J Appl Biomed 3:115-121, 2005 | DOI: 10.32725/jab.2005.014

Inhibitors of histone-deacetylase

Jiřina Vávrová1,*, Martina Řezáčová2, Jan Osterreicher1
1 Department of Radiobiology, School of Military Health Sciences Hradec Králové, University of Defence Brno, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
2 Institute of Medical Biochemistry, Faculty of Medicine Hradec Králové, Charles University Praha, Šimkova 870, 500 01 Hradec Králové, Czech Republic

Histone acetyltransferase and histone deacetylase activities determine the acetylation status of histones, and have the ability to regulate gene expression through chromatin remodeling. A controlled balance between histone acetylation and histone deacetylation appears to be essential for normal cell growth. In cancer cells, some genes are repressed by inappropriate recruitment of histone deacetylases. The histone deacetylase inhibitors (HDACI) belong to the class of anticancer drugs that are effective in killing proliferating and non-proliferating tumor cells. In this review we discuss molecular mechanisms involved in the induction of cell cycle arrest, differentiation and induction of apoptosis in tumor cells by HDACI.

Keywords: histone deacetylase inhibitors; apoptosis; cell cycle; chemotherapy

Received: January 24, 2005; Revised: April 14, 2005; Published: July 31, 2005  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vávrová J, Řezáčová M, Osterreicher J. Inhibitors of histone-deacetylase. J Appl Biomed. 2005;3(3):115-121. doi: 10.32725/jab.2005.014.
Download citation

