J Appl Biomed 18:143-151, 2020 | DOI: 10.32725/jab.2020.019

Sunitinib malate inhibits hemangioma cell growth and migration by suppressing focal adhesion kinase signaling

Wihan Scholtz, Peace Mabeta*
University of Pretoria, Faculty of Health Sciences, Department of Physiology, Angiogenesis Laboratory, South Africa

Sunitinib malate is a small molecule that targets multiple receptor tyrosine kinases and blocks their activity. Receptors targeted by sunitinib are implicated in tumor vascularization and are overexpressed by vascular tumors encountered in infants, namely, hemangiomas. Of note is that there is still no definitive treatment for these commonly occurring tumors of infancy. The purpose of this study was to investigate the effects of sunitinib malate on hemangioma using endothelial cells isolated from a murine model of the neoplasm (sEnd.2). The effects of the drug on cell growth were evaluated using the crystal violet assay and flow cytometry, while the scratch assay was employed to measure cell migration. Proteins associated with cell migration and angiogenesis were detected using western blotting. Sunitinib was investigated further to determine its effects on the production of reactive oxygen species, a parameter associated with the promotion of neovascularization in tumors. The results showed that sunitinib significantly reduced the growth of sEnd.2 cells by causing the cells to accumulate in the sub-G1 phase of the cell cycle, and also induced a significant decrease in the migration of these hemangioma cells (P < 0.05). The western blot assay showed a decrease in the expression of adhesion proteins, focal adhesion kinase and paxillin at IC50 doses, although the expression of cadherin did not change significantly (P < 0.05). In addition, transforming growth factor-β1 (TGF-β1) expression was decreased in sunitinib-treated cells at the same dose. The adhesion proteins as well as TGF-β1 regulate cell movement and have been implicated in tumor progression. Thus, sunitinib malate may have potential in the treatment of hemangiomas.

Keywords: Angiogenesis; Focal adhesion kinase; Hemangioma; Migration; Sunitinib
Grants and funding:

The authors acknowledge funding support from the National Research Foundation (Dr. Mabeta-Project 114403) and the University of Pretoria, South Africa. We thank Prof. P. Becker for the study design and for statistical support.

Conflicts of interest:

The authors declare no conflict of interests.

Received: June 9, 2020; Revised: November 25, 2020; Accepted: December 3, 2020; Prepublished online: December 7, 2020; Published: December 14, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Scholtz W, Mabeta P. Sunitinib malate inhibits hemangioma cell growth and migration by suppressing focal adhesion kinase signaling. J Appl Biomed. 2020;18(4):143-151. doi: 10.32725/jab.2020.019. PubMed PMID: 34907767.
Download citation

