Skip to main content
Log in

Dentin- und Hartgewebeneubildung nach indirekter und direkter Überkappung der Pulpa

Dentine and hard tissue formation after indirect and direct pulp capping

  • Übersichtsarbeit / Review Article
  • Published:
Oralprophylaxe & Kinderzahnheilkunde Aims and scope Submit manuscript

Zusammenfassung

Das menschliche Dentin kann in primäres, sekundäres und tertiäres unterteilt werden. Das primäre Dentin wird vor Zahndurchbruch gebildet, das sekundäre ein Leben lang. Die Primär- und Sekundärdentinbildung ist ein physiologischer Vorgang und erfolgt durch Odontoblasten. Diese sind postmitotische Zellen, die bei Verlust nicht ersetzt werden können. Kommt es z.B. durch Karies und/oder Kavitätenpräparation zu einer Verletzung der Odontoblastenfortsätze in den Dentintubuli, führt dies zur Bildung von Tertiärdentin, das auch als Reaktionsdentin bezeichnet werden kann. Das Reak - tionsdentin wird, wie das Primär- und Sekundärdentin, von den primären Odontoblasten gebildet. Durch die Verletzung des Dentins und der Odontoblastenfortsätze kommt es zu einer Freisetzung von Wachstumsfaktoren, was die Reaktionsdentinbildung positiv beeinflusst. Kommt es z.B. bei einer Pulpafreilegung zu einem Verlust des primären Odontoblasten, kann kein physiologisches Dentin mehr gebildet werden. Trotzdem ist nach direkter Überkappung eine Hartgewebsbrückenbildung zu beobachten. Dieses Hartgewebe ist ein spezielles Tertiärdentin und wird auch als Reparaturdentin bezeichnet, wobei fraglich ist, ob man dieses Hartgewebe überhaupt als Dentin charakterisieren kann, da es amorph und atubulär ist. Bisher ist nicht geklärt, welche Zellen dieses Reparaturdentin bilden. So wurde die Umwandlung anderer Pulpazellen in sogenannte sekundäre Odontoblasten beschrieben (Metaplasie). Eine andere Theorie geht davon aus, dass Höhlzellen, die sich in der Embryogenese zusammen mit den Odontoblasten bilden, diese bei Verlust ersetzen können. Auch wurden multipotente, adulte Stammzellen in der Pulpa nachgewiesen, die sich möglicherweise in Ersatzodontoblasten umwandeln können. Solche sekundäre Odontoblasten konnten aber bisher histologisch nach direkter Überkappung nicht nachgewiesen werden. Vermutlich handelt es sich daher bei der Hartgewebsbildung um eine dystrophische Mineralisation von Narbengewebe. Reaktions- und Reparaturdentinbildung laufen parallel in einer Kavität ab. Ein Material für die Überkappung der Pulpa sollte idealerweise die Zellen zur Hartgewebsbildung anregen, dabei antibakteriell wirken und nicht zytotoxisch sein. Im Falle einer Pulpafreilegung muss das Überkappungsmaterial in der Lage sein, die Eröffnungsstelle dicht zu verschließen, ohne resorbiert zu werden. Wässrige Calciumhydroxid- Suspensionen werden seit vielen Jahrzehnten mit hohen Erfolgsquoten für diesen Zweck eingesetzt. Trotzdem hat Calciumhydroxid einige Nachteile wie Resorptionserscheinungen und mangelnde Stabilität. Eine gute Alternative stellen daher neuerdings hydraulische Calciumsilikatzemente wie Mineral Trioxide Aggregate (MTA) oder Biodentine dar. Alle anderen Materialien wie Calciumsalicylatester- Zemente, Dentinadhäsive, lichthärtende Liner etc. können nach derzeitiger Datenlage für die Überkappung der Pulpa nicht empfohlen werden.

