 intermediate). 

The best 2-variable combination also involves depth 
of the H2S layer but adds the interstitial salinity. The 
correlation (p, = 0.76) is markedly better than for 
any other 2-variable subset. Fig. 2B displays the corre- 
sponding ordination; there are only 2 variables 
involved so, in effect, the figure is a simple scatter plot 
of H2S against salinity, rotated to aid visual comparison 
with Fig. 2A. The interstitial salinity distinguishes 
Sites 1 to 4 from 6 to 9 and Sites 5 and 10 from 12 to 19. 

The best 3-variable combination retains the above 2 
variables and adds the median particle diameter of the 
sediment; the matching coefficient rises to p, = 0.80 
and, in fact, this is the maximum value of p, for any 
size of subset. The ordination of the 3 variables is 
shown in Fig. 2C; it can be seen that the inclusion of 
median particle diameter draws Sites 6 and 11 closer 
and adds some meaningful differentiation of the 12 
to 19 group (e.g. note the proximate positions of Sites 
12 to 14). In fact, Fig. 2C now provides a surprisingly 
good match to Fig. 2A, with all the main conclusions 
about site relationships being apparent from both 
plots. The only obvious discrepancy is in the location of 
the (5, 10) cluster; in Fig. 2C this has changed places 
with the large 12 to 19 group. This is of no real signifi- 
cance: the faunal data clearly indicate that there are 
5 distinct clusters, with the (5, 10) group rather unlike 
anything else but closer to (6, 11) and 12 to 19 than the 
other groups; similar conclusions are apparent from 
the arrangement of sites in the environmental variable 
plot, Fig. 2C. The point to bear in mind is that the 
ordinations are only a visual aid. The matching is car- 
ried out on the relative similarities (i.e. which samples 
are 'close' to which other samples), and these are not 
constrained to a 2-dimensional layout. In fact, this 
example provides a good illustration of why a Pro- 
crustes approach to matching the faunal and environ- 
mental ordinations could be unsatisfactory. Fig. 2A and 
C could not be made to match closely by rotation, 
reflection or scaling operations; yet, as we have 
remarked, they tell a surprisingly similar story. 

At this point, it might not be unreasonable to query 
whether a roughly similar division of the sites would 
arise from any combination of (say) 3 environmental 

variables; perhaps the latter are so confounded with 
each other that they all tell essentially the same story 
(irrespective of the range of values observed for p,!). 
This can be simply refuted by plotting some combina- 
tions of environmental variables giving rise to lower 
matching coefficients. Fig. 2D shows the ordination of 
the 3 variables: median particle diameter, depth of the 
water table and height up the shore (the correspond- 
ing p, is 0.40). Whilst there are still some points of 
similarity, arising from the inclusion of median particle 
diameter, the match with Fig. 2A has largely broken 
down. 

More subtly, note what happens when further vari- 
ables are added to a description which already appears 
to provide a good match. Table 1A shows that the best 
4-variable combination simply adds knowledge of the 
% organic content to the best 3-variable combination, 
but this contributes nothing further to the explanation. 
In fact, p, declines slightly and this is reflected in the 
corresponding ordination Fig. ZE, with a parting of 
Site 9 from Sites 7 and 8 which is not observed in the 
faunal plot Fig. 2A. Adding the depth of the water 
table and height up the shore, the match is seen to 
deteriorate further, as indicated by the declining value 
of p and as observed in Fig. 2F: Site 14 is separated 
from Sites 12 and 13 and the spacing between Sites 1 
to 4 increases; neither of these changes mirrors the 
pattern in Fig. 2A. 

There is an interesting contrast here with an un- 
related, but in some ways analogous statistical tech- 
nique, that of multiple regression (e.g. Draper & Smith 
1981). Layouts such as Table 1 have the appearance of 
lattice structures from linear models, where the value 
in brackets would represent the residual sum of 
squares from fitting a subset model. There, the addi- 
tion of further explanatory variables guarantees an 
'improved fit' of the data points to the model, in the 
sense of always reducing the residual sum of squares. 
By contrast, here, the inclusion of environmental vari- 
ables which have no effect on community structure is 
not just neutral in its effect on the matching coefficient 
but is virtually guaranteed to decrease p. For example, 
Sites 1 to 4 cover the full range of possible sampling 
positions in the intertidal zone which, of course, ex- 
plains why the corresponding points are 'pushed apart' 
in Fig. 2F. This is not matched in Fig. 2A and height up 
the shore is clearly seen not to be a forcing variable of 
the overall community pattern in this data set. 