References

  1. Abedi H, Zachary I (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272(24): 15442-15451. DOI: 10.1074/jbc.272.24.15442. Go to original source... Go to PubMed...
  2. Akhurst RJ, Derynck R (2001). TGF-β signaling in cancer - a double-edged sword. Trends Cell Biol 11(11): S44-S51. DOI: 10.1016/S0962-8924(01)02130-4. Go to original source... Go to PubMed...
  3. Andrae N, Kirches E, Hartig R, Haase D, Keilhoff G, Kalinski T, Mawrin C (2012). Sunitinib targets PDGF-receptor and Flt3 and reduces survival and migration of human meningioma cells. Eur J Cancer 48(12): 1831-1841. DOI: 10.1016/j.ejca.2012.01.032. Go to original source... Go to PubMed...
  4. Bianchini F, Portioli E, Ferlenghi F, Vacondio F, Andreucci E, Biagioni A, et al. (2019). Cell-targeted c(AmpRGD)-sunitinib molecular conjugates impair tumor growth of melanoma. Cancer Lett 446: 25-37. DOI: 10.1016/j.canlet.2018.12.021. Go to original source... Go to PubMed...
  5. Braconi C, Bracci R, Cellerino R (2008). Molecular targets in gastrointestinal stromal tumors (GIST) therapy. Curr Cancer Drug Targets 8(5): 359-366. DOI: 10.2174/156800908785133169. Go to original source... Go to PubMed...
  6. Brossa A, Grange C, Mancuso L, Annaratone L, Satolli MA, Mazzone M, et al. (2015). Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation. Oncotarget 6(13): 11295-11309. DOI: 10.18632/oncotarget.3123. Go to original source... Go to PubMed...
  7. Cabrita MA, Jones LM, Quizi JL, Sabourin LA, McKay BC, Addison CL (2011). Focal adhesion kinase inhibitors are potent anti-angiogenic agents. Mol Oncol 5(6): 517-526. DOI: 10.1016/j.molonc.2011.10.004. Go to original source... Go to PubMed...
  8. Chim H, Armijo BS, Miller E, Gliniak C, Serret MA, Gosain AK (2012). Propranolol induces regression of hemangioma cells through HIF-1α-mediated inhibition of VEGF-A. Ann Surg 256(1): 146-156. DOI: 10.1097/SLA.0b013e318254ce7a. Go to original source... Go to PubMed...
  9. Di Desidero T, Fioravanti A, Orlandi P, Canu B, Giannini R, Borrelli N, Bocci G (2013). Antiproliferative and proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of Cyclin-D1. J Clin Endocrinol Metab 98(9): E1465-E1473. DOI: 10.1210/jc.2013-1364. Go to original source... Go to PubMed...
  10. Drabsch Y, ten Dijke P (2012). TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31(3): 553-568. DOI: 10.1007/s10555-012-9375-7. Go to original source... Go to PubMed...
  11. Feoktistova M, Geserick P, Leverkus M (2016). Crystal violet assay for determining viability of cultured cells. Cold Spring Harbor Protocols 2016(4): pdb-rot087379. DOI: 10.1101/pdb.prot087379. Go to original source... Go to PubMed...
  12. Grunewald ZI, Ghiarone T, Quinones-Morales M, Ramirez-Perez F, Martinez-Lemus L, Padilla J (2019). Activation of protein kinase C impairs endothelium-dependent vasorelaxation in isolated human omental resistance arteries. FASEB J 33(Suppl. 1): 685.616-685.616. DOI: 10.1096/fasebj.2019.33.1_supplement.685.16. Go to original source...
  13. Haas B, Weber-Lassalle K, Frötschl R, Eckstein N (2016). Is sunitinib a narrow therapeutic index drug? - A systematic review and in vitro toxicology-analysis of Sunitinib vs. Imatinib in cells from different tissues. Regul Toxicol Pharmacol 77(2016): 25-34. DOI: 10.1016/j.yrtph.2016.02.010. Go to original source... Go to PubMed...
  14. Ignarro LJ, Byrns RE, Buga GM, Wood KS (1987). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61(6): 866-879. DOI: 10.1161/01.res.61.6.866. Go to original source... Go to PubMed...
  15. Ionescu G, Mabeta P, Dippenaar N, Muir T, Fourie P, Shelver G (2008). Bleomycin plasma spill-over levels in paediatric patients undergoing intralesional injection for the treatment of hemangiomas. S Afr Med J 98(7): 539-540.
  16. Jain RK, Duda DG, Clark JW, Loeffler JS (2006). Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Rev Clin Oncol 3(1): 24-40. DOI: 10.1038/ncponc0403. Go to original source... Go to PubMed...
  17. Ji Y, Chen S, Li K, Li L, Xu C, Xiang B (2014). Signaling pathways in the development of infantile hemangioma. J Hematol Oncol 7(1): 13. DOI: 10.1186/1756-8722-7-13. Go to original source... Go to PubMed...
  18. Joseph JJ, Sangeetha D, Gomathi T (2016). Sunitinib loaded chitosan nanoparticles formulation and its evaluation. Int J Biol Macromol 82(2016): 952-958. DOI: 10.1016/j.ijbiomac.2015.10.079. Go to original source... Go to PubMed...
  19. Kang FC, Chen YC, Wang SC, So EC, Huang BM (2020). Propofol induces apoptosis by activating caspases and the MAPK pathways, and inhibiting the Akt pathway in TM3 mouse Leydig stem/progenitor cells. Int J Molec Med 46(1): 439-448. DOI: 10.3892/ijmm.2020.4584. Go to original source... Go to PubMed...
  20. Kirkin V, Mazitschek R, Krishnan J, Steffen A, Waltenberger J, Pepper MS, et al. (2001). Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activa- tion of VEGFR-3 rather than VEGFR-2. Eur J Biochem 268: 5530-5540. DOI: 10.1046/j.1432-1033.2001.02476.x. Go to original source... Go to PubMed...
  21. Kirkin V, Thiele W, Baumann P, Mazitschek R, Rohde K, Fellbrich G, et al. (2004). MAZ51, an indolinone that inhibits endothelial cell and tumor cell growth in vitro, suppresses tumor growth in vivo. Int J Cancer 112(6): 986-993. DOI: 10.1002/ijc.20509. Go to original source... Go to PubMed...
  22. Koch S, Claesson-Welsh L (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7): a006502. DOI: 10.1101/cshperspect.a006502. Go to original source... Go to PubMed...