Summary

Human dentine can be divided into primary, secondary and tertiary. The primary dentine is formed before tooth eruption, the secondary one a lifetime. The primary and secondary dentine formation is a physiological process and is carried out by odonto - blasts. These are postmitotic cells, which can not be replaced if lost. If, for example, caries and/or cavity preparation lead to an injury of the odontoblast process in the dentine tubules, the formation of tertiary dentin will occur, which can also be referred to as a reactionary dentine. The reactionary dentine, like the primary and secondary dentine, is formed by the primary odontoblasts. The injury of the dentine and the odonto blast processes leads to a release of growth factors, which positively affects the reactionary dentine formation. If, for example, a loss of the primary odonto blast occurs during pulp exposure, no more physiological dentine can be formed. Nevertheless, after direct pulp capping a hard tissue bridge formation can be observed. This hard tissue is a special tertiary dentine and is also referred as reparative dentine. But it is questionable whether this hard tissue can be characterized as dentine at all, since it is amorphous and atubular. It is not yet clear which cells are involved in this reparative dentine formation. Thus, the transformation of other pulp cells into so-called secondary odontoblasts has been described (metaplasia). Another theory assumes that Höhl cells, which were formed together with the odontoblasts in embryogenesis, can replace them in case of loss. Also, multipotent, adult stem cells were detected in the pulp, which could possibly be converted into replacement odontoblasts. Such secondary odontoblasts, however, could not be detected histologically after direct pulp capping. Presumably, this hard tissue formation is a dystrophic mine ralization of scar tissue. Reactionary and reparative dentine formation takes place simultaneously in one cavity. A material for pulp capping should ideally stimulate the cells to hard tissue formation, have an antibacterial effect and is not cytotoxic. In the case of pulp exposure, the capping material must be able to seal the exposure site tightly without being absorbed. Aqueous calcium hydroxide suspensions have been used for many decades with high success rates for this purpose. Nevertheless, calcium hydroxide has some drawbacks such as resorption phenomena and lack of stability. A good alternative, therefore, are hydraulic calcium silicate cements such as mineral trioxide aggregate (MTA) or Biodentine. According to current data, all other materials such as calcium salicylate ester cements, dentine adhesives, light curing liners, etc. can not be recommended for the pulp capping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Accorinte MLR, Loguercio AD, Reis A, Muench A, Araújo VC Adverse effects of human pulps after direct pulp capping with the different componts from a total-etch, three-step adhesive system. Dent Mater 2005; 21: 599–607

    Google Scholar 

  2. Akhlaghi N, Khademi A: Outcomes of vital pulp therapy in permanent teeth with different medicaments based on review of the literature. Dent Res J (Isfahan) 2015; 12: 406–417

    Google Scholar 

  3. Andelin WE, Shabahang S, Wright K, Torabinejad M: Identification of hard tissue after experimental pulp capping using dentin sialoprotein (DSP) as a marker. J Endod 2003; 29: 646–650

    PubMed  Google Scholar 

  4. Atmeh AR, Chong EZ, Richard G, Boyde A, Festy F, Watson TF Calcium silicate cement-induced remineralisation of totally demineralised dentine in comparison with glass ionomer cement: tetracycline labelling and two-photon fluorescence microscopy. J Microsc 2015; 257: 151–160

    PubMed  Google Scholar 

  5. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 2012; 91: 454–459

    PubMed  PubMed Central  Google Scholar 

  6. Barnes IM, Kidd EA Disappearing Dycal. Br Dent J 1979; 147: 111

    PubMed  Google Scholar 

  7. Barthel CR, Levin LG, Reisner HM, Trope M: TNFalpha release in monocytes after exposure to calcium hydroxide treated Escherichia coli LPS. Int Endod J 1997; 30: 155–159

    PubMed  Google Scholar 

  8. Bergenholtz G: Evidence for bacterial causation of adverse pulpal responses in resin-based dental restorations. Crit Rev Oral Biol Med 2000; 11: 467–480

