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ABSTRACT: A basic tenet of nitrogen utilization in phytoplankton is that ammonium inhibits nitrate
uptake. Consequently, it is generally believed that little or no nitrate uptake occurs at ammonium
concentrations above ca 1 uM. A thorough review of field studies shows that the reduction of nitrate
uptake rate in the presence of ammonium is rarely so severe, and that it is a highly variable
phenomenon. To simplify quantification of the interaction between nitrate and ammonium uptake, it is
proposed that it be divided into an indirect interaction, preference, and a direct effect, inhibition. In
order to determine preference and inhibition it is necessary to measure uptake of each inorganic
nitrogen source alone and in the presence of increasing concentrations of the other nitrogen source.
Preference for ammonium uptake is manifested primarily in a higher V., and lower K, for ammonium
uptake than for nitrate uptake and is accentuated by low light and low nitrogen availability. However,
although ammonium is the preferred nitrogen source for uptake, growth rates on nitrate usually equal or
exceed those on ammonium. Inhibition of nitrate uptake by ammonium is much more variable, but
when separated from preference is less extreme. It is also enhanced by low light, but unlike preference,
it is greater when phytoplankton are N sufficient. Species differences are apparent for both preference
and inhibition, but there are only enough data for preference to determine how it varies among algal
groups. Finally, there are reports of low concentrations of ammonium stimulating nitrate uptake and of
nitrate inhibiting ammonium uptake. Such unexpected interactions along with variations in preference
and inhibition with species composition and environmental conditions may account for the variability
observed in field studies and will not be explainable or predictable until more is known about the
underlying biochemical mechanisms. Even though it is not possible at present to model nitrate uptake
accurately because of uncertainty about the interaction between ammonium and nitrate uptake, it is
quite evident that the simplistic view that nitrate uptake is reduced to zero if ammonium exceeds 1 uM
would often result in large underestimates of nitrate uptake and new production.

INTRODUCTION

Itisgenerally believed that therate of nitrate uptake by
phytoplankton is severely reduced by the presence of
ammonium. This effectis referred to either as 'inhibition’
of nitrate uptake by ammonium or ‘preference’ for
ammonium, and in its most extreme form it is believed to
result in no nitrate uptake above a threshold ammonium
concentrationofca 1 uM. Evidence for the negative effect
of ammonium on nitrate utilization arises from 3 sources:
(1) early laboratory studies of nitrate utilization in fresh-
water green algae (reviewed in Morris 1974), (2) early
field studies in marine ecosystems (Table 1), and (3)
theoretical considerations of the relative energy require-
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ments for the utilization of nitrate and ammonium, due to
the number of electrons required to reduce nitrate to
ammonium (Losado & Guerrero 1979, Syrett 1981). In
many of these early studies it was assumed that nitrate
uptake (transport into the cell) and reduction were so
tightly coupled that uptake of nitrate must be inhibited
by ammonium because the enzyme nitrate reductase is
strongly inhibited. It is now known that nitrate uptake
and reduction are frequently uncoupled during transient
conditions in marine phytoplankton (DeManche et al.
1979, Dortch et al. 1979, Collos 1982) and that nitrogen
uptake and assimilation are so complex that it is difficult
to explain the interaction between nitrate and
ammonium uptake by one simple mechanism.
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Table 1 (continued)
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Source

Comments

Inhibition
Vo + NH3+

Preference and Inhibition

Area

-NH

3

Vro

Vo
Vin,

+ Vuie.\

Vio;
Vo, + Vg,

Vo,
Vno, + Ving

Conway (1977)

0.55(2)

San Pedro, CA, USA

sewage outfall
Kaneohe Bay, HA, USA

Uptake measured from N Harvey & Caperon (1976)

0.1-0.5 NV

0.02-0.2 NV

0.02-0.28 NV

disappearance = net

uptake

Priscu et al. (1989)

0.64 (2)
0.28 + 0.178 (6)

Lake Fryxell, Antarctica

Dods et al. (unpubl.)

