Photosynthetica 2021, 59(4):508-516 | DOI: 10.32615/ps.2021.040

Effect of elevation on photosynthesis of young mango (Mangifera indica L.) trees

T.T. WUBSHET1, 2, Z. WANG1, 2, J. YANG1, 2, H. CHEN1, D.A. SCHAEFER1, S.D. GOLDBERG1, P.E. MORTIMER1, P. LU3, J. XU1, 2
1 Honghe Center for Mountain Futures, Kunming Institute of Botany, 650201 Kunming, Yunnan, China
2 University of Chinese Academy of Sciences, 100049 Beijing, China
3 Research Institute of Environment and Livelihoods, Charles Darwin University, NT 0810, Australia

Anticipating warming related to climate change, commercial mango plantations in China have been shifting from lower to higher elevations. Such a practice may expose mangoes to climatic conditions that could affect photosynthesis. Photosynthesis research on mango has previously examined mature plantations but exploring adequate functions before the time of fruit production is necessary for later crop success. Therefore, we established two main commercial mango cultivars, Tainong No. 1 and Jinhuang, at 450 m and 1,050 m and examined their photosynthetic performance. Our results showed that photosynthetic capacity parameters, including maximum photosynthetic rate, apparent quantum yield, maximum carboxylation rate, and photosynthetic electron transport rate, were significantly different between cultivars due to elevation and positively correlated with leaf nitrogen per area. Moreover, the seasonal gas exchange of the two cultivars showed variations due to elevation, particularly during the warmer seasons. Therefore, elevation affects the photosynthetic performance of these mango cultivars.

Additional key words: cultivar; elevation; gas exchange; leaf nitrogen; mango; photosynthesis.

Received: May 11, 2021; Revised: July 12, 2021; Accepted: July 31, 2021; Prepublished online: September 2, 2021; Published: December 17, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
WUBSHET, T.T., WANG, Z., YANG, J., CHEN, H., SCHAEFER, D.A., GOLDBERG, S.D., ... XU, J. (2021). Effect of elevation on photosynthesis of young mango (Mangifera indica L.) trees. Photosynthetica59(4), 508-516. doi: 10.32615/ps.2021.040
Download citation