Note the satisfying consistency of the 'lattice' struc- 
ture in Table 1A: the best combination at one level is 
always a subset of the best combination on the Line 
below. The analysis has not been constrained to 
achieve this; all combinations have been evaluated 
and simply ranked. Furthermore, the introduction of 
some variables (e.g. depth of the water table and 



Clarke 81 Ainsworth Llnking comn nunlty structure to environment 211 

height up the shore) virtually never seems to result in 
increasing p, wherever this occurs in the lattice. There 
is no guarantee of such a simple structure and straight- 
forward interpretation in all cases, just as there is no 
guarantee of simplicity in interpreting multiple regres- 
sion results, though it is interesting to note that the 
other 2 illustrations of this paper also show a simple 
hierarchical pattern for the best variable combinations 
at each level of complexity. 

There remains one final point to make about this 
example. The analysis has been repeated using the 
simple Spearman rank correlation coefficient p, in- 
stead of the weighted coefficient p,; the results are in 
Table 1B. (It has also been repeated using Kendall's .T 

but with conclusions w h c h  are virtually identical to 
those using p,.) The absolute values of p, are seen to be 
generally higher than those of p,, and this is true of 
other examples also. In itself, this fact is of no signifi- 
cance (just as the values of Kendall's T tend on average 
to be lower than Spearman's p,; Kendall 1970, section 
1.21). What matters is whether the rankings of p values 
for the different variable combinations are much the 
same for p, and p,,; if so, the weighting has achieved 
nothing. In fact, the pattern of best variable combina- 
tions at each level is rather similar in Table 1A and B, 
but there is a difference in the ranlung of p values, with 
p, suggesting (albeit marginally) that a 4-variable set 
provides a better match than the best 3-variable set. 
There seems little evidence to support such a conclu- 
sion from the ordinations (contrast Fig. 2C and E with 
A) and,  indeed, some suggestion to the contrary in the 
separation of Site 9 from Sites 7 and 8, noted previ- 
ously. The weighting is clearly having some effect and,  
for the present examples at least, one that appears to 
improve concordance of the formal results with simple 
visual conlparisons of the respective (low stress) ordi- 
nations. This bears out the reasoning in the previous 
section that p, may be over-dominated by the larger 
dissimilarities, and the use of some form of weighting, 
as in p,, would seem advisable - at least for sample 
sizes of similar order to the current examples (n = 20). 

Messolongi lagoon diatoms 

Danielidis (1991) describes a study of diatom com- 
munities in the Messolongi, Aitoliko and Kleissova 
lagoons in western central Greece. Abundance data 
for 193 diatom taxa were collected from 17 sampling 
sites (Fig. 3) at 2 to 3 month intervals; the analysis here 
uses aggregated data over the 4 sampling times: June,  
August, October 1984 and January 1985. A suite 
of environmental variables for the 17 sites was also 
collected synchronously; these too have been aver- 
aged over the same sampling occasions. They consist 

WESTE 
CENTR 
GREEC 

b Aitoliko 

I Gulf of Patras I 

Fig. 3.  The 17 sampling sites, for d ~ a t o m  communities and 
associated env~ronmenta l  variables, in the Messolong~, 
Aitoliko and  Kleissova lagoons, western central Greece 

of levels of inorganic nitrogen, nitrate, nitrite, ammo- 
nia, silicate, phosphate, salinity, temperature, pH and 
dissolved oxygen. 

Table 2 presents the results of linlung biotic and 
environmental patterns, based on the harmonic rank 
correlation p, between respective similarity matrices. 
For each row of the table (complexity of environmental 
description) the best variable conlbinations are Listed 
in rank order, including (at least) all p values greater 
than that for the best variable combination in the row 
above. A simple hierarchical structure is again appar- 
ent for the optimal combination at  each level, with the 
overall maximum p occurring for the 5-variable subset: 
inorganic nitrogen, phosphate, salinity, silicate and 
dissolved oxygen. 

Fig. 4 shows the sample configurations from MDS 
analyses based on the biota (4th-root transformed 
abundances and Bray-Curtis dissimilarities) and on 
the best 2-, 5- and 10-variable combinations of 
environmental data (Euclidean dissimilarities). The 
concordance is striking, with the main outline of the 
community pattern (Fig. 4A) already apparent from 
information on only inorganic nitrogen and phosphate 
(Fig. 4B), and the optimum environmental combination 
(Fig. 4C) providing a near-perfect match. Additional 
variables contribute nothing further; including them 
all (Fig. 4D) is seen to degrade the match by, for 
example, poorer placing of Site 8 (separated from Site 
16) and Site 4 (now 'above' Site 15, separated from 
Sites 1 and 3).  

