Historical Perspective and Evaluation of the Mechanisms by which Melatonin Mediates Seasonal Reproduction in Mammals

Pineal, melatonin and seasonal reproduction

  • Russel J Reiter Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, TX 78229, USA
  • Dun-Xian Tan Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, TX 78229, USA
  • Ramaswamy Sharma Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, TX 78229, USA
Keywords: cerebrospinal fluid, tanycytes, pars tuberalis, tuberalins, retrograde signals, anterograde signals, thyroid stimulating hormone, pars distalis, median eminence

Abstract

The discovery of melatonin and its photoperiod-regulated circadian rhythm were important milestones in defining the events associated with the regulation of seasonal reproduction in both short-day and long-day breeding mammals. By means of the seasonal changes in the duration of the nocturnal melatonin rise, which provides both clock and calendar information, animals adjust their reproductive state to the appropriate time of year. Thus, melatonin dictates the proper season for mating which ensures the optimal time for delivery of offspring. The photoperiodic information is transduced into a chemical messenger, melatonin, in the pineal gland. The initial studies related to the importance of day length and the melatonin message in impelling seasonal reproduction involved the use of photoperiod-sensitive rodents, especially several long-day breeding hamster species. Since then, a large group of interested reproductive biologists have extended these findings to numerous other mammals including short-day breeding ungulates. Moreover, critical information related to the molecular processes at the level of the pars tuberalis of the anterior pituitary and the mediobasal hypothalamus has been provided. In this scheme, the pars tuberalis, until recently an almost ignored portion of the adenohypophysis, has been identified as a critical intermediate between the melatonin signal and the functional state of the reproductive organs. It is somewhat ironic that two organs, the pineal gland and the pars tuberalis, which suffered with the image of vestigiality for so long have now been identified as unequivocally essential for this most basic and important function, i.e., regulating seasonal reproduction.

References

1. Lerner AB, Case JD, Takahashi Y, et al. (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80: 2587.
2. Kitay JI, Altschule MD. (1954) The Pineal Gland. Harvard University Press. Cambridge, MA.
3. Thieblot L, Le Bars. (1954) La Glande Pineale ou Epiphyse. Librairie Malonine SA, Paris.
4. Foa C. (1912) Hypertrophie des testicules et de la erete, apres extirpation de la glande pineale. Arch. Ital. Biol. 57: 233-252.
5. Izawa Y. (1926) On some anatomical changes which follow removal of the pineal body from both sexes of the immature albino rat. Am. J. Physiol. 77: 126-139.
6. Bing JF, Globus JH, Simon H. (1938) Pubertas praecox: a survey of the reported cases and verified anatomical findings, with particular reference to tumors of the pineal body. J. Mt. Sinai Hosp. 4: 935-965.
7. Kitay JI. (1954) Effect of pinealectomy on ovary weight in immature rats. Endocrinology 54:114-116.
8. Wragg LE. (1957) Effect of pinealectomy in the newborn rat. Am. J. Anat. 120: 391-402.
9. McCord CP, Allen FP. (1917) Evidences associating pineal gland function with alterations with skin pigmentation. J. Exp. Zool. 23: 207-224.
10. Lerner AB, Case JD. (1959) Pigment cell regulatory factors. J. Invest. Dermatol. 32: 211-219.
11. Sanchez-Barcelo E, Rueda N, Mediavilla MD, et al. (2017) Clinical uses of melatonin in neurological diseases and mental and behavioral disorders. Curr. Med. Chem. 24: 3851-3878.
12. Slominski AT, Hardeland R, Zmijewski MA, et al. (2018) Melatonin: a cutaneous perspective on its production, metabolism and functions. J. Invest. Dermatol. 138: 490-499.
13. Axelrod J, Weissbach H. (1960) Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 131: 1312.
14. Axelrod J, Weissbach H. (1961) Purification and properties of hydroxyindole-O-methyltransferase. J. Biol. Chem. 236: 211-213.
15. Wurtman RJ, Axelrod J. (1965) The formation, metabolism, and physiological effects of melatonin in mammals. Progr. Brain Res. 10: 520-529.
16. Quay WB. (1963) Circadian rhythm in rat pineal serotonin and its modification by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3: 473-479.
17. Wurtman RJ, Axelrod J, Phillips LS. (1963) Melatonin synthesis in the pineal gland: control by light. Science 142: 1071-1073.
18. Axelrod J, Wurtman RJ, Winget CM. (1964) Melatonin synthesis in the hen pineal gland and its control by light. Nature 201: 1134.
