Photosynthetica 2023, 61(3):390-397 | DOI: 10.32615/ps.2023.034

Changes in the photosynthetic response of lettuce exposed to toxic element multicontamination under hydroponic conditions

M. LHOTSKÁ1, V. ZEMANOVÁ2, D. PAVLÍKOVÁ2, F. HNILIČKA1
1 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic
2 Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic

The effect of toxic element multicontamination on photosynthetic responses was observed in a greenhouse hydroponic culture of lettuce plants (Lactuca sativa var. capitata). The experiment focused only on the combined effect of selected toxic elements without the influence of soil, due to the hydroponic conditions. Pre-cultivated (six-true-leaf stage) plants were grown in control and contaminated hydroponic culture for 14 d. The mix of toxic elements (As, Cd, Pb, and Zn) in the contaminated solution corresponded to the water-soluble fraction of soil from the anthropogenically contaminated Litavka River area, Czech Republic. The plant response was measured by determining the toxic element contents, dry biomass, and gas-exchange parameters. Lettuce accumulated toxic elements predominantly in the roots, with low translocation to the leaves. The uptake of toxic elements harmed photosynthesis and caused a decrease in net photosynthetic rate, transpiration rate, and stomatal conductance. Consequently, the whole dry biomass of the plants decreased. The results show that contamination in hydroponic conditions had an irreversible effect on plant fitness due to direct contact between the roots and contaminated solutions.

Additional key words: solution; stress; toxic element; translocation factor; transpiration rate.

Received: March 21, 2023; Revised: September 6, 2023; Accepted: September 8, 2023; Prepublished online: September 26, 2023; Published: October 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LHOTSKÁ, M., ZEMANOVÁ, V., PAVLÍKOVÁ, D., & HNILIČKA, F. (2023). Changes in the photosynthetic response of lettuce exposed to toxic element multicontamination under hydroponic conditions. Photosynthetica61(3), 390-397. doi: 10.32615/ps.2023.034
Download citation

