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Abstract— The flow problem of Magnetohydrodynamic 

three-dimensional Casson fluid past a porous linearly stretching 

sheet is investigated analytically. The flow governing equations 

are reduced to a set of nonlinear ordinary differential equations 

using the similarity transformations and solved using an 

efficient and suitable mathematical technique, the differential 

transform method (DTM), in the form of convergent series, by 

applying  Pade approximation and the results are validated 

using Runge-Kutta-Fehlberg Numerical Method. DTM-Pade 

proves to be an efficient method in solving the Non-linear 

Differential Equations.  By increasing the non-Newtonian  fluid 

parameter the fluid reduces to the Newtonian Fluid is illustrated 

using graphs. It is also clear that the Casson fluid parameter, 

stretching parameter, Hartmann number and porosity 

parameter increase with increase in the velocity profiles of the 

fluid. 

 

Index Terms— MHD Casson Fluid, Boundary Layer, 

Rotating Disc,  DTM-Pade,   Approximation, Porous medium. 

 

I. INTRODUCTION 

  Fluid  mechanics  has a wide  range of   applications   

including  mechanical engineering, biomedical engineering, 

geophysics, astrophysics and biology [11].  Researchers have 

shown enormous interest in three-dimensional flow of 

non-Newtonian fluid due to its extensive practical importance 

in industry and engineering[16].  Nonlinear   phenomena  

have important effects on applied Mathematical problems. 

The importance of obtaining the exact or approximate 

solutions of  nonlinear  partial differential equations 

(NLPDEs) in applied Mathematical problem is the  most 

formidable  problem  that  needs various methods  for exact or  

approximate  solutions.   Most   of   nonlinear equations do not 

have a precise analytic solution; so numerical methods have 

largely  been  used to handle these equations. 

 

 

Some analytic techniques for nonlinear equations which are 

classic analytic methods such as Lyapunov method, 

perturbation techniques, Homotopy perturbation method 

(HPM), Homotopy analysis method (HAM) and the 

Differential Transform Method. 
 

Non-Newtonian fluids  have received more attention and 

significance than Newtonian fluid in the study of flow of 

viscoelastic fluids[11] was first presented by Casson in 1995. 

This model is  cast off   by fuel engineers in the understanding 

of adhesive slurry and is improved  for  forecasting high 
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sheer-rate viscosities when only low and traditional sheer-rate 

data are accessible.  Boundary layer flow over stretching plate 

was first presented by Crane. 

 

A fluid that does not follow Newton’s law of viscosity is 

called Non-Newtonian fluid. The most popular among these 

fluids is the Casson fluid. Casson fluid is defined as shear 

thinning liquid which is assumed to have an infinite viscosity 

at zero rate of shear, a yield stress below which no flow occurs 

and a zero viscosity at an infinite rate of shear [6]. 
 

Most Non-Newtonian fluids, Casson fluid and nanofluid are 

modeled by non-linear differential equations. Most effective 

methods for solving non-linear problems  is the DTM, first 

proposed by Zhou[9].  DTM has been applied to many 

problems such as linear partial differential  equations of 

fractional order, non-linear oscillating system, multiorder 

fractional differential equations, hyper-chaotic Rossler 

system etc. DTM constructs, for differential equations an 

analytical solution in the form of power series but these power 

series is not useful for large value of ,  say 0 . 
 

Therefore the combination of the series solution through the 

DTM or any other series solution method with the Pade 

approximation. DTM-Pade has been successfully employed 

to solve many types of non-linear problem such as MHD flow 

in a laminar liquid film and nano boundary layers over 

stretching surfaces[7]. 
 

The non-linear equations of the flow field has been solved 

by Differential transform method empowered by Pade 

approximants  analytically and  Runge-Kutta-Fehlberg[12] 

method  with shooting techniques is used to solve Navier  

stokes’ equation  numerically in this paper. 

II. FLOW DUE TO A ROTATING DISC OF INFINITE RADIUS 

 
                 Fig.1: Schematic of  Flow due to a rotating disc 

 

Consider the flow due to a rotating disc which rotates with an 

angular velocity  about an axis perpendicular to its plane. 

The disc is considered to be of infinite   radius.  Due     to   the 

centrifugal forces the fluid near the disc will be thrown 
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outward and it is compensated by flow in the axial direction 

towards the disc[5]. Thus all the three components of velocity 

in the cylindrical polar coordinates will exist. Accordingly the 

governing equations  are  in the form 
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 Subsequent boundary conditions are
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 In the absence of body forces, we will consider the following 

possibilities for the velocity and pressure distribution 
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substituting (2.6) in (2.1) - (2.4) under the absence of external 

force, we obtain 
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where prime denotes the differentiation with respect to z . To 

remove the constant coefficients  
1

2 ,   we will use the 

following transformations. 

