J Appl Biomed 2:131-140, 2004 | DOI: 10.32725/jab.2004.016

Regulation of circadian rhythms

Josef Berger
Faculty of Health and Social Studies, University of South Bohemia in České Budějovice, Czech Republic

The human circadian system is evidently regulated by components which can be found in the retina (light input), a suprachiasmatic nucleus in the hypothalamus (clock genes) and the pineal gland (melatonin synthesis). Clock genes are interdependent through two intracellular feedback loops. The pineal gland is not the single important producer of melatonin, as immune cells can also produce this hormone. Immune cells contain active clock genes as SCN cells and we can suggest that the regulation of the circadian system is a component of the neuroimmune regulation of the organism. The endogenous character is dominant in SCN, which is modulated by darkness and which synchronizes organisms to the light/dark regime including immunity. The exogenous character seems to be dominant in the immune system which synchronizes the organism including SCN cells to other environmental stimuli. The mathematical theory of chaos shows that the circadian activity of a cell is derived from ultradian metabolic rhythms; these rhythms support the stability of living systems which can be changed by a limited repertoire of interventions. The complexity of neuroimmune interactions perhaps explains why we are far from knowing the mechanism concerning the regulation of biorhythms despite the vast number of related scientific publications.

Keywords: circadian rhythm; chaos; clock gene; suprachiasmatic nucleus; melatonin; immune system

Received: May 17, 2004; Revised: June 10, 2004; Published: July 31, 2004  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Berger J. Regulation of circadian rhythms. J Appl Biomed. 2004;2(3):131-140. doi: 10.32725/jab.2004.016.
Download citation