References

  1. Akhter M.F., Omelon C.R., Gordon R.A. et al.: Localization and chemical speciation of cadmium in the roots of barley and lettuce. - Environ. Exp. Bot. 100: 10-19, 2014. Go to original source...
  2. Antoniadis V., Shaheen S.M., Boersch J. et al.: Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. - J. Environ. Manage. 186: 192-200, 2017. Go to original source...
  3. Antonkiewicz J., Jasiewicz C., Koncewicz-Baran M., B±czek-Kwinta R.: Determination of lithium bioretention by maize under hydroponic conditions. - Arch. Environ. Prot. 43: 94-104, 2017. Go to original source...
  4. Bidar G., Pelfrêne A., Schwartz C. et al.: Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables - A review. - Sci. Total Environ. 738: 139569, 2020. Go to original source...
  5. Boechat C.L., Pistóia V.C., Gianelo C., Camargo F.A.O.: Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. - Environ. Sci. Pollut. R. 23: 2371-2380, 2016. Go to original source...
  6. Brengi S.H.M., Abouelsaad I.A.A.: The combined use of beneficial soil microorganisms enhanced the growth and efficiently reduced lead content in leaves of lettuce (Lactuca sativa L.) plant under lead stress. - Alex. J. Agric. Sci. 64: 41-51, 2019. Go to original source...
  7. Burachevskaya M., Minkina T., Fedorenko A. et al.: Accumulation, translocation, and toxicity of arsenic in barley grown in contaminated soil. - Plant Soil 467: 91-106, 2021. Go to original source...
  8. Corradini F., Correa A., Moyano M.S. et al.: Nitrate, arsenic, cadmium, and lead concentrations in leafy vegetables: expected average values for productive regions of Chile. - Arch. Agron. Soil Sci. 64: 299-317, 2018. Go to original source...
  9. Dias M.C., Monteiro C., Moutinho-Pereira J. et al.: Cadmium toxicity affects photosynthesis and plant growth at different levels. - Acta Physiol. Plant. 35: 1281-1289, 2013. Go to original source...
  10. Ejaz U., Khan S.M., Khalid N. et al.: Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. - Front. Plant Sci. 14: 1154571, 2023. Go to original source...
  11. Fahr M., Laplaze L., Bendaou N. et al.: Effect of lead on root growth. - Front. Plant Sci. 4: 175, 2013. Go to original source...
  12. Fattahi B., Arzani K., Souri M.K., Barzegar M.: Morphophysiological and phytochemical responses to cadmium and lead stress in coriander (Coriandrum sativum L.). - Ind. Crop. Prod. 171: 113979, 2021. Go to original source...
  13. Gao F., Zhang X., Zhang J. et al.: Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. - Front. Plant Sci. 13: 1015745, 2022. Go to original source...
  14. Genc Y., Huang C.Y., Langridge P.: A study of the role of root morphological traits in growth of barley in zinc-deficient soil. - J. Exp. Bot. 58: 2775-2784, 2007. Go to original source...
  15. Grygar T.M., Faměra M., Hoąek M. et al.: Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. - Environ. Sci. Pollut. R. 28: 51183-51198, 2021. Go to original source...
  16. Gupta N., Yadav K.K., Kumar V. et al.: Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. - Environ. Toxicol. Pharmacol. 82: 103563, 2021. Go to original source...
  17. Gusman G.S., Oliveira J.A., Farnese F.S., Cambraia J.: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. - Acta Physiol. Plant. 35: 1201-1209, 2013. Go to original source...
  18. Hattab S., Dridi B., Chouba L. et al.: Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. - J. Environ. Sci. 21: 1552-1556, 2009. Go to original source...
  19. He J., Ren Y.: [Effects of cadmium on seedling growth and photosynthesis characteristics of lettuce (Lactuca sativa L.).] -Southwest China J. Agric. Sci. 22: 922-926, 2009. [In Chinese]
  20. Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants without Soil. California Agriculture Experiment Station Circular 347. Pp. 32. University of California, Berkeley 1950.
  21. Chen X., Tao H., Wu Y., Xu X.: Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. - Sci. Hortic.-Amsterdam 305: 111371, 2022. Go to original source...
  22. Cheng S., Tam N.F.Y., Li R. et al.: Temporal variations in physiological responses of Kandelia obovata seedlings exposed to multiple heavy metals. - Mar. Pollut. Bull. 124: 1089-1095, 2017. Go to original source...
  23. Ikkonen E., Kaznina N.: Physiological responses of lettuce (Lactuca sativa L.) to soil contamination with Pb. - Horticulturae 8: 951, 2022. Go to original source...
  24. Jibril S.A., Hassan S.A., Ishak C.F., Wahab P.E.M.: Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). - Adv. Agric. 2017: 1236830, 2017. Go to original source...
  25. Kaur N., Jhanji S.: Effect of soil cadmium on growth, photosynthesis and quality of Raphanus sativus and Lactuca sativa. - J. Environ. Biol. 37: 993-997, 2016. Go to original source...
  26. Kebonye N.M., Eze P.N., John K. et al.: An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). - Environ. Geochem. Health 44: 369-385, 2022. Go to original source...
  27. Khan A., Khan S., Khan M.A. et al.: Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. - Int. J. Environ. Sci. Technol. 16: 2295-2304, 2019. Go to original source...
  28. Kotková K., Nováková T., Tůmová ©. et al.: Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. - Geomorphology 329: 46-57, 2019. Go to original source...
  29. Kummerová M., Zezulka ©., Kráµová K., Masarovičová E.: Effect of zinc and cadmium on physiological and production characteristics in Matricaria recutita. - Biol. Plantarum 54: 308-314, 2010. Go to original source...
  30. Lavres J., Rabêlo F.H.S., Capaldi F.R. et al.: Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. - Ecotox. Environ. Safe. 170: 578-589, 2019. Go to original source...
  31. Lhotská M., Zemanová V., Pavlík M. et al.: Leaf fitness and stress response after the application of contaminated soil dust particulate matter. - Sci. Rep.-UK 12: 10046, 2022. Go to original source...
  32. Liąčáková P., Nawaz A., Molnárová M.: Reciprocal effects of copper and zinc in plants. - Int. J. Environ. Sci. Technol. 19: 9297-9312, 2022. Go to original source...