         

       

1

2

, , , ( 2 .8 )

,

z f z F g z G

h z H p z P

  


 

  

 

 

Using equation (2.8) in equations (2.7), we arrive to equations 

in the form 
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The transformed boundary conditions are, 
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Using the  appropriate DTM transformations in the set of  

equations (2.9), we have, 
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 with boundary conditions: 
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The solutions in the form of expansion for small    is 

given by 
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Fig. 2: The velocity distribution near a rotating disc for 

               an  infinite radius. 

 

It can be observed from the figure that F,G and H tend to their 

limiting value asymptotically but for practical purpose 5 

 and the corresponding values of  z, which we call as   from 

the equation(2.8) 

                            
1

2

5 



                                                                            



 

International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-6, Issue-1, January 2019 

                                                                                                   28                                                                           www.ijeas.org 

if    is small then    will be small which gives rise to a 

boundary layer type of flow which is precisely explained by 

the model in the following  section. 

III. MHD CASSON  FLUID PAST A POROUS LINEARLY 

STRETCHING SHEET 

A  Mathematical  Formulation 

 

This model is used by fuel engineers. Most of the Casson 

fluids are modeled by nonlinear partial differential equations. 

Consider a three-dimensional (3D) incompressible flow past a 

stretching sheet. It is assumed that the sheet stretches along 

xy-plane, while the fluid is placed along z-axis. 

 

 
Fig.3: Nanofluid stretching sheet flow physical model 

 
The boundary layer equations of 3-D incompressible Casson 

fluids are, 
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 Where, u, v  w denote the velocities in x, y and z directions 

respectively,   = Casson fluid parameter,  = Kinematic 

viscosity, B = magnetic induction, K = porous medium 

permeability 

 

Boundary conditions are, 

                                                         

 

0
0 (3 .4 )

0

w

w

u a x u x u
a t z a t z

vv b y v y

   
   

    
where a and b are positive constants, w

u  and 
w

v  are 

stretching velocities in x and y-direction respectively. 

Introducing the similarity transformations 
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using the similarity transformation in equation (3.5) in 

equations (3.1) - (3.3) we have coupled non-linear differential 

equations 
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 B  Analytical approximation by means of the DTM-Pade 

                                           
using the suitable DTM transformation  F(k) and G(k) are 

transformed equations of f(k) and g(k) which are given by, 
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And the corresponding boundary conditions are 
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Using equation (3.11) in equations (3.9) and (3.10) and the 

substituting in equation (3.8), we obtain  the power series 

solution in the following form 
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IV. RESULTS AND DISCUSIIONS 

We have plotted the velocity distribution near a rotating disc 

in graph in Figure 2 and we can see from the graph that F,G,H 

tend to their limiting values asymptotically using  which the 

boundary layer type can be  estimated for a rotating fluid. 

 

 
  

Fig. 4: Velocity profiles  of  f  and  g   using  

          DTM-Pade and Runge-Kutta-Felhberg Method. 

 

The   graph   in figure 4 shows that DTM-Pade and  Numerical 

results are in very good  agreement for the velocity 

profiles  f 
   

and  g   using Casson fluid parameter 

0 .5, 1 .M c      The graphs in Figures 5 and 6  

gives the  velocity profiles for the Casson fluid parameter and 

the porosity Parameter. It shows that effects of  increasing the 

non-Newtonian parameter fluid parameter  
 
reduces the 

fluid to be more Newtonian in nature and when increasing the 

values of  the porosity parameter  , within the boundary 

layer. 

 

 

Fig. 5: Velocity profiles  f  and  g 
 

                        with varying   

.   

                 

Fig.6:  f  and  g   with varying Porosity  

                   Parameter   .  

Also for higher values of  , the thickness boundary layer 

decreases and also there is a reduction in the boundary layer 
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thickness. The graphs in figure7 shows the effects if 

increasing Hartmann Parameter, we see that the magnitude of  

the velocity  reduce  when  the values  of  M  increase. The 

graphs in figure8 depict that the velocity  f  reduce at 

increased values of the stretching parameter c, while 

 g  varies with respect  to various values of the stretching 

parameter c. 

.    
  

 

 

 
Fig.7:  f  and  g   with varying Hartmann  

                  Number(M). 

 

Fig. 8:  f  and  g  with varying  Stretching  

                   Parameter( c). 

V. CONCLUSION 

The solution that we have obtained for the coupled non-linear 

equations are consistent with the numerical results. These 

results are obtained without requiring linearization, 

discretization and perturbation.  DTM-Pade  proves to be an 

efficient method in solving the non-linear equations occurring 

in different engineering and applied fields.  
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