Flathead Lake, MT, USA
Freshwater resevoirs

Prochazkova et al. (1970)
Priscu & Priscu (1984)

NL

0.55

0.31(1)

Lake Taupo, New Zealand

Lake Kinneret, Israel

McCarthy et al. (1982)

1975-1977

0.02-0.43 NL

0.03-0.26 NL

0.04-0.26 NL

Berman et al. (1984)

1979-1980

0.75-1.00 (3)

0.08-0.37 NL

Takahashi & Saijo (1981)

0.06-0.1 NL

Lake Kizaki, Japan

® faccording to Eppley & Peterson (1979)

® Ratio of nitrate uptake in the presence of 1 M ammonium to that in its absence (control) for experiments conducted by adding increasing concentrations ot ammonium

to the same water. In some cases ambient ammonium in control was low but not zero. Number of separate experiments in parentheses

A thorough review of the literature, however, indi-
cates that ‘inhibition’ or 'preference’ is neither as uni-
versal nor as severe a phenomenon as is generally
believed (i.e.,, ammonium does not always 'inhibit’
nitrate uptake and even when it does, nitrate uptake
rarely ceases entirely). In addition, as will be described
in more detail later, it has also been reported that
nitrate can sometimes inhibit ammonium uptake and
that small amounts of ammonium may actually stimu-
late nitrate uptake. Furthermore, what is loosely called
‘inhibition” or 'preference’ is in fact several distinct
processes, which are affected differently by ammonium
and environmental conditions. Much of the confusion
about the effect of ammonium on nitrate uptake may
arise because most often it is the sum of these processes
which is measured, especially in the field. With the
renewed interest in measuring nitrate uptake as a
means of estimating new production and flux of carbon
out of the euphotic zone, it is time for a more rigorous
examination of the interaction between nitrate and
ammonium uptake. Until the process of nitrate uptake
is better understood, it will not be possible to model the
response of nitrate uptake to environmental conditions
or to model its relationship to productivity.

The purpose of this review is 3-fold. First, all of the
available field data on the interaction between nitrate
and ammonium uptake will be reviewed in order to
assess the validity of the current paradigm. Then, the
interaction will be redefined in terms of the 2 distinctly
different processes involved, so that it can be more
easily quantified. Finally, with these more rigorous
definitions, the ammonium/nitrate interaction will be
examined as a function of species identity, geographic
location, and environmental variables using suitable
published lab and field data. The goal is to develop a
more realistic model of the interaction between
ammonium and nitrate uptake which will allow more
accurate prediction, measurement, and explanation of
nitrate and ammonium uptake rates in natural phyto-
plankton assemblages.

EFFECT OF AMMONIUM ON NITRATE UPTAKE
IN THE FIELD

The interaction between ammonium and nitrate
uptake has been quantified by calculating 3 ratios at 1
uM ammonium from data compiled from as many areas
as possible (Table 1): (1) nitrate uptake/total nitrogen
uptake (f-ratio; Eppley & Peterson 1979) with total
uptake either including or not including urea uptake;
(2) nitrate uptake/ammonium uptake; and (3) nitrate
uptake in the presence of ammonium/nitrate uptake in
the absence of ammonium. While the latter is the pre-
ferred method for reasons which will be discussed later,
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all 3 ratios, when estimated at 1 uM, can be used to
judge the severity of the effect of ammonium on nitrate
uptake. The concentration of 1 uM was chosen because
it is most often cited as the threshold ammonium con-
centration that results in a pronounced decrease in
nitrate uptake rate. The f-ratios with urea are included
to maximize the data available, although the presence
of urea complicates interpretation in terms of the
interaction between nitrate and ammonium.

Several conclusions are immediately evident. (1)
Sometimes nitrate uptake in the presence of 1 uM
ammonium is considerably lower than ammonium
uptake, although rarely zero. (2) However, the degree
to which nitrate uptake is affected by ammonium is
quite variable and nitrate uptake at 1 uM ammonium
can equal or exceed ammonium uptake rates (Vno—/
Vuu: >1). In fact, sometimes nitrate uptake is not
related to ammonium concentration (Goering et al.
1970, Harvey & Caperon 1976, Ronner et al. 1983,
Kokkinakis & Wheeler 1987, Kristiansen & Lund 1989).
Furthermore, nitrate uptake may also be stimulated by
ammonium (Glibert et al. 1982b). (3) The ratio of
(nitrate uptake in the presence of 1 uM ammonium)/
(nitrate uptake in the absence of ammonium), tends to
show a less negative effect of ammonium than the other
ratios in Table 1 This is because the f-ratio and nitrate/
ammonium uptake ratios combine several processes
(‘preference’ and ‘inhibition’) involved in the nitrate/
ammonium interaction, whereas the ratio of nitrate
uptake with and without ammonium measure only
‘inhibition’, as will be discussed in a following section.
Other reports of simultaneous uptake of nitrate and
ammonium (Conover 1975b, Kuenzler et al. 1979, Har-
rison et al. 1982, 1983, 1985, Price et al. 1985, Collos et
al. 1989) and a preference for nitrate over ammonium
(Warfar et al. 1983, Harrison et al. 1987) could not be
readily tabulated in the format of Table 1 because the
data necessary for comparison were not included.