  33. Marschner P.: Marschner's Mineral Nutrition of Higher Plants. Third Edition. Pp. 3-47. Academic Press, London 2012.
  34. Massaccesi L., Meneghini C., Comaschi T. et al.: Ligands involved in Pb immobilization and transport in lettuce, radish, tomato and Italian ryegrass. - J. Plant Nutr. Soil Sci. 177: 766-774, 2014. Go to original source...
  35. Matraszek R., Hawrylak-Nowak B., Chwil S., Chwil M.: Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition. -J. Environ. Manage. 180: 24-34, 2016. Go to original source...
  36. Meng Y., Zhang L., Yao Z.-L. et al.: Arsenic accumulation and physiological response of three leafy vegetable varieties to As stress. - Int. J. Environ. Res. Public Health 19: 2501, 2022. Go to original source...
  37. Monnet F., Vaillant N., Vernay P. et al.: Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. - J. Plant Physiol. 158: 1137-1144, 2001. Go to original source...
  38. Namdjoyan S., Kermanian H., Abolhasani Soorki A. et al.: Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of safflower (Carthamus tinctorius L.). - Ecotoxicology 26: 752-761, 2017. Go to original source...
  39. Nazir A., Rafique F., Ahmed K. et al.: Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. - Microsc. Res. Tech. 84: 2517-2529, 2021. Go to original source...
  40. Novotná M., Mikeą O., Komprdová K.: Development and comparison of regression models for the uptake of metals into various field crops. - Environ. Pollut. 207: 357-364, 2015. Go to original source...
  41. Pavlíková D., Pavlík M., Procházková D. et al.: Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. - J. Plant Physiol. 171: 559-564, 2014. Go to original source...
  42. Pavlíková D., Pavlík M., Zemanová V. et al.: Accumulation of toxic arsenic by cherry radish tuber (Raphanus sativus var. sativus Pers.) and its physiological, metabolic and anatomical stress responses. - Plants-Basel 12: 1257, 2023. Go to original source...
  43. Pavlíková D., Zemanová V., Pavlík M. et al.: Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. - PLoS ONE 15: e0233055, 2020. Go to original source...
  44. Prasch C.M., Sonnewald U.: Signaling events in plants: stress factors in combination change the picture. - Environ. Exp. Bot. 114: 4-14, 2015. Go to original source...
  45. Rabêlo F.H.S., Lux A., Rossi M.L. et al.: Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. - Environ. Exp. Bot. 148: 35-46, 2018. Go to original source...
  46. Rai P.K., Lee S.S., Zhang M. et al.: Heavy metals in food crops: Health risks, fate, mechanisms, and management. - Environ. Int. 125: 365-385, 2019. Go to original source...
  47. Rivelli A.R., Puschenreiter M., De Maria S.: Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. - Plant Soil Environ. 60: 80-86, 2014. Go to original source...
  48. Riyazuddin R., Nisha N., Ejaz B. et al.: A comprehensive review on the heavy metal toxicity and sequestration in plants. - Biomolecules 12: 43, 2022. Go to original source...
  49. Rucińska-Sobkowiak R.: Water relations in plants subjected to heavy metal stresses. - Acta Physiol. Plant. 38: 257, 2016. Go to original source...
  50. Sagardoy R., Vázquez S., Florez-Sarasa I.D. et al.: Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. - New Phytol. 187: 145-158, 2010. Go to original source...
  51. Saison C., Schwartz C., Morel J.-L.: Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. - Int. J. Phytoremediat. 6: 49-61, 2004. Go to original source...
  52. Sanz-Saez A., Pérez-López U., del-Canto A. et al.: Changes in environmental CO2 concentration can modify Rhizobium-soybean specificity and condition plant fitness and productivity. - Environ. Exp. Bot. 162: 133-143, 2019. Go to original source...
  53. Savvas D., Gruda N.: Application of soilless culture technologies in the modern greenhouse industry - A review. - Eur. J. Hortic. Sci. 83: 280-293, 2018. Go to original source...
  54. Shiyab S.: Effect of Pb on growth, chlorophyll and Pb content in two varieties of lettuce (Lactuca sativa L.). - Res. Crop. 14: 257-265, 2013.
  55. Silva S., Pinto G., Santos C.: Low doses of Pb affected Lactuca sativa photosynthetic performance. - Photosyntetica 55: 50-57, 2017. Go to original source...
  56. Sofo A., Vitti A., Nuzzaci M. et al.: Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. - Physiol. Plantarum 149: 487-498, 2013. Go to original source...
  57. Soran M.-L., Sîrb A.N., Lung I. et al.: A multi-method approach for impact assessment of some heavy metals on Lactuca sativa L. - Molecules 28: 759, 2023. Go to original source...
  58. Tang X., Pang Y., Ji P. et al.: Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). - Ecotox. Environ. Safe. 125: 102-106, 2016. Go to original source...
  59. Vaněk A., Ettler V., Grygar T. et al.: Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. - Pedosphere 18: 464-478, 2008. Go to original source...
  60. Wang Y., Yang R., Zheng J. et al.: Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). - Ecotox. Environ. Safe. 167: 10-19, 2019. Go to original source...
  61. Wu H., Sui F., Duan H. et al.: Comparison of heavy metal speciation, transfer and their key influential factors in vegetable soils contaminated from industrial operation and organic fertilization. - J. Soils Sediments 22: 1735-1745, 2022. Go to original source...
  62. Yang Y., Chen W., Wang M. et al.: Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. - Sci. Total Environ. 584-585: 942-949, 2017. Go to original source...
  63. Zemanová V., Pavlíková D., Hnilička F., Pavlík M.: Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. - Plants-Basel 10: 2009, 2021. Go to original source...
  64. Zemanová V., Pavlíková D., Novák M. et al.: Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes. - Plant Soil Environ. 68: 213-222, 2022. Go to original source...
  65. Zemanová V., Popov M., Pavlíková D. et al.: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator (Pteris cretica L.) var. Albo-lineata. - BMC Plant Biol. 20: 130, 2020. Go to original source...