One could argue here that some degree of matching 
should be anticipated, in that the environmental vari- 
ables are not entirely abiotic; for example, measured 
silicate levels presumably reflect, in part, silica content 
of the diatom frustules. Nonetheless, the main conclu- 
sion cannot be gainsaid: the overall community struc- 



212 Mar. Ecol. Prog. Ser. 92: 205-219, 1993 

Table 2.  Messolong~ lagoon diatoms. Combinations of variables, k at time, giving the largest rank correlations p, between biotic 
and environmental similarity matrices; bold type indicates the best combination overall. In-N: inorganic nitrogen; Sal: salinity; 
0 2 :  dissolved oxygen; Temp: temperature; other abbreviations are standard. All variables except Sal and O2 are log-transformed 

k Best variable combinations (p,) 

1 In-N NO3 Sal Si02 . . . 
( - 7 5 )  ( - 6 4 )  ( .61) ( .38) 

2 In-N, PO, In-N, NO3 PO,, Sal PO,, No3 ... 

( .79)  ( . 7 4 )  ( - 7 4 )  (.741 
3 In-N, PO,, Sal In-N, PO4, NO3 In-N. PO,, Si02 In-N, Sal, SiO, . . . 

(.go) ( - 8 0 )  ( - 7 9 )  ( .78) 
4 In-N, PO,, Sal, Si02 PO,, Sal, Si02, NO3 In-N, PO4, 02, NOs In-N, PO,, Sal. O2 . . . 

~ 8 3 )  (.a01 ( . 7 9 )  
5 In-N. PO4, Sal. SO2.  O2 PO4, Sal, Si02. 02, NO3 In-N, PO4, Si02, 02, NO3 In-N, PO,, Sal, Si02, No3 

(.S61 (.a31 (.a31 ( - 8 2 )  
6 In-N, PO4, Sal, Si02, 02, NO, In-N, PO,, Sal, Si02, 0 2 ,  pH . . . 

0 6 )  (.a41 
7 In-N, PO,, Sal, Si02, 02, NO3, pH In-N, PO,, Sal, SiOz, 02, NO3, NH3 

( 3 5 )  (.a41 
8 in-N. PO,. Sdl, SiOz, 02, NQ3, pH, NHj . . . 

( 3 4 )  
9 In-N, PO4, Sal, Si02, O?, NO3, pH, NH,, NO2 

10 In-N, PO,, Sal. SO2,  02, NO3, pH, NH3, NO2, Temp 
( .79) 

ture from a large abundance matrix, heavily trans- tion. That the environmental and biotic variables be, 
formed so that many species contribute to the MDS in some sense, 'independently measured' is not a pre- 
pattern, is replicated almost perfectly through knowl- requisite of the method. We are not attempting at 
edge of only 5 environmental variables. This result has this stage to erect a formal statistical framework which 
obvious implications for prediction as well as explana- would permit hypothesis testing, construction of con- 

fidence intervals for p,, etc. Indeed, it is 
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tions en masse, when assessing the likely 
Fig 4.  Messolongl lagoon diatoms. MDS plots of the I f  sampling sites, validity of assumptions that will need to be 
based on: (A) transformed abundances of 193 diatom taxa; ( B )  to ( D )  the 
'best' 2-,  5- and 10-variable combinations of transformed environmental made about the data. Here, choice of trans- 

variables (see text). Matching coefficients p, (Table 2 )  are: (B) 0.79, (C) formation is important in the definition of 
0.86 and ( D )  0.79. Stress values are: (A)  0.08; (B)  0 ;  ( C )  0.08; and ( D )  0.08 Euclidean dissimilarity between pairs of 

12 

clear that p, could be exploited as a simple 
measure of agreement between the similarity 
structure underlying any 2 ordinations with 
the same label sets, however these are 
obtained. 