Another common method of assessing the interaction
of nitrate and ammonium uptake is to calculate the
relative preference index (RPI) for a nitrogen source
(McCarthy et al. 1977),

Fiieg
2PN
[NOj|
=N]

RPIno- =

where Py = thenitrateuptakerate; Zp~ = thesumofthe
uptake rates measured for all nitrogen sources; [NO3] =
the ambient nitrate concentration; and [2,] = the sum of
the concentrations of all the nitrogen sources measured.
Values < 1 indicate preference for ammonium and > 1
preference for nitrate. There are a number of problems

with this ratio which make it difficult to interpret. (1) It
cannot be calculated if the ambient nitrate is undetect-
able, which is precisely the time when nitrate might be
preferred, thus biasing conclusions. (2) The precision of
the RPI is low because of the error which results from
combining so many variables (Collos & Slawyk 1986}. (3)
Its numerical value can change in response to ambient
nitrogen concentrations without any changes in uptake
rate, so it does not necessarily have a physiological or
ecological basis (Paasche 1988). (4) This ratio is often
treated as anindicator of inhibition, sothatlow values are
interpreted as meaning that little or no nitrate uptake
occurs, whereasinfactitis anindicator of preference and
simply means that ammonium uptake proceeds at a
taster rate than nitrate uptake (see following sections for
further discussion). In general the RPIyo; is usually < 1
(McCarthy et al. 1977, Paasche & Kristiansen 1982,
Furnas 1983, Glibert & McCarthy 1984, Carpenter &
Dunham 1985, Cochlan 1986, Whalen & Alexander 1986,
Pennock 1987, Dortch & Postel 1989a). However, in a
very thorough study Harrison et al. (1987) compiled their
data from many different areas (467 measurements), and
obtained an overall RPIyo- of 0.97. Plotted by region it
was significantly > 1, indicating nitrate preference, for 2
areas (Mid-Atlantic Bight, Peru), < 1, indicating prefer-
ence for ammonium, for 3 studies (S. California Bight,
Scotian Shelf, Bedford Basin), and not significantly
ditfferent from 1, for 3 studies (E. Canadian Arctic 1978,
1980, Vineyard Sound). Less extensive data sets suggest
thatthe RPIjo; approaches I whennitrate concentrations
are high during the spring or as a result of mixing or
upwelling (Carpenter & Dunham 1985, Pennock 1987,
Dortch & Postel 1989a) or when phytoplankton are
nitrogen deficient (McCarthy et al. 1977, Paasche &
Kristiansen 1982, Furnas 1983, Glibert & McCarthy 1984,
Cochlan 1986, Whalen & Alexander 1986).

It has been hypothesized that nitrate will be preferred
or simultaneous uptake will be more likely in benthic
diatoms (Admiraal et al. 1987), coastal phytoplankton
(Pennock et al. 1987), large diatoms (Malone 1980,
Kokkinakis & Wheeler 1987}, or phytoplankton exposed
to frequent high pulses of both nitrate and ammonium
(Maestrini et al. 1986, Quéguiner et al. 1986). There are
too few data in Table 1 to generalize about the effect of
species preferences on regional variability, although the
question of species preference will be considered in later
sections when laboratory data are reviewed. Similarly,
some of the data in Table 1 suggest that environmental
conditions, such aslight and nitrogen availability, should
influence the interaction. Since it is difficult to quantify
these factors in the field, their influence will also be
determined from a review of laboratory results.