19. Quay WB. (1964) Circadian and estrous rhythms in pineal melatonin and hydroxyindole-3-acetic acid. Proc. Soc. Exp. Biol. Med. 115: 710-713.
20. Quay WB. (1956) Volumetric and cytologic variation in the pineal body of Peromyscus leucopus (rodentia) with respect of sex, captivity and day-length. J. Morphol. 98: 471-478.
21. Mogler K-H R. (1958) Das Endokrine System des Syrischen Goldhamster unter Beriicksichtigung des Naturalichen und Experimentellen Winterschlafs. Zeit Mosphol Okeol Tiere 47: 267-308.
22. Fiske VM, Bryant GK, Putman J. (1960) Effect of light on the weight of the pineal in the rat. Endocrinology 66: 489-495.
23. Wurtman RJ, Axelrod J. (1965) The pineal gland. Sci. Am. 213: 50-60.
24. Klein DC, Weller JL. (1970) Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169: 1093-1095.
25. Pelham RW, Ralph CL, Campbell IM. (1972) Mass spectral identification of melatonin in blood. Biochem. Biophys. Res. Commun. 46: 1236-1241.
26. Pelham RW. (1975) A serum melatonin rhythm in chickens and its abolition by pinealectomy. Endocrinology 96: 543-546.
27. Vaughan GM, Pelham RW, Pang SF, et al. (1976) Nocturnal elevation of plasm melatonin and urinary 5-hydroxyindoleacetic acid in young men: attempts at modification by brief changes in environmental lighting and sleep and autonomic drugs. J. Clin. Endocrinol. Metab. 42: 752-764.
28. Chu EW, Wurtman RJ, Axelrod J. (1964) An inhibitory effect of melatonin on the estrous phase of the estrous cycle of the rodent. Endocrinology 75: 238-244.
29. Wurtman RJ, Axelrod J, Chu EW. (1964) The relation between melatonin, a pineal substance, and the effects of light on the rat gonad. Ann. N. Y. Acad. Sci. 117: 228-230.
30. Hoffman RA, Reiter RJ. (1965) Pineal gland: influence on gonads of male hamsters. Science 148: 1609-1611.
31. Hoffman RA, Reiter RJ. (1966) Influence of compensatory mechanisms and the pineal upon light-induced gonadal atrophy in male hamsters. Nature 207: 638-639.
32. Reiter RJ, Hester RJ. (1966) Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters. Endocrinology 79: 1168-1170.
33. Hoffman RA, Reiter RJ. (1965) Rapid pinealectomy in hamsters and other small rodents. Anat. Rec. 153: 19-21.
34. Reiter RJ. (1972) Surgical procedures involving the pineal gland which prevent gonadal degeneration in adult male hamsters. Ann. Endocrinol. 33: 341-348.
35. Reiter RJ. (1980) The pineal gland: a regulator of regulators. Progr. Psychobiol. Physiol. Psychol. 9: 323-356.
36. Berson SA, Yalow RS. (1968) General principles of radioimmunoassay. Clin. Chim. Acta. 22: 51-69.
37. Reiter RJ, Johnson LY. (1974) Pineal regulation of immunoreactive luteinizing hormone and prolactin in light-deprived female hamsters. Fertil Steril. 25: 958-964.
38. Reiter RJ, Johnson LY. (1974) Depressant action of the pineal gland on pituitary luteinizing hormone and prolactin in male hamsters. Horm. Res. 5: 311-320.
39. Reiter RJ. (1975) Changes in pituitary prolactin levels of female hamsters as a function of age, photoperiod and pinealectomy. Acta. Endocrinol. 19: 43-50.
40. Stetson MH, Tate-Ostroff B. (1981) Hormonal regulation of the annual reproductive cycle of golden hamsters. Gen. Comp. Endocrinol. 45: 329-344.
41. Tamarkin L, Hutchinson JS, Goldman BD. (1976) Regulation of serum gonadotropins by photoperiod and testicular hormone in the Syrian hamster. Endocrinology 99: 1528-1533.
42. Reiter RJ. (1973) Pineal control of a seasonal reproductive rhythm in male golden hamsters exposed to natural daylight and temperature. Endocrinology 92: 423-430.
43. Reiter RJ. (1974) Influence of pinealectomy on the breeding capability of hamsters maintained under natural photoperiodic and temperature conditions. Neuroendocrinology 13: 366-370.
44. Bronson FH. (1982) Mammalian reproductive strategies: genes, photoperiod and latitude. Reprod. Nutr. Rev. 28: 335-347.