References

  1. Allada R.: Circadian clocks: a tale of two feedback loops. Cell 112: 284-286, 2003. Go to original source... Go to PubMed...
  2. Aon MA, S. Cortassa, D. Lloyd: Chaotic dynamics and fractal space in biochemistry: simplicity underlies complexity. Cell Biol. Int. 24: 581-587, 2000. Go to original source... Go to PubMed...
  3. Badiu C.: Genetic clock of biologic rhythms. J. Cell. Mol. Med. 7: 408-416, 2003. Go to original source... Go to PubMed...
  4. Berger J.: Biorhythms (In Czech). Biol. Listy 45: 161-179, 1980.
  5. Berger J.: Seasonal influences on circadian rhythms in the blood picture of SPF rats housed under artificial illumination. Folia Haematol. 110: 55-70, 1983.
  6. Berger J.: Haematological preclinical recording of adverse drug reactions-current status, problems, and needs. Part I: Standardization of experiments in relation to haematological examination. Folia Haematol. 114: 1-115, 1987.
  7. Berger J.: Why do circadian biorhythm age? J. appl. Biomed. 1: 77-84, 2003. Go to original source...
  8. Blask D.E., L.A. Sauer, R.T. Dauchy: Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr. Top. Med. Chem. 2: 113-132, 2002. Go to original source... Go to PubMed...
  9. Butcher G.Q., B.Y. Lee, K. Obrietan: Temporal regulation of light-induced extracellular signal-regulated kinase activation in the suprachiasmatic nucleus. J. Neurophysiol. 90: 3854-3863, 2003. Go to original source... Go to PubMed...
  10. Cardinali D.P. and A.L. Esquifino: Circadian disorganization in experimental arthritis. Neurosignals. 12: 267-282, 2003. Go to original source... Go to PubMed...
  11. Carrillo-Vico A., J.R. Calvo, P. Abreu, P.J. Lardone, S. Garcia-Maurino, R.J. Reiter, J.M. Guerrero: Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 18: 537-539, 2004. Go to original source... Go to PubMed...
  12. Chen Y.G., A. Mantalaris, P. Bourne, P. Keng, J.H.D. Wu: Expression of mPer1 and mPer2, two mammalian clock genes, in murine bone marrow. Biochem. Biophys. Res. Commun. 276: 724-728, 2000. Go to original source... Go to PubMed...
  13. Christini D.J., K.M. Stein, S.M. Markowitz, S. Mittal, D.J. Slotwiner, M.A. Scheiner, S. Iwai, B.B. Lerman: Nonlinear-dynamical arrhythmia control in humans. Proc. Nat. Acad. Sci. USA. 98: 5827-5832, 2001. Go to original source... Go to PubMed...
  14. Conti A., S. Conconi, E. Hertens, K. Skwarlo-Sonta, M. Markowska, J.M. Maestroni: Evidence for melatonin synthesis in mouse and human bone marrow cells. J. Pineal Res. 28: 193-202, 2000. Go to original source... Go to PubMed...
  15. Csernus V. and B. Mess: Biorhythms and pineal gland. Neuroendocrinol. Lett. 24: 404-411, 2003. Go to PubMed...
  16. Cyran S.A., A.M. Buchsbaum, K.L. Reddy, M.C. Lin, N.R. Glossop, P.E. Hardin, M.W. Young, R.V. Stortl, J. Blau: vrille, Pdp1, and Clock form a second feedback loop in the Drosophila circadian clocks. Cell 111: 329-341, 2003. Go to original source... Go to PubMed...
  17. Denison M.E. and M.X. Zarrow: Eosinophils of blood during prolonged exposure to cold and chronic administration of cortisone acetate. Proc. Soc. Exper. Biol. Med. 85: 433-437, 1954. Go to original source... Go to PubMed...
  18. Dubocovich M.L., M.A. Rivera-Bermudez, M.J. Gerdin, M.I. Masana: Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front. Biosci. 8: D1093-D1108, 2003. Go to original source... Go to PubMed...
  19. Ehret C.F. and E. Trucco: Molecular models for the circadian clock. I. The chronon concept. J. Theor. Biol. 15: 240-262, 1967. Go to original source... Go to PubMed...
  20. Filipski E, V.M. King, X. Li, T.G. Granda, M.C. Mormont, X. Liu, B. Claustrat, M.H. Hastings, F. Levi: Host circadian clock as a control point in tumor progression. J. Nat. Cancer Inst. 94: 690-697, 2002. Go to original source... Go to PubMed...
  21. Finocchiaro LM, E.S. Arzt, S. Fernandez-Castelo, M. Criscuolo, S. Finkielman, V.E. Nahmod: Serotonin and melatonin synthesis in peripheral blood mononuclear cells: stimulation by interferon-γ as part of an immunomodulatory pathway. J. Interferon Res. 8: 705-716, 1988. Go to original source... Go to PubMed...