    PubMed  Google Scholar 

  9. Berzins DW Chemical properties of MTA. In Torabinejad M (Hrsg): Mineral Trioxide Aggregate. Properties and clinical applications. Wiley Blackwell Publishing, Ames 2014, 17–36

    Google Scholar 

  10. Bogen G, Chandler NP Vital Pulp Therapy. In: Ingle JI, Bakand LK, Baumgartner JC (Hrsg): Ingle’s Endodontics. 6. Aufl. Verlag BC Decker, Hamilton 2008, 1310–1329

    Google Scholar 

  11. Bortoluzzi EA, Niu LN, Palani CD et al.: Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent Mater 2015; 31: 1510–1522

    PubMed  PubMed Central  Google Scholar 

  12. Bouillaguet S, Ciucchi B, Holz J: Évaluation de la cytotoxicité de deux adhésifs dentinaires à l’aide de cellules pulpaires humaines en culture. Schweiz Monatsschr Zahnmed 1993; 103: 1085–1091

    PubMed  Google Scholar 

  13. Bouillaguet S, Wataha J, Hanks CT, Ciucci B, Holz J: In vitro cytotoxcity and dentin permeability of HEMA (2-hydroxyethyl methacrylate). J Endod 1996; 22: 244–248

    PubMed  Google Scholar 

  14. Camilleri J, Laurent P, About I: Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod 2014; 40: 1846–1854

    PubMed  Google Scholar 

  15. Cao Y, Bogen G, Lim J, Shon WJ, Kang MK Bioceramic materials and the changing concepts in vital pulp therapy. J Calif Dent Assoc 2016; 44: 278–290

    PubMed  Google Scholar 

  16. Carlisle EM Silicon: a possible factor in bone calcification. Science 1970; 176: 279–280

    Google Scholar 

  17. Cooper PR, Holder MJ, Smith AJ Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod 2014; 40: 46–S51

    Google Scholar 

  18. Costa CAS, Hebling J, Hanks CT Current status of pulp capping with dentin adhesive systems: a review. Dent Mater 2000; 16: 188–197

    PubMed  Google Scholar 

  19. Couve E, Osorio R, Schmachtenberg O. The amazing odontoblast: activity, autophagy, and aging. J Dent Res 2013; 92: 765–772

    PubMed  Google Scholar 

  20. Cox CF, Sübay RK, Ostro E, Suzuki S, Suzuki SH Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent 1996; 21: 4–11

    PubMed  Google Scholar 

  21. Dammaschke T, Camp JH, Bogen G: MTA in Vital Pulp Therapy. In: Torabinejad M (Hrsg): Mineral Trioxide Aggregate–Properties and Clinical Applications. Wiley Blackwell Publishing, Ames 2014, 71–110

    Google Scholar 

  22. Dammaschke T, Kaup M, Ott K: Ätiologie und Pathogenese intrapulpaler Hartgewebsbildungen–eine Übersicht. Endodontie 2000; 9: 229–238

    Google Scholar 

  23. Dammaschke T, Leidinger J, Schäfer E: Long-term evaluation of direct pulp capping-treatment outcomes over an average period of 6.1 years. Clin Oral Investig 2010; 14: 559–567

    PubMed  Google Scholar 

  24. Dammaschke T, Stratmann U, Fischer R-J, Sagheri D, Schäfer E: A histological investigation of direct pulp capping in rodents with dentin adhesives and calcium hydroxide. Quintessence Int 2010; 41: 62–71

    Google Scholar 

  25. Dammaschke T, Stratmann U, Fischer R-J, Sagheri D, Schäfer E: Proliferation of rat molar pulp cells after direct pulp capping with dentine adhesive and calcium hydroxide. Clin Oral Investig 2011; 15: 577–587

    PubMed  Google Scholar 

  26. Dammaschke T, Stratmann U, Wolff P, Sagheri D, Schäfer E: Direct pulp capping with Mineral Tri - oxide Aggregate: An immunohistological comparison with calcium hydroxide in rodents. J Endod 2010; 36: 814–819