45. Reiter RJ, Vaughan MK, Blask DE, et al. (1974) Melatonin: its inhibition of pineal antigonadotropic activity in male hamsters. Science 185: 1169-1171.
46. Revel FG, Saboureau M, Pevet P, et al. (2006) Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology 147:4680-4687.
47. Simonneaux V, Ancel C, Poirel VJ, et al. (2013) Kisspeptins and RFRP-3 act in concert to synchronize rodent reproduction with seasons. Front. Neurosci. 7: 22.
48. Reiter RJ, Blask DE, Johnson LY, et al. (1976) Melatonin inhibition in the male hamster: its dependency on time of day of administration and on an intact and sympathetically innervated pineal gland. Neuroendocrinology 22: 107-116.
49. Tamarkin L, Westrom WK, Hamill AI, et al. (1976) Effect of melatonin on the reproductive systems of male and female Syrian hamsters: a diurnal rhythm in sensitivity to melatonin. Endocrinology 99: 1534-1541.
50. Reiter RJ. (1974) Circannual reproductive rhythms in mammals related to photoperiod and pineal function: a review. Chronobiologia 1: 365-395.
51. Stetson MH, Watson-Whitmyre M. (1986) Effects of exogenous and endogenous melatonin on gonadal function in hamsters. J. Neural Transm. 21: 55-80.
52. Pevet P. (1988) The role of the pineal gland in the photoperiodic control of reproduction in different hamster species. Reprod. Nutr. Rev. 28: 443-458.
53. Carter DS, Hall VD, Tamarkin L, et al. (1982) Pineal is required for testicular maintenance in the Turkish hamster (Mesocricetus brandti). Endocrinology 111: 863-871.
54. Jarjisian SG, Zucker I. (2011) Elimination of short-day melatonin signaling accelerates gonadal recrudescence but does not break refractoriness in male Turkish hamsters.
J. Biol. Rhythms 26: 130-135.
55. Reiter RJ, Tan DX, Manchester LC, et al. (2009) Melatonin and reproduction revisited. Biol. Reprod. 81: 445-459.
56. Lincoln GA. (1998) Photoperiod-melatonin relay in deer. Acta. Vet. Hung. 46: 341-356.
57. Karsch FJ, Bittman EL, Foster DL, et al. (1984) Neuroendocrine basis of seasonal reproduction. Rec. Progr. Horm. Res. 40: 185-232.
58. Bizzarri M, Provietti S, Cucina A, et al. (2013) Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Exp. Opin. Ther. Targets 17: 1483-1496.
59. Reiter RJ. (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49: 654-664.
60. Goldman BD. (1983) The physiology of melatonin in mammals. Pineal Res. Rev. 1: 145-182.
61. Alleva JJ. (1987) The biological clock and the pineal gland: how they control seasonal fertility in the golden hamster. Pineal Res. Rev. 5: 95-133.
62. Glass JD. (1988) Neuroendocrine regulation of seasonal reproduction by the pineal gland and melatonin. Pineal Res. Rev. 6: 239-259.
63. Turek FW. (1977) Antigonadal effect of melatonin in pinealectomized and intact male hamsters. Proc. Soc. Exp. Biol. Med. 155: 31-34.
64. Hoffman K. (1979) Photoperiod, pineal melatonin and reproduction in hamsters. Progr. Brain Res. 52: 397-415.
65. Yellon SM, Tamarkin L, Pratt BL, et al. (1982) Pineal melatonin in the Djungarian hamster: photoperiodic regulation of a circadian rhythm. Endocrinology 111: 488-492.
66. Elliott JA. (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed. Proc. 35:2 339-2346.
67. Stetson MH, Elliott JA, Menaker M. (1975) Photoperiod regulation of hamster testis: circadian sensitivity to the effects of light. Biol. Reprod. 13: 329-339.
68. Inouye ST, Turek FW. (1986) Horizontal knife cuts either ventral or dorsal to the hypothalamic paraventricular nucleus block testicular regression in golden hamsters maintained in short days. Brain Res. 370: 102-107.
69. Bernard DJ, Abuav-Nussbaum R, Horton TH, et al. (1999) Photoperiodic effects on gonadotropin-releasing hormone (GnRH) content and the GnRH-immunoreactive neuronal system of male Siberian hamsters. Biol. Reprod. 60: 272-276.