In conclusion, the original paradigm that nitrate
uptake decreases to very low levels or is effectively
zero at ammonium concentrations greater than 1 uM is
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not supported by the available data. Furthermore, there
is enormous variability in the degree to which
ammonium does affect nitrate uptake which is not
adequately explained by current models.

REDEFINING THE INTERACTION BETWEEN
AMMONIUM AND NITRATE UPTAKE

The interaction between ammonium and nitrate
uptake can be simplified by dividing it into 2 distinct
processes: an indirect interaction, which will be termed
preference, and a direct interaction, which will be
called inhibition. These 2 interactions are not mutually
exclusive; one or both can occur in phytoplankton.
They are, however, influenced differently by environ-
mental conditions, and vary in importance from species
to species. It is reasonably easy to measure preference
and inhibition separately in the lab, but much more
difficult in the field because it is necessary to measure
uptake of nitrate and ammonium in the absence of the
other, a condition rarely met in the field.

Preference for ammonium over nitrate means that
ammonium is more readily utilized than nitrate. Prefer-
ence is independent of the ammonium concentration,
and, in fact, can only be assessed by measuring nitrate
uptake in the absence of ammonium and ammonium
uptake in the absence of nitrate. Although this review
is concerned primarily with interactions between
nitrate and ammonium uptake, uptake measurements,
especially in the field, are often made over time periods
long enough to encompass uptake, assimilation, and
growth. Since the interaction between these processes
is complex, preference for one nitrogen source could be
manifested in a variety of ways. The maximum rate
(Vmax) for uptake of one nitrogen source may be higher
or the half-saturation constant (K;) may be lower than
for the other nitrogen source. There could be a time lag
in either the uptake or assimilation of one nitrogen
source that is not observed with the other. Finally,
growth rates might be greater on one nitrogen source
than the other. Any one or all of these indicate a true
preference for a particular nitrogen source. While
uptake or growth on the preferred nitrogen source
would be greater, uptake and growth on the other
nitrogen source can still occur, sometimes at rapid
rates, and independent of the concentration of the
preferred nitrogen source.

Inhibition results when the presence of one nitrogen
source prevents or reduces the uptake of the other. It can
only be quantified by comparing the uptake rate in the
absence of the inhibiting nitrogen source with uptake
rates in the presence of increasing concentrations of the
inhibitor. Thus, unlike preference, inhibition is depen-
dent on the concentration of the inhibitor. Although

inhibition is a term with a very precise biochemical
meaning related to a particular mechanism of interac-
tion, no such mechanism is implied here by its use.
Despite considerable research in this area, no mechan-
ism(s) has been proposed which can adequately explain
the complex interaction. Separating preference from
inhibition is a first simplification since the mechanisms
involved in each process are clearly quite different.
Each may be affected at more than one step in the
uptake and assimilation pathways and involve both
short-term and long-term processes, all of which vary
from species to species and with environmental condi-
tions. Thus, in this review an empirical approach to
quantifying inhibition and preference will be taken
which does not require greater understanding of the
underlying biochemical mechanisms.

METHODOLOGICAL PROBLEMS IN QUANTIFYING
INTERACTIONS BETWEEN AMMONIUM AND
NITRATE UPTAKE

In the following sections the available lab and field
data on preference and inhibition will be reviewed.
However, there are methodological problems which
complicate the interpretation of this data, aside from
the already complicated nitrate/ammonium uptake in-
teraction.

(1) Preference and inhibition cannot be separated and
quantified if controls involving nitrate uptake alone
and ammonium uptake alone are not measured.
This is difficult and often impossible in the field and
rarely done in the lab.

(2) Both preference and inhibition can involve one or
more steps in the nitrogen uptake, assimilation,
and growth pathways. Depending on the time
period over which ‘uptake’ measurements are
made, some assimilation and growth are also meas-
ured. How this affects measurements of preference
and inhibition in different species and under differ-
ent conditions is probably quite variable.

(3) Due to problems with calculating nitrogen uptake
rates, inhibition may appear to be greatest during
simultaneous uptake of nitrate and ammonium
(Dortch 1980, Collos 1987, Lund 1987).

(4) Both V., and K, for uptake are difficult to meas-
ure, especially in the field, since the rates of nitrate
and ammonium uptake vary with time, and the
variation is influenced by nitrogen supply and
possibly other environmental variables (reviewed
by Collos 1983, Goldman & Glibert 1983). In addi-
tion, there is often a large statistical uncertainty
associated with estimates of K.