Another general point of practical impor- 
tance is also exemplified by the current data. 
Some of the environmental variables were in 
fact transformed prior to computation of the 
Euclidean dissimilarity matrix. The upper 
right-hand half of Fig. 5 shows why this was 
necessary. It is a 'draftsman plot', namely, an 
arrangement in a triangular array of simple 
scatter plots between pairs of environmental 
variables. The points in each plot are, of 
course, the values of the variables at the 17 
sites, in this case untransformed. Such plots 
can be a helpful way of examining observa- 
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Diss O2 Inorg-N SiO, PO4 Total P 

TRANSFORMED 
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Salinity Diss O2 In In-N In SiO, In PO4 

Fig. 5. Messolongi lagoons. 'Draftsman' plots (pairwise scatter plots) of selected environmental variables at the 17 sampling sites. 
Upper triangle: original values. Lower triangle: concentrations of inorganic nitrogen, silicate, phosphate and total phosphorus are 

log-transformed (note In = log,); salinity and dissolved oxygen remain untransformed 

samples, just as it is in defining Bray-Curtis dissimilar- 
ity for the species data. The use of Euclidean distance 
in the (normalised) environmental variable space is 
most effective if the data are approximately multi- 
variate-normally distributed; that is, pairwise relation- 
ships (if present) are linear and the data are not 
markedly skewed on any of the variable axes. 

The upper triangle in Fig. 5 indicates a marked right- 
skewness in most of the original variables, the excep- 
tions being salinity and dissolved oxygen, and a 
noticeable curvilinearity of the relation between 
inorganic nitrogen and salinity. (Note that, for clarity of 
presentation, Fig. 5 includes only those variables 
deemed important by the matching process; however it 
is necessary initially to compute the full draftsman plot, 
for all variables). The lower triangle in Fig. 5 depicts 
the same draftsman plot after suitable transformation 
of most variables; this is seen to have largely removed 
the widespread skewness and also the curvilinearity in 
the inorganic nitrogen versus salinity plot. Note that it 
is not usually appropriate to tinker with minor modifi- 
cations to transformations for individual variables. All 
that is necessary is a broad-brush approach in which 
related groups of variables, expected to behave in 
similar fashion (in terms of variance-mean relation- 
ships for example), are subjected to the same trans- 

formation. For concentration variables this will usually 
involve reduction in right skewness, so the choice is 
often simply between log (or 4th-root, having similar 
effect), square root and no transformation at all. Here, 
all environmental variables were log transformed, with 
the exceptions of salinity and dissolved oxygen, and 
one can have confidence from the resulting draftsman 
plot that a dissimilarity matrix calculated from 
Euclidean distance (on subsequently normalised vari- 
ables) is a fair summary of the sample relationships. 

The draftsman plot also serves another useful 'pre- 
processing' function. Note that Fig. 5 includes a vari- 
able not found in the analysis of Table 2, total phos- 
phorus; there were in fact 11 environmental variables 
originally recorded. Total phosphorus was omitted 
because of the very high degree of correlation it shows 
with phosphate in the (transformed) draftsman plot, 
Fig. 5. Whilst there would have been no technical diffi- 
culty in retaining both variables in the matching 
routine, there is little point in doing so. It doubles the 
number of combinations to search and for every com- 
bination involving phosphate, the parallel combination 
- in which phosphate is replaced by total phosphorus - 
would give a virtually identical p value. For example, 
the variable subset: inorganic nitrogen, total phos- 
phorus, salinity, silicate and dissolved oxygen yields a 
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p, of 0.86 (cf. Table 2) and the MDS of these 5 variables 
is indistinguishable from Fig. 4C. Clearly, no useful 
information could result from retaining both variables; 
no amount of statistical sophistication can ever disen- 
tangle effects of variables which are almost perfectly 
confounded (Clarke & Green 1988)! The suggested 
rule-of-thumb here is that variable sets whose mutual 
correlation coefficients (after suitable transformation) 
average more than about 0.95 should be pruned to a 
single representative. There may occasionally be good 
reason for retaining one variable in preference to 
others in the subset -perhaps it is causally implicated, 
from external evidence - but whichever measurement 
is chosen the interpretation must recognise, of course, 
that this variable may stand only as a proxy for other 
variables. Furthermore, the same is true of any envi- 
ronmental measurement identified as contributing to 
the optimal match; it may stand only as a proxy for 
another, unrecorded variable. 

I t  will be clear by now that the steps in the current 
example have been presented out of sequence. In 
fact it is desirable that a largely prescriptive approach 
is taken to the analysis, in the following order: a 
draftsman plot of all variables is used to select trans- 
formations and then to remove highly confounded 
variables, before any matching operations take place. 
Different transformations are likely to affect the 
conclusions - if sample similarities are represented in 
a different way there will almost inevitably be 
changes in the results of the matching process - but 
it seems unwise to search through several transfor- 
mations in an attempt to maximise the degree of con- 
cordance between environmental and biotic patterns. 
The risk of 'selection bias' is then greatly magnified. 
Our overall strategy is predicated on the assumption 
that suitable transformations and similarity measures 
have been chosen to allow valid and meaningful bio- 
logical representation of the samples by the respec- 
tive similarity matrices; only then do the comparisons 
begin. 