  23. Kuang X, Qi M, Peng C, Zhou C, Su J, Zeng W, Chen X (2018). Propranolol enhanced the anti-tumor effect of sunitinib by inhibiting proliferation and inducing G0/G1/S phase arrest in malignant melanoma. Oncotarget 9(1): 802-811. DOI: 10.18632/oncotarget.22696. Go to original source... Go to PubMed...
  24. León-Mateos L, Mosquera J, Antón Aparicio L (2015). Treatment of sunitinib-induced hypertension in solid tumor by nitric oxide donors. Redox Biol 6: 421-425. DOI: 10.1016/j.redox.2015.09.007. Go to original source... Go to PubMed...
  25. Liu L, Kakiuchi-Kiyota S, Arnold LL, Johansson SL, Wert D, Cohen SM (2013). Pathogenesis of human hemangiosarcomas and hemangiomas. Hum Pathol 44(10): 2302-2311. DOI: 10.1016/j.humpath.2013.05.012. Go to original source... Go to PubMed...
  26. López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R, López E (2017). Paxillin: a crossroad in pathological cell migration. J Hematol Oncol 10(1): 50. DOI: 10.1186/s13045-017-0418-y. Go to original source... Go to PubMed...
  27. Mabeta P (2016). PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation. Acta Pharm 66(3): 399-410. DOI: 10.1515/acph-2016-0031. Go to original source... Go to PubMed...
  28. Mabeta P (2018). Oncosuppressors and oncogenes: Role in haemangioma genesis and potential for therapeutic targeting. Int J Mol Sci 19(4). DOI: 10.3390/ijms19041192. Go to original source... Go to PubMed...
  29. Mabeta P, Pepper MS (2009). A comparative study on the anti-angiogenic effects of DNA-damaging and cytoskeletal-disruptingagents. Angiogenesis 12(1): 81-90. DOI: 10.1007/s10456-009-9134-8. Go to original source... Go to PubMed...
  30. Mabeta P, Pepper MS (2011). Hemangiomas-current therapeutic strategies. International Journal of Developmental Biology 55(4-5): 431-437. DOI: 10.1387/ijdb.103221pm. Go to original source... Go to PubMed...
  31. Mabeta P, Pepper MS (2012). Inhibition of hemangioma development in a syngeneic mouse model correlates with bcl-2 suppression and the inhibition of Akt kinase activity. Angiogenesis 15(1): 131-139. DOI: 10.1007/s10456-011-9248-7. Go to original source... Go to PubMed...
  32. Mabeta P, Pepper MS (2015). Altered expression of platelet factor 4 and basic fibroblast growth factor correlates with the inhibition of tumor growth in mice. Biomed Pharmacother 69: 186-190. DOI: 10.1016/j.biopha.2014.11.018. Go to original source... Go to PubMed...
  33. Moravcik R, Stebelova K, Bohac A, Zeman M (2016). Inhibition of VEGF mediated post receptor signalling pathways by recently developed tyrosine kinase inhibitor in comparison with sunitinib. Gen Physiol Biophys 35(4): 511-514. DOI: 10.4149/gpb_2015055. Go to original source... Go to PubMed...
  34. Nikolaou VA, Stratigos AJ, Flaherty KT, Tsao H (2012). Melanoma: new insights and new therapies. J Invest Dermatol 132(3, Part 2): 854-863. DOI: 10.1038/jid.2011.421. Go to original source... Go to PubMed...
  35. Padua D, Massagué J (2009). Roles of TGFβ in metastasis. Cell Res 19(1): 89-102. DOI: 10.1038/cr.2008.316. Go to original source... Go to PubMed...
  36. Park M, Jung HL, Shim YJ, Kim HS, Yoon HS, Park SK, et al. (2020). Serum cytokine profiles in infants with infantile hemangiomas on oral propranolol treatment: VEGF and bFGF, potential biomarkers predicting clinical outcomes. Pediatr Res 88(5): 749-755. DOI: 10.1038/s41390-020-0862-1. Go to original source... Go to PubMed...
  37. Pla FA, Brossa A, Bernardini M, Genova T, Grolez G, Villers A, Bussolati B (2014). Differential sensitivity of prostate tumor derived endothelial cells to sorafenib and sunitinib. BMC Cancer, 14(1): 939. DOI: 10.1186/1471-2407-14-939. Go to original source... Go to PubMed...
  38. Podar K, C Anderson K (2011). Emerging therapies targeting tumor vasculature in multiple myeloma and other hematologic and solid malignancies. Curr Cancer Drug Targets 11(9): 1005-1024. DOI: 10.2174/156800911798073113. Go to original source... Go to PubMed...
  39. Quintieri L, Selmy M, Indraccolo S (2014). Metabolic effects of antiangiogenic drugs in tumors: Therapeutic implications. Biochem Pharmacol 89(2): 162-170. DOI: 10.1016/j.bcp.2014.02.018. Go to original source... Go to PubMed...
  40. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Vajdos F (2008). Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68(6): 1935-1944. DOI: 10.1158/0008-5472.can-07-5155. Go to original source... Go to PubMed...
  41. Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L (2011). Vascular endothelial growth factors and receptors: Anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 32(2): 88-111. DOI: 10.1016/j.mam.2011.04.004. Go to original source... Go to PubMed...
  42. Walter JW, North PE, Waner M, Mizeracki A, Blei F, Walker JW, et al. (2002). Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer 33(3): 295-303. DOI: 10.1002/gcc.10028. Go to original source... Go to PubMed...
  43. Weis SM, Cheresh DA (2011). Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med 17(11) 1359-1370. DOI: 10.1038/nm.2537. Go to original source... Go to PubMed...
  44. Xia C, Meng Q, Liu L-Z, Rojanasakul Y, Wang X-R, Jiang B-H (2007). Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67(22): 10823-10830. DOI: 10.1158/0008-5472.CAN-07-0783. Go to original source... Go to PubMed...
  45. Yeramian A, Sorolla A, Velasco A, Santacana M, Dolcet X, Valls J, Martí RM (2012). Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway. Int J Cancer 130(4): 967-978. DOI: 10.1002/ijc.26096. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.