References

  1. Beck G.R.Jr., Zerler B., Moran E.: Gene array analysis of osteoblast differentiation. Cell Growth Differ. 12:61-83, 2001.
  2. Blagosklonny M.V., Robey R., Sackett D.L. et al.: Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest and cytotoxicity. Mol. Cancer Therap. 11:937-941, 2002.
  3. Burgess A.J, Pavey S., Warrener R. et al.: Up-regulation of 21waf1/CIP1 by histone deacetylase inhibitors reduces their cytotoxicity. Mol. Pharmacol. 60:828-837, 2001.
  4. Burgess A., Ruefli A., Beamish H. et al.: Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23:6693-6701, 2004. Go to original source... Go to PubMed...
  5. Butler L.M., Agus D.B., Scher H.I. et al.: Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60:5165-5170, 2000. Go to PubMed...
  6. Caron H., van Schaik B., van der Mee M. et al.: The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science 291:1289-1292, 2001. Go to original source... Go to PubMed...
  7. Clausen M.R.: Butyrate and colorectal cancer in animals and in humans (mini-symposium: Butyrate and colorectal cancer). Eur. J. Cancer Prev. 4:483-90, 1995. Go to original source... Go to PubMed...
  8. Davie J.R.: Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Genet. Dev. 8:173-178, 1998. Go to original source... Go to PubMed...
  9. de Ruijter A.J., van Gennip A.H., Caron H.N. et al.: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370:737-749, 2003. Go to original source... Go to PubMed...
  10. Glaser K.B., Staver M.J., Waring J.F. et al.: Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors. Defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther. 2:151-163, 2003.
  11. Gottlicher M.: Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol. 83:S91-92, 2004. Go to PubMed...
  12. Gottlicher M., Minucci S., Zhu P. et al.: Valproic acid defines a novel class of HDAC inhibitors inducing differentiatiation of transformed cells. EMBO J. 20:6969-6978, 2001. Go to original source... Go to PubMed...
  13. Gui C.Y., Ngo L., Xu W.S., et al.: Histone deacetylase (HDAC) inhibitor activation of p21 WAF1 involves changes in promotor-associated proteins, including HDAC1. PNAS 101:1241-1246, 2004. Go to original source... Go to PubMed...
  14. Jacobs R.: Role of dietary factors in cell replication and colon cancer. Am. J. Clin. Nutr. 48 (Suppl 3) :775-779, 1988. Go to original source... Go to PubMed...
  15. Hofmanová J., Vaculová A., Kozubík A.: Polyunsaturated fatty acids sensitize human colon adenocarcinoma HT-29 cells to death receptor-mediated apoptosis. Cancer Lett. 218:33-41, 2005. Go to original source... Go to PubMed...
  16. Kelly W.K., Richon V.M., O'Connor O. et al.: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. 9:3578-3588, 2003.
  17. Kim Y.K., Han J.W., Woo Y.N. et al.: Expression of p21 Waf1/Cip1 through Sp1 sites by histone deacetylase inhibitor apicidin requires PI 3-kinase-PKCδ signaling pathway. Oncogene 22:6023-6031, 2003. Go to original source... Go to PubMed...
  18. Kuendgen A., Strupp C., Aivado M. et al.: Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 104:1266-1269, 2004. Go to original source... Go to PubMed...
  19. Leskov K.S., Klokov D.Y., Li J. et al.: Synthesis and functional analyses of nuclear clusterin, a cell death protein. J. Biol. Chem. 278:11590-11600, 2003. Go to original source... Go to PubMed...
  20. Luo R.X., Dean D.C.: Chromatin remodeling and transcriptional regulation. J. Natl. Cancer Inst. 91:1288-1294, 1999. Go to original source... Go to PubMed...
  21. Luger K., Richmond TJ.: The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8:140-146, 1998. Go to original source... Go to PubMed...
  22. McIntyre A, Gibson P.R., Young G.P.: Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34:386-391, 1993. Go to original source... Go to PubMed...
  23. Nebbioso A., Clarke N., Voltz E. et al.: Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Med. 11:77-84, 2005. Go to original source... Go to PubMed...
  24. Qiu L, Burgess A., Fairlie D.P. et al.: Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell 11:2069-2083, 2000. Go to original source... Go to PubMed...
  25. Ragione F.D., Criniti V., Pietra V.D. et al.: Genes modulated by histone acetylation as new effectors of butyrate activity. FEBS Lett. 499:199-204, 2001. Go to original source... Go to PubMed...
  26. Richon V.M., Sandhoff T.W., Rifkind R.A. et al.: Histone deacetylase inhibitor selectively induces p21 WAF1 expression and gene - associated histone acetylation. PNAS 97:10014-10019, 2000. Go to original source... Go to PubMed...
  27. Rosato R.R., Almenara J.A., Yu C. et al.: Simultaneous activation of the intrinsic and extrinsic pathways by HDAC inhibitors and TRAIL synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol. Cancer Ther. 2:1273-1284, 2003.
  28. Rosato R.R., Grant S.: Histone deacetylase inhibitors in clinical development. Expert Opin. Investig. Drugs 13:21-38, 2004. Go to original source... Go to PubMed...
  29. Rosato R.R., Almenara J.A.,Yu C. et al.: Evidence of a functional role for p21WAF1/Cip1 down-regulation in synergistic antileukemic interactions between the histone deacetylase inhibitor sodium butyrate and flavopiridol. Mol. Pharmacol. 65:571-581, 2004. Go to original source... Go to PubMed...
  30. Suenaga M., Soda H., Oka M. et al.: Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int. J. Cancer 97:621-625, 2002. Go to original source... Go to PubMed...
  31. Vrana J.A., Decker R.H., Johnson C.R. et al.: Induction of apoptosis in U 937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. 0ncogene 18:7016-7025, 1999. Go to original source...
  32. Warrell R.P., He L.Z., Richon V. et al.: Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl. Cancer Inst. 90:1621-1925, 1998. Go to original source...
  33. Wu J.T., Archer S.Y., Hinnebusch B. et al.: Transient vs. prolonged histone hyperacetylation: effects on colon cancer cell growth, differentiation, and apoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G482-G490, 2001. Go to original source... Go to PubMed...
  34. Yoshida M., Kijima M., Akita M. et al.: Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265:17174-17179, 1990. Go to original source...
  35. Yoshida M., Furumai R., Nishiyama M. et al..: Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother. Pharmacol. 48(Suppl.11):20-26, 2001. Go to original source... Go to PubMed...