(5) Regeneration of ammonium (and possibly nitrate?)
during incubations to measure nitrogen uptake in
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the field certainly affects ammonium uptake rates
(Glibert et al. 1982c) and may also affect the rela-
tive rates of nitrate and ammonium uptake.

(6) In the field variations in environmental conditions
which affect nitrate and ammonium uptake, but
cannot be easily quantified, can mask the effect of
ammonium on nitrate uptake.

(7) Both in the lab and the field a variety of methods
and protocols have been used for measuring nitro-
gen uptake which may make comparisons difficult.

The data, which will be discussed in the next section,
are subject, to different degrees, to these problems,
which probably enhances the apparent variability in
inhibition/preference, especially in the field where
experimental conditions are under less control. Future
experiments must minimize these methodological
problems in order to quantify the interaction between
nitrate and ammonium uptake.

ANALYSIS OF EXISTING DATA ON PREFERENCE

Preference in the laboratory can best be assessed by
comparing Vs, Or maximum growth rates (uyn«x) for
nitrate alone and ammonium alone (Table 2; Antia et
al. 1975). The Vp, for ammonium uptake usually
exceeds (by up to 11 times) or equals the V.. for
nitrate uptake (only 4 exceptions). Despite this marked
preference for uptake of ammonium, out of the 70
reports of relative growth rate on nitrate and
ammonium (Table 2; Antia et al. 1975), 22 indicate
better growth and 30 show the same growth on nitrate
compared with ammonium under some, but not neces-
sarily all, environmental conditions. The data for **C
uptake during growth on nitrate and ammonium are
too scanty (6 species) for comparison with the relative
Umax, although in no case is '*C uptake on nitrate
greater than ammonium. If the '"C uptake data are
ignored, preference for ammonium is manifested
primarily at the level of uptake rather than growth.

[t was hypothesized that a low K, for nitrate uptake in
comparison with ammonium uptake would indicate
preference for nitrate. However, in 16 out of 29 meas-
urements the K, for nitrate exceeds that of ammonium.
Not only does this demonstrate again a lack of prefer-
ence for nitrate, it is contrary to the prediction of Eppley
et al. (1969b) that a low V.., in this case for nitrate
(Table 2), would be paired with a low K. A low K, for
nitrate may not be required if nitrate is usually supplied
sporadically at high concentrations (Dortch et al. 1982).
Thus, both the K, and V.., for nitrate uptake indicate a
lack of preference for nitrate uptake.

There are just enough data to compare the relative
Umax and V.. for diatoms, dinoflagellates, cyanobac-
teria, chlorophytes, and others (Table 3). All but one

group, the chlorophytes, show a preference for
ammonium uptake but not for growth on ammonium.
The greatest extremes in this contrast are the diatoms
and the 'Other’ category, comprised primarily of small
flagellates. This is not inconsistent with Malone's {1980)
hypothesis that large diatoms would show a preference
for growth on nitrate and other studies which show that
ammonium may be taken up preferentially by small
phytoplankton (Glibert et al. 1982b, Harrison et al. 1983,
Nalewajke & Garside 1983, Probyn 1985, Koike et al.
1986, LeBouteiller 1986, Sahlsten 1987, Harrison &
Wood 1988, Kokkinakis & Wheeler 1988, Dortch &
Postel 1989a, Dodds et al. unpubl.), although such
preference is not always observed (Furnas 1983, Ronner
et al. 1983, Probyn & Painting 1985).

Inthe field the only indicators of preference which can
be examined are the K and V.4 for uptake (Table 4).
Sincein the field measurement of uptake of one nitrogen
source in the absence of the other is often not possible,
these measures of preference are not entirely free of the
possible influence of inhibition. However, the results are
essentially the same as in the laboratory cultures. The
Vmax for ammonium uptake exceeds or equals that for
nitrate uptake in all cases except for two in upwelling
areas. In general the values approach 1 (indicating equal
uptake of nitrate and ammonium at saturating concen-
trations) only in the spring orin upwelling areas, which is
consistent with the hypothesisthat thelarge phytoplank-
ton that bloom in those places or times depend mainly on
nitrate (Malone 1980). As in the lab, the K values for
nitrate generally exceed or equal those for ammonium,
indicating little preference for ammonium.