  22. Forster R.G.: Seeing the light... in a new way. J. Neuroendocrinol. 16: 179-180, 2004. Go to original source... Go to PubMed...
  23. Fu L. and C.C. Lee: The circadian clock: pacemaker and tumour suppressor. Nat. Rev. Cancer 3: 350-361, 2003. Go to original source... Go to PubMed...
  24. Fu L, H. Pelicano, J. Liu, P. Huang, C. Lee: The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111: 41-50, 2002. Go to original source... Go to PubMed...
  25. Gillette M.U. and J.W. Mitchell: Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res. 309: 99-107, 2002. Go to original source... Go to PubMed...
  26. Glass L., A. Beuter, D. Larocque: Time delays, oscillations, and chaos in physiological control systems. Math. Biosci. 90: 111-125, 1988. Go to original source...
  27. Glass L.: Synchronization and rhythmic processes in physiology. Nature 410: 277-284, 2001. Go to original source... Go to PubMed...
  28. Gonze D., J.C. Leloup, A. Goldbeter: Theoretical models for circadian rhythms in Neurospora and Drosophila. C.R. Acad. Sci. III-vie 323: 57-67, 2000. Go to original source...
  29. Gonze D., J. Halloy, A. Goldbeter: Stochastic models for circadian oscillations: emergence of a biological rhythm. Int. J. Quant.Chem. 98: 228-238, 2004. Go to original source...
  30. Halberg F., G. Cornélissen, G.S. Katinas, Y. Watanabe, K. Otsuka, C. Maggioni, F. Perfetto, R. Tarquini, O. Schwartzkopff, E.E. Bakken: Feedsidewards: intermodulation (strictly) among time structures, chronomes, in and around us, and cosmo-vasculo-neuroimmunity. About ten-yearly changes: what Galileo missed and Schwabe found. Ann. NY Acad. Sci. 917: 348-376. 2000. Go to original source... Go to PubMed...
  31. Hastings M.H., A.B. Reddy, M. Garabette, V.M. King, S. Chahad-Ehlers, J. O'Brien, E.S. Maywood: Expression of clock gene products in the suprachiasmatic nucleus in relation to circadian behaviour. Novartis Found. Symp. 253: 203-217, 2003. Go to original source... Go to PubMed...
  32. Haus E.: Biologic rhythms in hematology. Pathol. Biol. (Paris). 44: 618-630, 1996. Go to PubMed...
  33. Haus E. and Y. Touitou: Principles of clinical Chronobiology. In Touitou Y. and E. Haus (eds): Biologic Rhythms in Clinical and Laboratory Medicine. Springer Verlag, Berlin 1994, p. 6-34. Go to original source...
  34. Kennaway D.J.: Resetting the suprachiasmatic nucleus clock Front. Biosci. 9: 56-62, 2004. Go to original source... Go to PubMed...
  35. Klevecz R.R., J. Pilliod, J. Bolen: Autogenous formation of spiral waves by coupled chaotic attractors. Chronobiol. Int. 8: 6-13, 1991. Go to original source... Go to PubMed...
  36. Konopka R.J. and S. Benzer: Clock mutants of Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 68: 2112-2116, 1971. Go to original source... Go to PubMed...
  37. Kriegsfeld L.J., R.K. Leak, C.B. Yackulic, J. LeSauter, R. Silver: Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): An anterograde and retrograde analysis. J. Comp. Neurol. 468: 361-379, 2004. Go to original source... Go to PubMed...
  38. Lee H.S., H.J. Billings, M.N. Lehman: The suprachiasmatic nucleus: A clock of multiple components. J. Biol. Rhythm 18: 435-449, 2003. Go to original source...
  39. Leloup J.C. and A. Goldbeter: Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor. Biol. 198: 445-459, 1999. Go to original source... Go to PubMed...
  40. Lloyd D.: Chaos and ultradian rhythms. Biol. Rhythm Res. 28: 134-143, 1997. Go to original source...
  41. Lloyd D. and S.W. Edwards: Temperature compensated ultradian rhythms in lower eukaryotes. Timers for cell cycles and circadian events. In Pauly J. and L. Scheving (eds): Advances in Chronobiology A. Alan R. Liss Inc., New York 1987, p. 131-151.
  42. Lloyd A.L. and D. Lloyd: Chaos - its significance and detection in biology. Biol. Rhythm Res. 26: 233-252, 1995. Go to original source...