    PubMed  Google Scholar 

  27. Doherty TM, Asotra K, Fitzpatrick LA et al.: Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci USA 2003; 100: 11201–11206

    PubMed  PubMed Central  Google Scholar 

  28. Duda S, Dammaschke T: Maßnahmen zur Vital - erhaltung der Pulpa. Gibt es Alternativen zum Kalziumhydroxid bei der direkten Überkappung? Quintessenz 2008; 59: 1327–1334, 1354

    Google Scholar 

  29. Euler H, Rebel H-H: Sekundäre Odontoblastenbildung. Z Stomatol 1932; 30: 515–530, 588–600

    Google Scholar 

  30. Farges J-C, Keller J-F, Carrouel F et al Odontoblasts in the pulp immune response. J Exp Zool B Mol Dev Evol 2009; 312B: 425–436

    PubMed  Google Scholar 

  31. Fisher FJ, McCabe JF Calcium hydroxide base materials: an investigation into the relationship between chemical structure and antibacterial properties. Br Dent J 1978; 144: 341–344

    PubMed  Google Scholar 

  32. Fitzgerald M, Chiego JD, Heys DR Autoradiographic analysis of odontoblast replacement follow - ing pulp exposure in primate teeth. Arch Oral Biol 1990; 35: 707–715

    PubMed  Google Scholar 

  33. Gandolfi MG, Siboni F, Prati C: Chemical-physical properties of TheraCal, a novel light-curable MTAlike material for pulp capping. Int Endod J 2012; 45: 571–579

    PubMed  Google Scholar 

  34. Gandolfi MG, van Lunduyt K, Taddei P, Modena E, van Meerbeek B, Prati C: Environmental scanning electron microscopy connected with energy dispersive X-ray analysis and Raman techniques to study ProRoot Mineral Trioxide Aggregate and calcium silicate cements in wet conditions and in real time. J Endod 2010; 36: 851–857

    PubMed  Google Scholar 

  35. Goldberg M, Smith AJ Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 2004; 15: 13–27

    PubMed  Google Scholar 

  36. Goldberg M: Reactionary and reparative dentin-like structures. In: Goldberg M (Hrsg): The Dental Pulp–biology, pathology, and regenerative thera - pies. Springer-Verlag, Berlin 2014, 141–154

    Google Scholar 

  37. Goldberg M: The pulp reaction beneath the carious lesion. In: Goldberg M (Hrsg): Understanding Dental Caries. Springer-Verlag, Berlin 2016, 127–149

    Google Scholar 

  38. Goracci G, Mori G: Scanning electron microscopic evaluation of resin-dentin and calcium hydroxidedentin interface with resin composite restorations. Quintessence Int 1996; 27: 129–135

    PubMed  Google Scholar 

  39. Graham L, Cooper PR, Cassidy N, Nör JE, Sloan AJ, Smith AJ The effect of calcium hydroxide on solubilisation of bioactive dentine matrix components. Biomaterials 2006; 27: 2865–2873

    PubMed  Google Scholar 

  40. Gronthos S, Brahim J, Li W et al.: Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81: 531–535

    PubMed  Google Scholar 

  41. Gronthos S, Mankani M, Brahim J, Gehron Robey P, Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97: 13625–13650

    PubMed  PubMed Central  Google Scholar 

  42. Gurtner GC, Werner S, Barrandon Y, Longaker MT Wound repair and regeneration. Nature 2008; 453: 314–321

    PubMed  Google Scholar 

  43. Han L, Okiji T: Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011; 44: 1081–1087

    PubMed  Google Scholar 

  44. Hanks CT, Strawn SE, Wataha JC, Craig RG Cyto - toxic effects of resin components on cultured mammalian fibroblasts. J Dent Res 1991; 70: 1450–1455

    PubMed  Google Scholar 

  45. Hashem D, Mannocci F, Patel S et al.: Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J Dent Res 2015; 94: 562–568