References

  1. Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants. - Trends Plant Sci. 6: 36-42, 2001. Go to original source...
  2. Allen D.J., Ratner K., Giller Y.E. et al.: An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). - J. Exp. Bot. 51: 1893-1902, 2000. Go to original source...
  3. Bote A.D., Zana Z., Ocho F.L., Vos J.: Analysis of coffee (Coffea arabica L.) performance in relation to radiation level and rate of nitrogen supply. II. Uptake and distribution of nitrogen, leaf photosynthesis and first bean yields. - Eur. J. Agron. 92: 107-114, 2018. Go to original source...
  4. Cordell S., Goldstein G., Meinzer F.C., Handley L.L.: Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. - Funct. Ecol. 13: 811-818, 1999. Go to original source...
  5. Damour G., Vandame M., Urban L.: Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance. - Tree Physiol. 29: 675-684, 2009. Go to original source...
  6. Domingues T.F., Martinelli L.A., Ehleringer J.R.: Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. - Plant Ecol. Divers. 7: 189-203, 2014. Go to original source...
  7. Du B., Ji H., Peng C. et al.: Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China. - Plant Soil 413: 193-202, 2017. Go to original source...
  8. Dusenge M.E., Wallin G., Gårdesten J. et al.: Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature. - Oecologia 177: 1183-1194, 2015. Go to original source...
  9. Ehleringer J., Björkman O.: Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. - Plant Physiol. 59: 86-90, 1977. Go to original source...
  10. Ehleringer J., Pearcy R.W.: Variation in quantum yield for CO2 uptake among C3 and C4 plants. - Plant Physiol. 73: 555-559, 1983. Go to original source...
  11. Elsheery N.I., Cao K.-F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. - Acta Physiol. Plant. 30: 769-777, 2008. Go to original source...
  12. Elsheery N.I., Wilske B., Cao K.-F.: The effect of night chilling on gas exchange and chlorophyll fluorescence of two mango cultivars growing under two irradiances. - Acta Bot. Yunnan. 30: 447-456, 2008. Go to original source...
  13. Elsheery N.I., Wilske B., Zhang J.-L., Cao K.-F.: Seasonal variations in gas exchange and chlorophyll fluorescence in the leaves of five mango cultivars in southern Yunnan, China. - J. Hortic. Sci. Biotech. 82: 855-862, 2007. Go to original source...
  14. Evans J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. - Oecologia 78: 9-19, 1989. Go to original source...
  15. FAO: Mango: Post-Harvest Operations. Post-Harvest Compendium. Pp. 70. FAO, 2002.
  16. FAO: Major tropical fruits: Preliminary market results 2019. Pp. 24. FAO, Rome 2020.
  17. Fei C., Su J.X., Li Y.Y. et al.: Light-response characteristics of photosynthesis of drip-irrigated sugar beet under different nitrogen fertilizer managements. - Photosynthetica 57: 804-811, 2019. Go to original source...
  18. Friend A.D., Woodward F.I., Switsur V.R.: Field measurements of photosynthesis, stomatal conductance, leaf nitrogen and δ13C along altitudinal gradients in Scotland. - Funct. Ecol. 3: 117-122, 1989. Go to original source...
  19. Fujimura S., Shi P., Iwama K. et al.: Effect of altitude on the response of net photosynthetic rate to carbon dioxide increase by spring wheat. - Plant Prod. Sci. 13: 141-149, 2010. Go to original source...
  20. Gale J.: Plants and altitude - revisited. - Ann. Bot.-London 94: 199, 2004. Go to original source...
  21. Gao A., Chen Y., Crane J.H. et al.: Status and analysis on mango production in China. - In: Advances in Biomedical Engineering: Proceedings of 2011 International Conference on Agricultural and Biosystems Engineering. Pp. 472-476, 2011.
  22. Gao A., Chen Y., Luo R. et al.: Development status of Chinese mango industry in 2018. - Adv. Agric. Hortic. Entomol. 2019: 1-6, 2019.
  23. He X., Hou E., Liu Y., Wen D.: Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. - Sci. Rep.-UK 6: 24261, 2016. Go to original source...
  24. Jung S., Steffen K.L., Lee H.J.: Comparative photoinhibition of a high and a low altitude ecotype of tomato (Lycopersicon hirsutum) to chilling stress under high and low light conditions. - Plant Sci. 134: 69-77, 1998. Go to original source...
  25. Kao W.-Y., Chang K.-W.: Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. - Aust. J. Bot. 49: 509-514, 2001. Go to original source...
  26. Kattge J., Knorr W., Raddatz T., Wirth C.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. - Glob. Change Biol. 15: 976-991, 2009. Go to original source...