The '‘Comments’ in Tables 2 and 4, and other data
which could not be easily categorized in the tables,
show that preference can be modified considerably by
environmental conditions. Nitrogen deficiency elevates
the V. for ammonium uptake (reviewed in Collos
1983, Goldman & Glibert 1983). The effect on V. for
nitrate 1s quite variable (Dortch et al. 1982, Collos 1983,
Parslow et al. 1984) but in general there is at most a
small increase and, often, a decrease. Thus, nitrogen
deficiency may dramatically increase the preference
for ammonium. Further, when ambient nitrogen is
depleted, small phytoplankton often predominate,
which, as mentioned above, may prefer ammonium.

Since nitrate reduction can take up to one third of
photosynthetically produced reducing power (Losada
& Guerrero 1979, Syrett 1981}, it can be postulated that
preference for ammonium would be greater at low
light. Certainly, ammonium uptake appears to be less
light-dependent than nitrate uptake, with higher dark
uptake rates and less variation with light intensity
(Goering et al. 1964, Caperon & Ziemann 1976, Cloern
1977, Kuenzler et al. 1979, Nelson & Conway 1979,
Murphy 1980, Olson 1980, Nalewajko & Garside 1983,
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Table 3. Percent of reports® of specics preference for ammoni-
umP compiled from Table 2 and Antia et al. (1975)

Taxon % Preference NHY
\/.':I\I‘( n“)l\d\
Diatoms 65 (17) 16 (25)
Dinoflagellates 45 (11) 20 ()
Cyanobacteria 50 (4) 28 (14)
Chlorophytes 50 (4) 57 (7)
Other 100 (6) 26 (19)

¢ Number of reports given in parentheses. Duplicates or
conflicting reports for the same species counted seperately
since environmental conditions can influence preference
b Preference defined as in Table 2

Paasche et al. 1984, Whalen & Alexander 1984, Kanda
et al. 1985, Koike et al. 1986, Fisher et al. 1988},
although, again there are exceptions (Garside 1981,
Glibert et al. 1982a, Collos & Slawyk 1986, McCarthy &
Nevins 1986, Sahlsten 1987). For the few studies in
which preference can be assessed directly at different
light levels (Table 2), 5 species show increased prefer-
ence for ammonium at low light, one no difference, and
one less preference. However, one other species,
Thalassiosira pseudonana, showed greater preference
for ammonium at low light when maximum uptake
rates (Yin 1988) were compared but decreased prefer-
ence for ammonium at low light when growth rates
were considered (Thompson et al. 1989}. Since prefer-
ence for ammonium may be generally more evident
with uptake than growth, care must be taken in assess-
ing the effect of light on preference until there is more
data for relative V.« at different light levels.

Temperature can also affect the relative rates of
nitrate and ammonium uptake, but there is no consen-
sus about which is more temperature-dependent
(Cloern 1977, Kuenzler et al. 1979, Olson 1980, Tisch-
ner 1981, Glibert et al. 1982b, Whalen & Alexander
1984, Kanda et al. 1985).

In summary, preference for ammonium is manifested
primarily in a higher V... and a lower K, for
ammonium uptake than nitrate uptake. Preference for
ammonium uptake is not universal, and is least likely in
the spring in temperate regions or in upwelling areas
when large diatoms are thought to dominate. Further-
more, the most common environmental stresses
encountered by phytoplankton, low light or low nitro-
gen availability may increase the preference for
ammonium uptake. Despite the preference for
ammonium uptake, growth on nitrate is often as good
or better than that on ammonium. Finally, there is
considerable species variation in all aspects of prefer-
ence.