Firth of Clyde macrofauna 

A final data set is used to exemplify the recom- 
mended prescriptive sequence and to illustrate its 
application to a pollution study in which the environ- 
mental measurements are contaminant levels. Fig. 6 
shows a transect of 12 sampling sites across the 
sewage sludge disposal ground in the Firth of Clyde 
(Garroch Head), sampled in 1983 for abundance and 
biomass of soft-sediment macrobenthic species 
(Pearson 1987). Biomass readings of the 84 observed 
species are used here, for the reasons discussed in 
Warwick & Clarke (1993): when biomass information is 
available it can be argued to be a more biologically- 

. 3'- c - .  . a--<. 
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F ~ r t h  of Clyde 

Fig. 6. The 12 sampling sites, for macrofaunal communities 
and sediment contaminant variables, on a transect across 
the sewage-sludge dumping ground in the Firth of Clyde, 

western Scotland, UK 

relevant measure of how a community is structured. 
The environmental variables recorded from the 12 
sites consist of the depth of the water column and 
sediment measures of organic enrichment (% carbon 
and % nitrogen) and heavy metal concentrations 
(Cu, Mn, CO, Ni, Zn, Cd, Pb and Cr; T. H. Pearson & 
J. Blackstock, Scottish Marine Biological Association 
unpubl. report, 1984). 

On the basis of a draftsman plot of all 11 abiotic vari- 
ables, a log-transformation was seen to be appropriate 
for the concentration data, that is, all variables except 
the water depth. The resulting draftsman plot for the 
transformed data is given in Fig. 7. There is clearly a 
high degree of collinearity in 1 subset of the variables; 
note the plots of Pb against Zn, %C against Zn, Pb 
against Cu, etc. As pointed out in the previous 
example, nothing is to be gained by retaining all 4 of 
these variables in the analysis; they exhibit the same 
pattern across the transect and it could never be pos- 
sible to differentiate their effects. The suggested 
rule-of-thumb, that subsets with mutual correlation 
averaging more than about 0.95 should be replaced 
by a single representative, leads to the reduced set of 
8 variables: % C ,  %N, Cd, Ni, Mn, Cr, CO and water 
depth. 

The species biomass data is subjected to 4th-root 
transformation and a Bray-Curtis dissimilarity matrix 
computed. Table 3 then shows the results of matching 
this to the Euclidean dissimilarities from the trans- 
formed environmental variables. The results are again 
straightforward to interpret, with a simple hierarchical 
structure for the optimum combination at each level of 
complexity and an overall maximum p, of 0.79 for just 
3 environmental measurements: % carbon, % nitrogen 
and cadmium concentrations. 
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Fig. 7 Firth of Clyde dumpground. 'Drafts- 
man' plot for all measured environmental 
variables at the 12 sampling sites: depth of the 
water column, sediment carbon and nitrogen 
content and sediment concentration of 8 
heavy metals. All except water depth 

have been log-transformed 
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Some of the corresponding MDS plots are given in 
Fig. 8. The ordination for the biota (Fig. 8A) shows the 
clear trend of change in community structure passing 
from Site 1 to the sludge dumping area (centred at 
Site 6),  with a steady reversal of the trend as one 
moves on to Site 12; the communities at the extremi- 
ties of the transect are very similar. This major axis of 
change is largely replicated by the information on 
sediment organic content (Fig. 8B, p, = 0.75). Note, 
however, that there is additional structure in the biotic 
plot, for example the 'vertical' separation of Site 9, 
which is not well represented by the %C and %N 
information alone. Knowledge of Cd together with 
%C is seen to provide most of the missing structure 
(Fig. 8C, p, = 0.78), though the retention of %N pro- 
duces a marginal improvement, for example moving 
Site 10 away from Site 2, and Site 8 away from Sites 7 
and 5 (Fig. 8D, p, = 0.79). Of course, the 2 organic 
variables are closely related (though not entirely 
collinear), as is clear from the largely l-dimensional 
structure of Fig. 8B. The substitution of other metal 
concentrations for Cd, or their addition to it, results in 
deterioration of the match. 

Table 3. Firth of Clyde macrofauna. Combinat~ons of 
variables, k at a time, giving the largest rank correlations p, 
between biotic and abiotic similarity matrices; bold type indl- 
cates the best combination overall. Dep: depth of water 
column; other variables measure organic content (C, N) and 
heavy metal contamination (Cd, Ni, Mn, Cr, CO) of the sedl- 
ments. All variables except water depth are log-transformed 

k Best variable combinations ( p , )  

C N Cd ... 
( .70) ( .62) (.58) 

C, Cd C , N  Cd ,N C,Co 
( .78) (.75) (.74) 

C.Cd,N C,Cd,Co C,N,Mn . 