  27. Kenzo T., Ichie T., Watanabe Y. et al.: Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. - Tree Physiol. 26: 865-873, 2006. Go to original source...
  28. Kingston-Smith A.H., Harbinson J., Williams J., Foyer C.H.: Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. - Plant Physiol. 114: 1039-1046, 1997. Go to original source...
  29. Körner C.: The nutritional status of plants from high altitudes: A worldwide comparison. - Oecologia 81: 379-391, 1989. Go to original source...
  30. Körner C.: The use of 'altitude' in ecological research. - Trends Ecol. Evol. 22: 569-574, 2007. Go to original source...
  31. Kositsup B., Kasemsap P., Thanisawanyangkura S. et al.: Effect of leaf age and position on light-saturated CO2 assimilation rate, photosynthetic capacity, and stomatal conductance in rubber trees. - Photosynthetica 48: 67-78, 2010. Go to original source...
  32. Laisk A., Oja V., Rasulov B. et al.: Quantum yields and rate constants of photochemical and nonphotochemical excitation quenching: Experiment and model. - Plant Physiol. 115: 803-815, 1997. Go to original source...
  33. Li D., Tian M., Cai J. et al.: Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. - Plant Growth Regul. 70: 257-263, 2013b. Go to original source...
  34. Li L., Wang S.B., Chen J.Z. et al.: Characterizations of major antioxidants at harvest-maturity and edible-ripening stages of three mango (Mangifera indica L.) cultivars. - Acta Hortic. 992: 529-536, 2013a. Go to original source...
  35. Liu J., Zhang D., Zhou G., Duan H.: Changes in leaf nutrient traits and photosynthesis of four tree species: Effects of elevated [CO2], N fertilization and canopy positions. - J. Plant Ecol. 5: 376-390, 2012. Go to original source...
  36. Lu P., Chacko E.K., Bithell S.L. et al.: Photosynthesis and stomatal conductance of five mango cultivars in the seasonally wet-dry tropics of northern Australia. - Sci. Hortic.-Amsterdam 138: 108-119, 2012. Go to original source...
  37. Luo C., He X.H., Chen H. et al.: Genetic relationship and diversity of Mangifera indica L.: revealed through SCoT analysis. - Genet. Resour. Crop Ev. 59: 1505-1515, 2012. Go to original source...
  38. Luvaha E., Netondo G.W., Ouma G.: Physiological responses of mango (Mangifera indica) rootstock seedlings to water stress. - J. Agric. Biol. Sci. 2: 6-12, 2007.
  39. Luvaha E., Netondo G.W., Ouma G.: Effect of water deficit on the physiological and morphological characteristics of mango (Mangifera indica) rootstock seedlings. - Am. J. Plant Physiol. 3: 1-15, 2008. Go to original source...
  40. Macek P., Klime¹ L., Adamec L. et al.: Plant nutrient content does not simply increase with elevation under the extreme environmental conditions of Ladakh, NW Himalaya. - Arct. Antarct. Alp. Res. 44: 62-66, 2012. Go to original source...
  41. Marshall B., Biscoe P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance: II. Application to the analysis of flag leaf photosynthesis. - J. Exp. Bot. 31: 41-48, 1980. Go to original source...
  42. Mathur P.N., Ramirez-Villegas J., Jarvis A.: The impact of climate change on tropical and subtropical horticultural production. - In: Sthapit B., Rao V.R., Sthapit S. (ed.): Tropical Fruit Tree Species and Climate Change. Pp. 27-44. Bioversity International, New Delhi 2012.
  43. Mng'omba S.A., Akinnifesi F.K., Sileshi G., Ajayi C.O.: Rootstock growth and development for increased graft success of mango (Mangifera indica) in the nursery. - Afr. J. Biotechnol. 9: 1317-1324, 2010. Go to original source...
  44. Morecroft M.D., Woodward F.I.: Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. - New Phytol. 134: 471-479, 1996. Go to original source...
  45. Morton J.F.: Mango. - In: Morton J.F.: Fruits of Warm Climates. Pp. 221-239. Echo Point Books & Media, Miami 1987.
  46. Motzer T., Munz N., Küppers M. et al.: Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. - Tree Physiol. 25: 1283-1293, 2017. Go to original source...
  47. Mujawamariya M., Manishimwe A., Ntirugulirwa B. et al.: Climate sensitivity of tropical trees along an elevation gradient in Rwanda. - Forests 9: 647, 2018. Go to original source...
  48. Mukherjee S.K.: Origin of mango (Mangifera indica). - Econ. Bot. 26: 260-264, 1972. Go to original source...
  49. Munjonji L., Ayisi K.K., Mafeo T.P. et al.: Seasonal variation in soil CO2 emission and leaf gas exchange of well-managed commercial Citrus sinensis (L.) orchards. - Plant Soil 465: 65-81, 2021. Go to original source...
  50. Normand F., Lauri P.-E., Legave J.-M.: Climate change and its probable effects on mango production and cultivation. - Acta Hortic. 1075: 21-32, 2015. Go to original source...