    PubMed  PubMed Central  Google Scholar 

  46. Hebling J, Giro EMA, Costa CA Human pulp response after an adhesive system application in deep cavities. J Dent 1999; 27: 557–564

    PubMed  Google Scholar 

  47. Hebling J, Lessa FC, Nogueira I, Carvalho RM, Costa CA Cytotoxicity of resin-based light-cured liners. Am J Dent 2009; 22: 137–142

    PubMed  Google Scholar 

  48. Heitmann T, Unterbrink G: Direct pulp capping with a dentinal adhesive resin system: a pilot study. Quintessence Int 1995; 26: 765–770

    PubMed  Google Scholar 

  49. Hench LL, West JK Biological application of bioac - tive glasses. Life Chem Reports 1996; 13: 187–241

    Google Scholar 

  50. Hilton TJ, Ferracane JL, Mancl L, for Northwest Practice-based Research Collaborative in Evidencebased Dentistry (NWP): Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res 2013; 92: 16S–22S

    PubMed  Google Scholar 

  51. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 2004; 20: 12–20

    PubMed  Google Scholar 

  52. Jontell M, Hanks CT, Bratel J, Bergenholtz G: Effects of unpolymerized resin components on the function of accessory cells derived from the rat incisor pulp. J Dent Res 1995; 74: 1162–1167

    PubMed  Google Scholar 

  53. Jung S, Mielert J, Kleinheinz J, Dammaschke T: Human oral cells’ response to different endo - dontic resorative materials: an in vitro study. Head Face Med 2014, 10: 55. DOI: 10.1186/s13005-014-0055-4

    PubMed  PubMed Central  Google Scholar 

  54. Kakehashi S, Stanley HR, Fitzgerald RJ The effects of surgical exposure of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 1965; 20: 340–349

    PubMed  Google Scholar 

  55. Kaup M, Dammann CH, Schäfer E, Dammaschke T: Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head Face Med 2015, 11: 14. doi: 10.1186/s13005–015–0071-z

    PubMed  PubMed Central  Google Scholar 

  56. Kuttler Y: Classification of dentin into primary, secondary and tertiary. Oral Surg Oral Med Oral Pathol 1959; 12: 996–999

    PubMed  Google Scholar 

  57. Laurent P, Camps J, About I: Biodentine induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012; 45: 439–448

    PubMed  Google Scholar 

  58. Laurent P, Camps J, de Méo M, Déjou J, About I: Induction of specific cell responses to a Ca3SiO5-based posterior restorative material. Dent Mater 2008; 24: 1486–1494

    PubMed  Google Scholar 

  59. Lesot H, Bègue-Kirn C, Kubler MD et al.: Experimental induction of odontoblast differentiation and stimulation during reparative processes. Cells Mater 1993; 3: 201–217

    Google Scholar 

  60. Li Z, Cao L, Fan M, Xu Q: Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: a meta-analysis. J Endod 2015; 41: 1412–1417

    PubMed  Google Scholar 

  61. Liard-Dumtschin D, Holz J, Baume LJ Le coiffage pulpaire direct–essai biologique sur 8 produits. Schweiz Monatsschr Zahnmed 1984; 94: 4–22

    PubMed  Google Scholar 

  62. Mantellini MG, Botero TM, Yaman P, Dennison JP, Hanks CT, Nör JE Adhesive resin induces apoptosis and cell-cycle arrest of pulp cells. J Dent Res 2003; 82: 592–596

    PubMed  Google Scholar 

  63. Mente J, Hufnagel S, Leo M et al.: Treatment outcome of Mineral Trioxide Aggregate or calcium hydroxide direct pulp capping: long-term results. J Endod 2014; 40: 1746–1751

    PubMed  Google Scholar 

  64. Modena KCS, Casas-Apayco LC, Atta MT et al.: Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci 2009; 17: 544–554

    PubMed  PubMed Central  Google Scholar 

  65. Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nör JE Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod 2005; 31: 387–391