(.79) (.72) ( . 7 l )  
C,Cd,N,Ni  C,Cd,N,Co ... 

(.77) (.77) 
C,Cd,N,Ni,Mn C,Cd,N.Ni,Co ... 

(.71) (-71) 
C,Cd,N,Ni ,Mn,Cr C,Cd.N,Mn.Cr,Co ... 

(.68) (.68) 
C,  Cd, N, Ni, Mn, Cr. CO .. 

C, Cd,N,  Ni, Mn, Cr. Co. Dep 
( 5 8 )  
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data (Table 2). An exhaustive search may not 
always be necessary: (a) as explained earlier, 
the set of variables will often be reduced by 
excluding those which are collinear with 
other measures and can contribute nothing to 
the interpretation; (b) there may be situations 
in which specific variables are causally impli- 
cated, on external evidence, and it is desired 
to perform the matching process with these 
variables always included in the abiotic 
combination - there are no new issues of 
principle or practical difficulty in achieving 
this. (Again note the analogy to a multiple 
regression in which certain explanatory vari- 
ables are always fitted before the contribu- 
tions of others are assessed.) 

Fig. 8. Firth of Clyde macrofauna. MDS plots of the sampling sites across Computation time for each value of p, also 
the sludge dumpground (centred at Site 6), based on: (A) transformed increases a t  least in proportion to the square 
biomass of 84 macrofaunal species; (B) to (D) 3 combinations of carbon, 
nitrogen and cadmium levels (transfoimed) in the sedirnents. The the number of samples' n' the 

matching coefficients p, (Table 3) are: (B) 0.75; (C) 0.78; and (DJ 0.79. full computation for the Messolongi data 
Stress values are: (A)  0.04; (B)  0; (C) 0.01; and (D) 0.01 takes only about 15 min on an 80286 IBM PC 

(with standard maths CO-processor). 
The most interesting conclusion of this analysis is, The requisite software, termed the BIO-ENV pro- 

perhaps, that amuch-studied data set (e.g. Warwick et gram, is coded in Fortran and links to the in-house 
al. 1987, Warwick 1988), hitherto regarded largely as PRIMER package (Plymouth Routines In Multivariate 
an example of a simple organic enrichment gradient, Ecological Research), developed mainly by M. R. Carr, 
has additional biological structure which is amenable to run on IBM PC-compatibles at the Plymouth Marine 
to 'explanation' by this methodology. Of course, as Laboratory. This package was used to perform the 
noted for the previous example, there can be no guar- MDS analyses of this paper, essentially by the Kruskal 
antee that Cd concentration (for example) is directly non-metric algorithm (Kruskal & Wish 1978). 
causal in the shaping of the community structure; it 
may simply be collinear with unmeasured characteris- 
tics. Observational field studies always carry this Further questions 
caveat, causality being approached only through field 
intervention experiments and laboratory studies (also The BIO-ENV procedure proposed in this paper 
with their attendant difficulties of interpretation, e.g. should be regarded as in an embryonic state and there 
Underwood & Peterson 1988). is considerable scope for further theoretical and prac- 

tical investigation of its properties. A number of ques- 
tions immediately arise. 

(1) Is there a testing framework which would assess 
the 'statistical significance' of the optimal com bination 

Computation of environmental variables? And to what extent does 
the repeated computation of p,  encourage 'selection 

The calculations necessary for the methodology of bias' towards a more complex explanation than the 
this paper require adequate computing facilities but data truly support? The short answer to the first ques- 
are not generally prohibitive. Naturally, the computing tion has to be 'no'. It is unclear how a comprehensive 
burden increases sharply with the number of environ- testing framework could be constructed on the basis of 
mental variables, v. The number of combinations for the very weak assumptions that we have postulated 
whlch p, needs to be evaluated in an exhaustive about the nature of sample relationships in the data 
search is and the form of the link between biota and environ- 

ment. One simple test is possible however: that of v! G 2 V - l  
k = l  k ! ( v -  k)! ( 6 )  whether a specific environmental combination is 

'better than random' in its match to the biotic pattern, 
that is, 1023 combinations for the most extensive of the that is, a test of the null hypothesis that p,is effectively 
3 examples considered here, the Messolongi diatom zero. As noted earlier, it is not valid to examine this by 