  43. Lundkvist G.B., R.H. Hill, K. Kristensson: Disruption of circadian rhythms in synaptic activity of the suprachiasmatic nuclei by African trypanosomes and cytokines. Neurobiol. Dis. 11: 20-27, 2002. Go to original source... Go to PubMed...
  44. Merrow M. and T. Roenneberg: Cellular clocks: coupled circadian and cell division cycles. Curr. Biol. 14: R25-R26, 2004. Go to original source... Go to PubMed...
  45. Morin L.P., J.H. Blanchard, I. Provencio: Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J. Comp. Neurol. 465: 401-416, 2003. Go to original source... Go to PubMed...
  46. Nawathean P. and M. Rosbash: The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol. Cell 13: 213-223, 2004. Go to original source... Go to PubMed...
  47. Neurath P.W. and M.D. Berliner: Biological rhythms: a new type in strains of a mutant of Neurospora crassa. Science 146: 646-647, 1964. Go to original source... Go to PubMed...
  48. Ohdo S., S. Koyanagi, H. Suyama, S. Higuchi, H. Aramaki: Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nature Med. 7: 356-360, 2001. Go to original source... Go to PubMed...
  49. Okamura H.: Integration of molecular rhythms in the mammalian circadian system. Genes, Novartis Found Symp. 253: 161-170, 2003. Go to original source... Go to PubMed...
  50. Pacchierotti C, S. Iapichino, L. Bossini, F. Pieraccini, P. Castrogiovanni: Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front. Neuroendocrinol. 22: 18-32, 2001. Go to original source... Go to PubMed...
  51. Perreau-Lenz S., A. Kalsbeek, M.L. Garidou, J. Wortel, J. van der Vliet, C. van Heijningen, V. Simonneaux, P. Pevet, R.M. Buijs: Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. Eur. J. Neurosci. 17: 221-228, 2003. Go to original source... Go to PubMed...
  52. Perpoint B., C. Le Bousse-Kerdiles, D. Clay, F. Smadja-Joffe, P. Depres-Brummer, S. Laporte-Simitsidis, C. Jasmin, F. Levi: In vitro chronopharmacology of recombinant mouse IL-3, mouse GM-CSF, and human G-CSF on murine myeloid progenitor cells. Exper. Hematol. 23: 362-368, 1995.
  53. Pizzio G.A., E.C. Hainich, G.A. Ferreyra, O.A. Coso, D.A. Golombek: Circadian and photic regulation of ERK, JNK and p38 in the hamster SCN. Neuroreport 14: 1417-1419, 2003. Go to original source... Go to PubMed...
  54. Plytycz B. and R. Seljelid: Rhythms of immunity. Arch. Immunol. Ther. Exp. (Warsz.) 45: 157-162, 1997.
  55. Roberts J.E.: Light and immunomodulation. Ann. N. Y. Acad. Sci. 917: 435-445, 2000. Go to original source... Go to PubMed...
  56. Sanada K., T. Okano, Y. Fukada: Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J. Biol. Chem. 277: 267-271, 2002. Go to original source... Go to PubMed...
  57. Sharma V.K.: Adaptive significance of circadian clocks. Chronobiol. Int. 20: 901-919, 2003. Go to original source... Go to PubMed...
  58. Simonneaux V., V.J. Poirel, M.L. Garidou, D. Nguyen, E. Diaz-Rodriguez, P. Pevet: Daily rhythm and regulation of clock gene expression in the rat pineal gland. Brain Res. Mol. Brain Res. 120: 164-172, 2004. Go to original source... Go to PubMed...
  59. Skwarlo-Sonta K, P. Majewski, M. Markowska, R. Oblap, B. Olszanska: Bidirectional communication between the pineal gland and the immune system. Can. J. Physiol. Pharmacol. 81: 342-349, 2003. Go to original source... Go to PubMed...
  60. Stehle J.H., C. von Gall, H.W. Korf: Melatonin: a clock-output, a clock-input. J. Neuroendocrinol. 15: 383-389, 2003. Go to original source... Go to PubMed...
  61. Steeb W.H., R. Stoop, L.C. Heng, C.M. Villet: Coupled chaotic oscillators and control of chaos. S. Afr. J. Sci. 91: 273-274, 1995.
  62. Wakamatsu H, Y. Yoshinobu, R. Aida, T. Moriya, M. Akiyama, S. Shibata: Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci 13: 1190-1196, 2001. Go to original source... Go to PubMed...
  63. Witt-Enderby P.A., J. Bennett, M.J. Jarzynka, S. Firestine, M.A. Melan: Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci. 72:2183-2198, 2003. Go to original source... Go to PubMed...
  64. Young M.W.: Molecular control of circadian behavioral rhythms. Recent Progress in Hormone Research 54: 87-95, 1999 Go to PubMed...