    PubMed  Google Scholar 

  66. Motsch A: Die Unterfüllung–eine kritische Diskussion der verschiedenen Zemente und Präparate. In: Akademie Praxis und Wissenschaft in der DGZMK (Hrsg): Neue Füllungsmaterialien: Indikation und Verarbeitung. Hanser Verlag, München 1990, 35–65

    Google Scholar 

  67. Murray PE, About I, Lumley PJ, Franquin JC, Remusat M, Smith AJ Cavity remaining dentin thickness and pulpal activity. Am J Dent 2002; 15: 41–46

    PubMed  Google Scholar 

  68. Nowicka A, Lipski M, Parafiniuk M et al.: Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J Endod 2013; 39: 743–747

    PubMed  Google Scholar 

  69. Okumura R, Shima K, Muramatsu T et al.: The odontoblast as a sensory receptor cell? The expression of TRPV1 (VR-1) channels. Arch Histol Cytol 2005; 68: 251–257

    PubMed  Google Scholar 

  70. Pääkkönen V, Rusanen P, Hagström J, Tjäderhane L: Mature human odontoblasts express virus-recognizing toll-like receptors. Int Endod J 2014; 47: 934–941

    PubMed  Google Scholar 

  71. Parirokh M, Torabinejad M: Mineral trioxide aggregate: a comprehensive literature review–Part I: chemical, physical, and antibacterial properties. J Endod 2010; 36: 16–27

    PubMed  Google Scholar 

  72. Pashley DH Consideration of dentin permeability in cytotoxicity testing. Int Endod J 1988; 21: 143–154

    PubMed  Google Scholar 

  73. Patel N, Best SM, Bonfield W et al.: A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 2002; 13: 1199–1206

    PubMed  Google Scholar 

  74. Paterson RC, Watts A: Further studies on the exposed germ-free dental pulp. Int Endod J 1987; 20: 112–121

    PubMed  Google Scholar 

  75. Phaneuf RA, Frankl SN, Ruben MP A comperative histological evaluation of three commercial calcium hydroxide preparations on the human primary dental pulp. J Dent Child 1968; 35: 61–76

    PubMed  Google Scholar 

  76. Pitt Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP Using Mineral Trioxide Aggregate as a pulp-capping material. J Am Dent Assoc 1996; 127: 1491–1494

    Google Scholar 

  77. Poggio C, Arciola CR, Beltrami R et al.: Cytocompatibility and antibacterial properties of capping materials. Scientific World Journal 2014; 2014: 181945

    PubMed  PubMed Central  Google Scholar 

  78. Poggio C, Ceci M, Dagna A, Beltrami R, Colombo M, Chiesa M: In vitro cytotoxicity evaluation of different pulp capping materials: a comparative study. Arh Hig Rada Toksikol 2015; 66: 181–188

    PubMed  Google Scholar 

  79. Qin C, Baba O, Butler WT Post-translational modifications of sibiling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med; 2004; 15: 126–136

    PubMed  Google Scholar 

  80. Rathinam E, Rajasekharan S, Chitturi RT, Martens L, De Coster P: Gene expression profiling and molecular signaling of dental pulp cells in response to tricalcium silicate cements: a systematic review. J Endod 2015; 41: 1805–1817

    PubMed  Google Scholar 

  81. Ricucci D, Loghin S, Lin LM, Spångberg LS, Tay FR Is hard tissue formation in the dental pulp after the death of the primary odontoblast a regenerative or a reparative procedure? J Dent 2014; 42: 1156–1170

    PubMed  Google Scholar 

  82. Ruch JV, Lesot H, Bègue-Kirn C: Odontoblast differentiation. Int J Dev Biol 1995; 39: 51–68

    PubMed  Google Scholar 

  83. Saito T, Toyooka H, Ito S, Crenshaw MA In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix. Caries Res 2003; 37: 445–449