70. Gunduz B, Stetson MH. (2001) A test of the coincidence and duration models of melatonin action in Siberian hamsters. II. The effects of 4- and 8-hr melatonin infusions on testicular development of pinealectomized juvenile Siberian hamsters (Phodopus sungorus). J. Pineal Res. 30: 56-64.
71. Ropstad E. (2000) Reproduction in female reindeer. Anim. Reprod. Sci. 60-61:561-570.
72. Paoli A, Weladji RB, Holand O, et al. (2018) Winter and spring climate conditions influence timing and synchrony of calving in reindeer. PLoS One 13: e195603.
73. Brainard GC, Lewy AJ, Menaker M, et al. Dose-response relationships between light irradiance and the suppression of plasma melatonin in human volunteers. Brain Res. 454: 212-216.
74. Robert KA, Lesku JA, Partecke J, et al. (2015) Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. Royal Sci. 282: 20151745.
75. Lucas RJ, Peirson SN, Berson DM, et al. (2014) Measuring and using light in the melanopsin age. Trends Neurosci. 37: 1-9.
76. Bonmati-Carrion MA, Arguello-Prieto R, Martinez-Madrid MJ, et al. (2014) Protecting the melatonin rhythm through circadian healthy light exposure. Int. J. Mol. Sci. 15: 23448-23500.
77. Kim P, Oster H, Lehnert H, et al. (2018) Coupling the circadian clock to homeostasis: the role of period in timing physiology. Endocr. Rev. in press.
78. Lingappa JR, Zigmond RE. (2013) Limited recovery of pineal function after regeneration of preganglionic sympathetic axons: evidence for loss of ganglionic synaptic specificity. J. Neurosci 33: 4867-4874.
79. Klein DC. (2007) Arylalkylamine N-acetyltransferase: “the timenzyme.” J. Biol. Chem. 282: 4233-4237.
80. Reiter RJ, Tan DX, Kim SJ, et al. (2014) Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct. Funct. 219: 1873-1887.
81. Jethwa PH, Ebling FJ. (2008) Role of VGF-derived peptides in the control of food intake, body weight and reproduction. Neuroendocrinology 88: 80-87.
82. Wood SH, Laudon A. (2014) Clocks for all seasons: unwinding the roles and mechanisms of circadian and internal timers in the hypothalamus and pituitary.
J Endocrinol. 222: R39-R59.
83. Dardente H, Lomet D, Robert V, et al. (2016) Seasonal breeding in mammals: from basic science to applications and back. Theriogenology 86: 324-332.
84. Korf H-W. (2018) Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of circadian rhythms. Gen. Comp. Endocrinol. 258: 236-243.
85. Reiter RJ. (1972) Evidence for refractoriness of the pituitary-gonadal axis to the pineal gland in golden hamsters and its implications in annual reproductive rhythms. Anat. Rec. 173: 365-371.
86. Stetson MH, Watson-Whitmyre M, Tate-Ostroff B. (1983) Role of the pineal and its hormone melatonin in the termination of photorefractoriness in golden hamsters. Biol. Reprod. 29: 689-696.
87. Wood S, Laudon A. (2018) The pars tuberalis: the site of the circannual clock in mammals. Gen. Comp. Endocrinol. 258: 222-235.
88. Skinner DC, Malpaux, B. (1999) High melatonin concentrations in the third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140: 4399-4405.
89. Tricoire H, Moller M, Chemineau P, et al. (2003) Origin of cerebrospinal fluid melatonin and possible function in the integration of photoperiod. Reproduction Suppl. 61: 311-321.
90. Legros C, Chesneau D, Boutin JA, et al. (2014) Melatonin from cerebrospinal fluid but not from blood reaches sheep cerebral tissues under physiological conditions.
J. Neuroendocrinol. 26: 151-163.
91. Sheridon MN, Reiter RJ, Jacobs JJ. (1969) An interesting anatomical relationship between the hamster pineal gland and the ventricular system of the brain. J. Endocrinol. 45: 131-132.
92. Lewis JE, Ebling FJP. (2017) Tanycytes as regulators of seasonal cycles in neuroendocrine function. Front. Neurol. 8: 79.
93. Dandente H, Klosen P, Pevet P, et al. (2003) MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod.
J. Neuroendocrinol. 15: 778-786.
94. Klosen P, Bienvenu C, Demarteau O, et al. (2002) The MT1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J. Histochem. Cytochem. 50: 1647-1667.
95. Dardente H, Menet JS, Poirel VJ, et al. (2003) Melatonin induces Cry1 expression in the pars tuberalis of the rat. Brain Res. Mol. Brain Res. 114: 101-106.