CONCLUSIONS 
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standard tables or large sample normality approxima- 
tions, even if the unweighted Spearman p, coefficient 
is used. The standard tests are based on 'independent 
and identically distributed observations' underlying 
each set of ranks; the elements of a dissimilarity matrix 
are certainly not that! Instead, one can use a randomi- 
sation (permutation) test in which the sample labels 
in the environmental dissimilarity matrix, say, are  
randomly reassigned and the match p ,  to the biotic 
matrix recomputed. This operation is repeated on a 
large number of occasions, generating the spread of 
small positive (and negative) p, values that could be 
expected by chance if there is truly no relation be- 
tween biotic and abiotic patterns. The 'significance' of 
the genuine p, is then determined by where it falls in 
relation to the upper tail of this simulated probability 
distribution. 

One should not forget the 'selection bias' effects, on 
the overall significance level, of the large number of 
individual tests implicit in comparing the biotic pattern 
with the optimal environmental combination from an 
exhaustive search. A crude compensation for this 
would be to demand a very high individual signifi- 
cance level, for example, to reject the null hypothesis 
only if the observed p, is greater than that for any of 
the random permutations in 20(2"- 1) simulations. This 
would guarantee a n  'experiment-wide' significance 
level of p <0.05, although very conservatively since the 
(2'- l )  potential tests are strongly interdependent. This 
aspect could be improved upon but is of little impor- 
tance since the test itself is of limited applicability. 
Situations in which it is useful to test the hypothesis 
that there is no relationship between biotic and 
environmental patterns are  presumably rather rare. 
Practical interest will more likely centre around 
whether addition of an  explanatory variable 'signifi- 
cantly increases' a n  already non-zero value of p,. A 
formal statistical framework for such tests is, perhaps, 
too much to expect on the present assumptions (or lack 
of them). 

This is not as serious a s  it may at  first appear, a s  
evidenced by the analogy with multiple regression. It 
has long been recognised that the significance testing 
framework in, for example, stepwise multiple regres- 
sion (Draper & Smith 1981) is not without logical 
inconsistencies, and its most defensible role is as a n  
exploratory tool. As such, the main function of signifi- 
cance testing is then to provide a sensible 'stopping 
rule', since adding further explanatory variables - 
even entirely random ones - always produces some 
improvement in the residual sum of squares. By con- 
trast, the BIO-ENV procedure has a natural stopping 
rule in the propensity of p, to decrease with inclusion 
of unimportant variables. It seems intuitively clear 
that the addition of a totally irrelevant environmental 

variable, whilst it may occasionally accommodate 
some minor feature of the biotic ordination purely by 
chance, is certain to conflict strongly with many of the 
main features of the plot and,  overall, decrease the 
value of p,,. Thus the requirement to search through a 
large number of variable combinations, in determining 
the optimal match, is less likely to raise the spectre of 
selection bias than might at  first appear. Some prac- 
tical evidence for this can be  adduced from the co- 
herence of the lattice structures in the earlier examples 
(more comprehensive versions of Tables 1 to 3, not 
shown): what appear to be  irrelevant variables consis- 
tently degrade the match, virtually wherever they are 
included. There is clearly scope, however, for address- 
ing this issue through simulation studies. 

Another central feature of the proposed methodol- 
ogy is the simple visual assessment that can be  made,  
from the ordinations, of the significance (= importance) 
of a n  improvement in p,. It is well-known, of course, 
that what a scientist or layman understands by the 
word 'significance' does not always equate with 'statis- 
tical significance': differences that are established 
beyond reasonable statistical doubt can nonetheless be 
inconsequential. Thus, a marginal adjustment in the 
location of one sample in an  environmental plot may 
have no implications for the overall conclusions of the 
study, and the question of whether this adjustment 
leads to a 'statistically significant' improvement in the 
match may be academic. Above all, the BIO-ENVpro- 
cedure should be thought o f  as exploratory. In fact, just 
as it is desirable in multiple regression that a subset 
model be assessed on how well it explains a further, in- 
dependent data set, so the BIO-ENV procedure would 
benefit from a 2-stage approach. Only those environ- 
mental variables identified a s  contributing to the opti- 
mal match with the biotic data would be  analysed in a 
repeat study; variables making a marginal, spurious 
contribution to the original match (if any) would be 
almost certain not to feature in the second analysis. 