    PubMed  Google Scholar 

  84. Schröder U: Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res 1985; 64(Spec Iss): 541–548

    PubMed  Google Scholar 

  85. Schroeder HE Orale Strukturbiologie. 3. Aufl. Thieme Verlag, Stuttgart 1987

    Google Scholar 

  86. Schroeder HE Pathobiologie oraler Strukturen. Zähne, Pulpa, Parodont. 3. Aufl., Karger Verlag, Basel 1997

    Google Scholar 

  87. Schuurs AH, Gruythuysen RJ, Wesselink PR Pulp capping with adhesive resin-based composite vs. calcium hydroxide: a review. Endod Dent Traumatol 2000; 16: 240–250

    PubMed  Google Scholar 

  88. Simon S, Smith AJ, Berdal A, Lumley PJ, Cooper PR The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation. J Endod 2010; 36: 256–259

    PubMed  Google Scholar 

  89. Sloan AJ, Perry H, Matthews JB, Smith AJ Transforming growth factor-beta isoform expression in mature human healthy and carious molar teeth. Histochem J 2000; 32: 247–252

    PubMed  Google Scholar 

  90. Smith AJ, Cassidy N, Perry H, Bègue-Kirn C, Ruch JV, Lesot H: Reactionary dentinogenesis. Int J Dev Biol 1995; 39: 273–280

    PubMed  Google Scholar 

  91. Smith AJ Formation and repair of dentin in the adult. In: Hargreaves KM, Goodis HE, Tay FR Seltzer and Bender´s Dental Pulp. 2nd ed. Quintessence Publishing Chicago, 2012; 27–46

    Google Scholar 

  92. Staehle HJ, Pioch T: Zur alkalisierenden Wirkung von Kalziumhaltigen Präparaten. Dtsch Zahnärztl Z 1988; 43: 308–312

    PubMed  Google Scholar 

  93. Staehle HJ Calciumhydroxid in der Zahnheilkunde. Hanser Verlag, München 1990

    Google Scholar 

  94. Staehle HJ Cp-Behandlung/Versorgung pulpanahen Dentins. Stellungnahme der DGZMK. Dtsch Zahnärztl Z 1998; 53

    Google Scholar 

  95. Subramaniam P, Konde S, Prashanth P: An in vitro evaluation of pH variations in calcium hydroxide liners. J Indian Soc Pedod Prev Dent 2006; 24: 144–145

    PubMed  Google Scholar 

  96. Swift EJ, Trope M, Ritter AV Vital pulp therapy for the mature tooth–can it work? Endodontic Topics 2003; 5: 49–56

    Google Scholar 

  97. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 2010; 12: 503–535

    PubMed  PubMed Central  Google Scholar 

  98. Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent 2007; 35: 636–642

    PubMed  Google Scholar 

  99. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR Physical and chemical properties of a new rootend filling material. J Endod 1995; 21: 349–353

    PubMed  Google Scholar 

  100. Torabinejad M, Parirokh M: Mineral trioxide aggregate: a comprehensive literature review–Part II leakage and biocompatibility investigations. J Endod 2010; 36: 190–202

    PubMed  Google Scholar 

  101. Veerayutthwilai O, Byers MR, Pham TT, Darveau RP, Dale BA Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol 2007; 22: 5–13

    PubMed  Google Scholar 

  102. Yalcin M, Arsaln U, Dundar A: Evaluation of antibacterial effects of pulp capping agents with direct contact test method. Eur J Dent 2014; 8: 95–99

    PubMed  PubMed Central  Google Scholar 

  103. Yamamura T: Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res 1985; 64(Spec Iss): 530–540

    PubMed  Google Scholar 

  104. Zanini M, Sautier JM, Berdal A, Simon S: Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod 2012; 38: 1220–1226

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Dammaschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dammaschke, T. Dentin- und Hartgewebeneubildung nach indirekter und direkter Überkappung der Pulpa. Oralprophylaxe Kinderzahnheilkd 39, 27–37 (2017). https://doi.org/10.3238/BF03651720

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3238/BF03651720

Schlüsselwörter

Keywords

Navigation