ANALYSIS OF EXISTING DATA ON INHIBITION

The inhibition of nitrate uptake by ammonium is a
highly variable process. In laboratory cultures it ranges
from no inhibition to complete inhibition and depends
on the species and environmental conditions (Table 5).
In general, inhibition varies with the degree of nitrogen
deficiency (Caperon & Meyer 1972, Eppley & Renger
1974, Bienfang 1975, Conway 1977, Tischner 1981,
Terry 1982), although Dunaliela tertiolecta (Caperon &
Meyer 1972) and Skeletonema costatum (Dortch &
Conway 1984) are exceptions. The nitrogen source
used for growth prior to exposure to both nitrate and
ammonium may predispose phytoplankton to different
degrees of inhibition (Dortch & Conway 1984, Dortch et
al. unpubl.). Finally, low light or darkness may increase
the likelihood of inhibition (Bates 1976, Ohmori et al.
1977), as would be expected from the earlier discussion
of the effect of light on preference. However, in Thalas-
siosira pseudonana ammonium stimulates nitrate
uptake in low light (Yin 1988). There are no data on the
variation of inhibition with temperature or size of phy-
toplankter. Because of the variability in the results in
Table 5, probably due to the many differences in
experimental design and conditions, it is not possible to
infer a pattern to the degree of inhibition for algal
species, either by size, taxonomic grouping, or location
where isolated.

There are very few field studies in which inhibition is
separated from preference, because of the need to
compare the nitrate uptake rates with and without
added ammonium (if ambient ammonium is high, no
suitable control is possible). Again it is apparent that
inhibition {Table 1} is quite variable but almost never
complete. Further, the degree of inhibition is much less
than would be expected from the Fratio (NOj3 uptake/
total N uptake), which combines both inhibition and
preference.

The threshold for the effect of ammonium on nitrate
uptake is quite variable, ranging in cultures from 0.1 to
90 uM (Table 5), and in the field from 0.1 to 15 uM
(Kuenzler et al. 1979, Toetz 1981, Paasche & Kristian-
sen 1982, Berman et al. 1984, Priscu & Priscu 1984,
Probyn 1985, Lipschultz et al. 1986, Quéguiner et al.
1986, Pennock 1987). Considerable variation would be
expected in thresholds because they probably result
from a number of interacting biochemical processes
(but the cause is currently unknown) and they are
defined differently in wvarious studies. Regardless,
nitrate uptake is rarely zero, and is often substantial,
even when the threshold is reached.

Much has been written about the biochemical
mechanism of ammonium inhibition of nitrate uptake.
Separating preference from inhibition is a first step in
clarifying the mechanism. It is also simplified by con-
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sidering the regulation of uptake separately from
assimilation. Even so, it is possible to hypothesize a
number of mechanisms (Table 5). This is not just an
academic question for several reasons. The mechanism
of inhibition may dictate how inhibition is affected by
environmental conditions. For example, if nitrate and
ammonium uptake compete for energy for transport
across the cell membrane (Ohmori et al. 1977, Terry
1982), then inhibition should be greatest in low light
or in the dark. As a second example, if external
ammonium is a competitive inhibitor of nitrate uptake,
the inhibition should be overcome by increasing the
nitrate concentration, but if ammonium is a non-com-
petitive inhibitor, then no amount of nitrate will
decrease the inhibition. As mentioned in a previous
section, the RPIyo; may be highest when phytoplank-
ton are nitrogen-limited and concentrations of all forms
of nitrogen are low (McCarthy et al. 1977, Paasche &
Kristiansen 1982, Furnas 1983, Glibert & McCarthy
1984, Cochlan 1986, Whalen & Alexander 1986, Probyn
1988) or when nitrate concentrations are very high
(Carpenter & Dunham 1985, Harrison et al. 1987, Pen-
nock 1987, Collos et al. 1989, Dortch & Postel 1989a).
While part of the discrepancy may be due to variations
in both preference and inhibition, knowledge of the
mechanism of inhibition might help explain the differ-
ences.

The mechanism will also dictate how nitrate uptake
can be described in a model. Current models fall into
several distinct categories: (1) a linear relationship
between nitrate uptake and ammonium concentration;
(2) a linear relationship between nitrate uptake and
nitrate and ammonium concentrations, which implies
competitive inhibition (Harrison et al. 1987, Collos
1989); (3) a non-linear relationship between nitrate
uptake and ammonium concentration based on non-
competitive inhibition (Zevenboom & Mur 1981la,
Nakamura 1985) or derived empirically (Hofmann &
Ambler 1988, Dodds et al. unpubl.). In order to compile
the data in Table 1, all the data from each study cited
were plotted as a function of ammonium concentration.
Ideally, the data could have been fit by one of these
approaches and the f-ratio, ratio of nitrate uptake/
ammonium uptake, or inhibition calculated at 1 uM
ammonium. In practice, even if the data could be fit
with one of the equations, the fit was generally poor
because at high ammonium concentrations (> 1 uM)
there are very few data points. At low ammonium
concentrations, while some nitrate uptake rates are
high, most are quite low, implying that other factors
besides external ammonium are influencing the
interaction between ammonium and nitrate uptake.
For example, none of these models can account for
changes in uptake which occur in response to environ-
mental conditions nor do they allow for regulation by