  51. Oberhuber W., Dai Z.-Y., Edwards G.E.: Light dependence of quantum yields of Photosystem II and CO2 fixation in C3 and C4 plants. - Photosynth. Res. 35: 265-274, 1993. Go to original source...
  52. Pal M., Rao L.S., Jain V. et al.: Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. - Biol. Plantarum 49: 467-470, 2005. Go to original source...
  53. Pinto A.C.D.Q., Saúco V.G., Mitra S.K., Ferreira F.R.: Mango propagation. - Rev. Bras. Frutic. 40: e-586, 2018. Go to original source...
  54. Premoli A.C., Brewer C.A.: Environmental v. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. - Aust. J. Bot. 55: 585-591, 2007. Go to original source...
  55. Rajan S.: Phenological responses to temperature and rainfall: A case study of mango. - In: Sthapit B., Rao V.R., Sthapit S. (ed.): Tropical Fruit Tree Species and Climate Change. Pp. 71-96. Bioversity International, New Delhi 2011.
  56. Ram R.A., Rahim M.A., Alam M.S.: Diagnosis and management of nutrient constraints in mango. - In: Srivastava A.K., Hu C. (ed.): Fruit Crops: Diagnosis and Management of Nutrient Constraints. Pp. 629-650. Elsevier, Amsterdam 2020. Go to original source...
  57. Sakata T., Yokoi Y.: Analysis of the O2 dependency in leaf-level photosynthesis of two Reynoutria japonica populations growing at different altitudes. - Plant Cell Environ. 25: 65-74, 2002. Go to original source...
  58. Sendall K.M., Vourlitis G.L., Lobo F.A.: Seasonal variation in the maximum rate of leaf gas exchange of canopy and understory tree species in an Amazonian semi-deciduous forest. - Braz. J. Plant Physiol. 21: 65-74, 2009. Go to original source...
  59. Shangguan Z., Shao M., Dyckmans J.: Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. - J. Plant Physiol. 156: 46-51, 2000. Go to original source...
  60. Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  61. Shi Z., Liu S., Liu X., Centritto M.: Altitudinal variation in photosynthetic capacity, diffusional conductance and δ13C of butterfly bush (Buddleja davidii) plants growing at high elevations. - Physiol. Plantarum 128: 722-731, 2006. Go to original source...
  62. Soethe N., Lehmann J., Engels C.: Nutrient availability at different altitudes in a tropical montane forest in Ecuador. - J. Trop. Ecol. 24: 397-406, 2008. Go to original source...
  63. Sun S.Q., Wu Y.H., Zhou J. et al.: Comparison of element concentrations in fir and rhododendron leaves and twigs along an altitudinal gradient. - Environ. Toxicol. Chem. 30: 2608-2619, 2011. Go to original source...
  64. Urban L., Montpied P., Normand F.: Season effects on leaf nitrogen partitioning and photosynthetic water use efficiency in mango. - J. Plant Physiol. 163: 48-57, 2006. Go to original source...
  65. Vats S.K., Kumar S.: Photosynthetic response of Podophyllum hexandrum Royle from different altitudes in Himalayan ranges. - Photosynthetica 44: 136-139, 2006. Go to original source...
  66. Wang J., Wen X., Zhang X. et al.: Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. - Sci. Rep.-UK 8: 7406, 2018. Go to original source...
  67. Wang M., Ying D., Wang Q. et al.: Genetic diversity analysis and fingerprinting construction of mango cultivars in China. - J. South. Agric. 46: 1154-1159, 2015.
  68. Whiley A.W.: Environmental effects on phenology and physiology of mango - a review. - Acta Hortic. 341: 168-176, 1993. Go to original source...
  69. Whiley A.W., Rasmussen T.S., Saranah J.B., Wolstenholme B.N.: Effect of temperature on growth, dry matter production and starch accumulation in ten mango (Mangifera indica L.) cultivars. - J. Hortic. Sci. 64: 753-765, 1989. Go to original source...
  70. Wittich B., Horna V., Homeier J., Leuschner C.: Altitudinal change in the photosynthetic capacity of tropical trees: A case study from Ecuador and a pantropical literature analysis. - Ecosystems 15: 958-973, 2012. Go to original source...
  71. Xu J., Wang Y., Yang S. et al.: Improved performance of photosynthetic light response equations with unified parameters for rice leaves with different SPAD values. - Pak. J. Bot. 47: 877-882, 2015.
  72. Zhang S.B., Yin L.X.: Plasticity in photosynthesis and functional leaf traits of Meconopsis horridula var. racemosa in response to growth irradiance. - Bot. Stud. 53: 335-343, 2012.
  73. Zhang S.-B., Zhou Z.-K., Hu H. et al.: Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. - Forest Ecol. Manag. 212: 291-301, 2005. Go to original source...
  74. Zhang Y.Q., Wang J.D., Gong S.H. et al.: Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat. - Agr. Water Manage. 179: 277-287, 2017. Go to original source...