96. Vanecek J. (1988) The melatonin receptors in rat ontogenesis. Neuroendocrinology 48: 201-203.
97. Bockmann J, Bockers TM, Vennemann B, et al. (1996) Short photoperiod-dependent down-regulation of thyrotropin-alpha and -beta in hamsters pars tuberalis-specific cells is prevented by pinealectomy. Endocrinology 137: 1804-1813.
98. Wittkowski W, Bockmann J, Kreutz MR, et al. (1999) Cell and molecular biology of the pars tuberalis of the pituitary. Int. Rev. Cytol. 185: 157-194.
99. Roa J, Tena-Sempere M (2007) KISS-1 system and reproduction: comparative aspects and roles in the control of female gonadotropic axis of mammals. Gen. Comp. Endocrinol. 153: 132-140.
100. Mayeri S, Visser TJ, Darras VM, et al. (2012) Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 153: 1528-1537.
101. Huang CY, Rasband MN. (2018) Axon initial segments: structure, function and disease. Ann. N. Y Acad. Sci. 142: 46-61.
102. Aizawa S, Sakata I, Nagasaka M, et al., (2013) Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin. PLoS One 8: e67118.
103. Helfer G, Ross AW, Morgan PJ. (2013) Neuromedin U partly mimics thyroid-stimulating hormone and triggers Wnt/β-catenin signaling in the photoperiod response of F344 rats.
J. Neuroendocrinol. 25: 1264-1272.
104. Dardente H, Wipe CA, Birnie MJ, et al. (2010) A molecular switch for photoperiod responsiveness in mammals. Curr. Biol. 20: 2193-2198.
105. Dupre SM, Miredzinska K, Duval CV, et al. (2010) Identification of E4a3 and Tac1 as long day signals in the sheep pituitary. Curr. Biol. 20: 829-835.
106. Castle-Miller J, Bates DO, Tortonese DJ. (2017) Mechanisms regulating angiogenesis underlie seasonal control of pituitary function. Proc. Natl. Acad. Sci. USA 114: E2514-E2523.
107. Yasuo K, Korf H-W. (2011) The hypophysial pars tuberalis transduces photoperiodic signals via multiple pathways and messenger molecules. Gen. Comp. Endocrinol. 172: 15-22.
108. Manchester LC, Poeggler B, Alvares FL, et al. (1995) Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system. Cell Mol. Biol. Res. 41: 391-395.
109. Reiter RJ, Tan DX, Galano A. (2014) Melatonin: exceeding expectations. Physiology (Bethesda) 29: 325-333.
110. Tan DX, Manchester LC, Liu X, et al. (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function in evolution in eukaryotes. J. Pineal Res. 54: 127-138.
111. Reiter RJ, Tan DX, Fuentes-Broto L. (2010) Melatonin: a multitasking molecule. Prog. Brain Res. 181: 127-151.
112. Reiter RJ, Rosales-Corral S, Zhou X, et al. (2017) Role of SIRT3/SOD2 signaling in mediating the antioxidant actions of melatonin in mitochondria. Curr. Trends Endocrinol. 9: 45-49.
113. Tan DX, Manchester LC, Esteban-Zabero E, et al. (2015) Melatonin as a potent and inducible antioxidant: synthesis and metabolism. Molecules 20: 448-454.
114. Manchester LC, Coto-Montes A, Boga JA, et al. (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59: 403-419.
115. Reiter RJ, Rosales-Corral S, Tan DX, et al. (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolutions best ideas. Mol. Cell. Life. Sci. 74: 3863-3881.
116. Aversa S, Pelligrino S, Barberi I, et al. (2012) Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J. Matern. Fetal Neonatal Med. 25: 207-221.
117. Reiter RJ, Rosales-Corral SA, Manchester LC, et al. (2013) Peripheral reproductive organ health and melatonin: ready for prime time. Int. J. Mol. Sci. 14: 7231-7272.
118. Cabrian-Perez JA, Casao A, Gonzalez-Arto M, et al. (2014) Melatonin and sperm biology: breaking paradigms. Reprod. Domest. Anim. 49 (Suppl 4): 11-21.
Published
2018-12-03
How to Cite
[1]
Reiter, R., Tan, D.-X. and Sharma, R. 2018. Historical Perspective and Evaluation of the Mechanisms by which Melatonin Mediates Seasonal Reproduction in Mammals. Melatonin Research. 1, 1 (Dec. 2018), 59-77. DOI:https://doi.org/https://doi.org/10.32794/mr11250004.