intracellular mechanisms (Table 5) as well as external
ammonium. With the renewed interest in using nitrate
uptake as a measure of new production and carbon flux
out of the euphotic zone, there is an increased need to
be able to model nitrate uptake in a way that realisti-
cally reflects the natural environment. This will only be
accomplished when the inhibitory mechanism is better
understood.

The inhibitory interaction between nitrate and
ammonium uptake is complicated by 2 other processes.
Besides ammonium inhibition of nitrate uptake, there
are also reports that nitrate inhibits ammonium uptake,
although to a lesser degree (Caperon & Ziemann 1976,
Ohmori et al. 1977, Terry 1982, Dortch & Conway 1984,
Yin 1988). Others have not observed such inhibition,
although they deliberately looked for it (Kuenzler et al.
1979, Zevenboom & Mur 1981a, Nakamura 1985, Lund
1987, Dortch et al. unpubl.). Secondly, it appears that
the presence of, usually, small amounts of ammonium
may stimulate nitrate uptake, even though larger
amounts inhibit (Conover 1975b, Caperon & Ziemann
1976, Glibert et al. 1982b, Yin 1988, Dortch et al.
unpubl.). Neither process fits the current view of the
interaction between nitrate and ammonium uptake.

CONCLUSION

In summary, the presence of ammonium does not
reduce nitrate uptake to the degree which is generally
believed. The apparent negative effect of ammonium
on nitrate uptake can be divided into 2 quite distinct
processes, preference for ammonium and inhibition of
nitrate uptake by ammonium. Some of what has been
called 'inhibition’ in the past is really the indirect result
of preference for ammonium, manifested primarily in a
higher V., and a lower K, for ammonium uptake than
nitrate uptake. Inhibition, resulting from the direct
effect of ammonium on nitrate uptake, does occur, but
is generally much less extreme and more vanable a
phenomenon than has been generally appreciated.
There is considerable variation between species in
both inhibition and preference to which there is at
present no apparent pattern. Furthermore, both are
strongly influenced by environmental conditions. It can
be hypothesized from the available data that prefer-
ence for ammonium will be maximal with low light and
nitrogen deficiency, whereas inhibition will be maxi-
mal with nitrogen sufficiency and low light. However, it
is already apparent that some species are exceptions to
these generalizations. Finally, it is difficult to incorpo-
rate the possibilities that ammonium stimulates nitrate
uptake or that nitrate inhibits ammonium uptake
within the framework of the current paradigm.

Although the interaction between nitrate and
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ammonium uptake has been studied at length, a funda-

mental understanding of the interaction is still lacking.

The review suggests 2 areas where future research

may be most useful:

(1) Experiments to determine the specific biochemical
mechanisms involved in preference and inhibition
and

(2) More studies of the variation in preference and
inhibition with species and environmental condi-
tions.

Two methodological recommendations can also be
made.

(1) Much of the experimental work on biochemical
mechanisms has utilized freshwater, green algal or
cyanobacterial weed species whose nitrogen utili-
zation may be quite different from most phyto-
plankton. A wider variety of more representative
species should be utilized for these kinds of studies.

(2) In order to at least separate preference and inhibi-
tion and to make it possible to observe nitrate
inhibition of ammonium uptake and stimulation of
nitrate by ammonium, appropriate controls (nitrate
uptake alone and ammonium uptake alone) and
ammonium uptake as a function of nitrate concen-
tration must also be measured, both in the lab-
oratory and the field.

With these recommendations in mind and an
appreciation for the complexity of the interaction
between nitrate and ammonium uptake, it should be
possible to design experiments which will lead to an
understanding of the underlying biochemical mecha-
nisms and thus, to a new paradigm to describe the
interaction. This in turn will make it possible to inter-
pret measurements of nitrate uptake in the field and
model the relationship of nitrate uptake to productivity
and phytoplankton processes in the ocean.
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