(2) Underprecisely what assumptions is the BIO-ENV 
procedure valid? The main techniques proposed for 
relating biotic to abiotic data are  linked in a natural way 
to the ordination methods used for display. Thus, the 
assumption that sample dissimilarities are  well- 
represented by Euclidean distance for both environ- 
mental and species data, and that abundances a re  
linearly related to environmental gradients, leads to 
classical Canonical Correlation (e.g.  Mardia et al. 1979) 
or the variant known as Redundancy Analysis (Rao 
1964). Essentially, all links within and between biotic 
and  abiotic variables are assumed to be adequately 
summarised by standard correlation coefficients, and  
the associated ordination technique is simply Principal 
Component Analysis. Similarly, the important method 
of Canonical Correspondence Analysis introduced by 
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C. J. F. ter Braak (Jongman et al. 1987) is derived from 
the assumption that the species abundances have uni- 
modal responses across the measured environmental 
gradients, and the dual relationships of biotic and 
abiotic data are accurately displayed by Correspon- 
dence Analysis, with its implicit definition of 'X2 dis- 
tance' as the measure of sample dissimilarity. 

Our stance has been to retain maximum freedom in 
choosing measures of sample similarity which are indi- 
vidually relevant to the biological and environmental 
contexts. These then lead to separate graphical repre- 
sentations, in appropriately flexible manner, by non- 
metric MDS ordination. (Note the contrast with the 
above methods, where the species-environment rela- 
tionships are embedded at an  earlier stage and will 
influence the individual representations of biotic and 
abiotic information.) MDS effectively relies only on the 
rank similarities, and the subsequent BIO-ENV proce- 
dure, itself only a function of these ranks, is therefore 
consistent with the chosen ordination technique. 
Selecting an  environmental subset to optimise the 
match of biotic and abiotic patterns is an intuitively 
plausible and seductively simple procedure, but it is 
far from clear what assumptions (if any) are being 
made about the form of the species-environment rela- 
tionships. There may be conditions under which the 
results are misleading; such possibilities could, in part, 
be examlned by simulation. 

(3) What is the likely range of practical application? 
Clearly the method requires that environmental data 
can genuinely be matched to biotic data site for site, or 
sample for sample. Presumably, the more closely envi- 
ronmental sampling is matched to the biotic material the 
better the chances of a good 'explanation', particularly 
for spatial studies. Note that the data sets of this paper 
are all examples of spatial, rather than temporal patterns 
of community structure. In fact, in 2 of the 3 cases, vari- 
ations through time have been deliberately removed by 
averaging across seasons. Of course, the mechanics of 
the method would allow the linking of matched biotic 
and abiotic time serjes from a single site but a greater 
degree of caution is necessary here and there are good 
reasons for expecting a lower rate of success: (a) Tem- 
poral autocorrelation within each series would not be 
well catered for. For example, the global randomisation 
test for complete absence of a match would be mislead- 
ing for serially-correlated data. (b) The environmental 
variables shaping community trends are less likely to be 
measurable concurrently with the biotic data. It may be 
necessary for the abiotic variables to incorporate lags in 
time (and even in space, in the context of pelagic data), 
and the scale of the linking procedure could then easily 
get out-of-hand. 

Neither of these caveats is specific to the current 
methodology; they are a reflection of the greater diffi- 

culty generally encountered in handling and inter- 
preting time-series data. 

For purely spatial studies, the BIO-ENV procedure 
has now been applied in a reasonably wide range of 
marine contexts. Apart from the 3 examples of this 
paper, Gee et al. (1992) employ it to assess meiofaunal 
community responses to differing physical factors and 
sediment concentrations of hydrocarbons and heavy 
metals, along a transect of the Elbe plume (German 
Bight). Agard et al. (1993) also use the program to 
examine the relation of tropical macrobenthic commu- 
nities to a suite of physical and chemical variables 
recorded at 31 stations in a coastal region of Trinidad. 
At an earlier stage of development, some of the 
methods of this paper were utilised by Warwick et al. 
(1991) to link intertidal macrobenthic invertebrate 
data, for 46 sites in 6 estuaries of southwest Britain, to 
static and dynamic physical characteristics of the 
estuarine sites. In addtion, Warwick & Clarke (1991) 
referred to this putative methodoivyy in several con- 
texts, including the sampling of macrobenthic commu- 
nities at  39 sites around the Ekofisk oilfield in the 
North Sea (Gray et al. 1990). Whilst further practical 
application, simulation studies and comparative trials 
are clearly desirable. the evidence so far suggests that 
these ideas can play a useful exploratory role in identi- 
fying potentjal agents in the shaping of community 
structure. Perhaps the technique's greatest strength is 
the relative simplicity of both the concept and the re- 
sulting graphical presentations, which non-speciahsts 
appear to find very accessible. 
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