The Effect of the Knockout of Major Transsulfuration Genes on the Pattern of Protein Synthesis in D. melanogaster

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The enzymes involved in the transsulfuration pathway and hydrogen sulfide production – cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) – play an important cytoprotective role in the functioning of the organism. Using CRISPER/Cas9 technology, we obtained Drosophila lines with deleted cbs, cse, and mst genes as well as with double deletion of cbs and cse genes. We analyzed the effect of these mutations on the pattern of protein synthesis in the salivary glands of third instar larvae and in the ovaries of mature flies. In the salivary glands of lines with cbs and cse deletions, a decrease was found in the accumulation of the FBP2 storage protein containing 20% methionine amino acid residues. In the ovaries, changes were detected in the level of expression and isofocusing points of proteins involved in cell protection against oxidative stress, hypoxia, and protein degradation. It was shown that in the lines with deletions of transsulfuration enzymes the proteins have a similar degree of oxidation to that of the control line. A decrease in the total number of proteasomes and their activity was found in the lines with deletions of the cbs and cse genes.

About the authors

A. S. Zakluta

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: olzacepina@yandex.ru
Russia, 119991, Moscow

V. Y. Shilova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: olzacepina@yandex.ru
Russia, 119991, Moscow

O. G. Zatsepina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: olzacepina@yandex.ru
Russia, 119991, Moscow

References

  1. Mota-Martorell N., Jové M., Borrás C., Berdún R., Obis È., Sol J., Cabré R., Pradas I., Galo-Licona J.D., Puig J., Viña J., Pamplona R. (2020) Methionine transsulfuration pathway is upregulated in long-lived humans. Free Rad. Biol. Med. 162, 38–52.
  2. Parkhitko A.A., Jouandin P., Mohr S.E., Perrimon N. (2019) Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 18, e13034.
  3. Perridon B.W., Leuvenink H.G., Hillebrands J.L., van Goor H., Bos E.M. (2016) The role of hydrogen sulfide in aging and age-related pathologies. Aging. 8, 2264–2289.
  4. Sokolov A.S., Nekrasov P.V., Shaposhnikov M.V., Moskalev A.A. (2021) Hydrogen sulfide in longevity and pathologies: inconsistency is malodorous. Ageing Res. Rev. 67, 101262.
  5. Tabibzadeh S. (2021) Signaling pathways and effectors of aging. Front. Biosci. 26, 50–96.
  6. Xiao Q., Ying J., Xiang L., Zhang C. (2018) The biologic effect of hydrogen sulfide and its function in various diseases. Medicine. 97, e13065.
  7. KimuraY., GotoY., Kimura H. (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12, 1–13.
  8. Kabil O., Banerjee R. (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal. 20, 770–782.
  9. Paul B.D., Snyder S.H. (2012) H2S signaling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell. Biol. 13, 499–507.
  10. Mudd S.H., Levy H.L., Kraus J.P. (2001) Disorders of transsulfuration. In: The Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 2007–2056.
  11. Guzmán M.A., Navarro M.A., Carnicer R., Sarría A.J., Acín S., Arnal C., Muniesa P., Surra J.C., Arbonés-Mainar J.M., Maeda N., Osada J. (2006) Cystathionine β-synthase is essential for female reproductive function. Hum. Mol. Genet. 21, 3168–3176.
  12. Shirozu K., Tokuda K., Marutani E., Lefer D., Wang R., Ichinose F. (2014) Cystathionine γ-lyase deficiency protects mice from galactosamine/lipopolysaccharide induced acute liver failure. Antioxid. Redox Signal. 20, 204–216.
  13. Badiei A., Chambers S.T., Gaddam R.R., Bhatia M. (2016) Cystathionine γ-lyase gene silencing with siRNA in monocytes/macrophages attenuates inflammation in cecal ligation and puncture induced sepsis in the mouse. J. Biosci. 41, 87–95.
  14. Gaddam R.R., Fraser R., Badiei A., Chambers S., Cogger V.C., Le Couteur D.G., Ishii I., Bhatia M. (2016) Cystathionine gamma-lyase gene deletion protects mice against inflammation and liver sieve injury following polymicrobial sepsis. PLoS One. 11, e0160521.
  15. Kolluru G.K., Bir S.C., Yuan S., Shen X., Pardue S., Wang R., Kevil C.G. (2015) Cystathionine gamma-lyase regulates arteriogenesis through no-dependent monocyte recruitment. Cardiovasc. Res. 107, 590–600.
  16. Yuan S., Yurdagul A., Jr, Peretik J.M., Alfaidi M., Al Yafeai Z., Pardue S., Kevil C.G., Orr A. W. (2018) Cystathionine γ-lyase modulates flow-dependent vascular remodeling. Arterioscler, Thromb. Vasc. Biol. 38, 2126–2136.
  17. Snijder P.M., Baratashvili M., Grzeschik N.A., Leuvenink H.G.D., Kuijpers L., Huitema S., Schaap O., Giepmans B.N.G., Kuipers J., Miljkovic J.L., Mitrovic A., Bos E.M., Szabó C., Kampinga H.H., Dijkers P.F., Bos E.M., Szabó C., Kampinga H.H., Dijkers P.F., Dunnen WFAD, Filipovic M.R., Goor H.V., Sibon OCM. (2016). Overexpression of cystathionine γ-lyase suppresses detrimental effects of spinocerebellar ataxia type 3. Mol. Med. 21, 758–768.
  18. Zatsepina O., Karpov D., Chuvakova L., Rezvykh A., Funikov S., Sorokina S., Zakluta A., Garbuz D., Shilova V., Evgen’ev M. (2020) Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster. Redox Biol. 36, 101654.
  19. Shaposhnikov M.V., Zakluta A.S., Zemskaya N.V., Guvatova Z.G., Shilova V.Y., Yakovleva D.V., Gorbunova A.A., Koval L.A., Ulyasheva N.S., Evgen’ev M.B., Zatsepina O.G., Moskalev A.A. (2022) Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mech. Ageing Dev. 203, 111656.
  20. O’Farrell P.Z., Goodman H.M., O’Farrell P.H. (1977). High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 12, 1133–1141.
  21. de Jong A., Schuurman K.G., Rodenko B., Ovaa H., Berkers C.R. (2012) Fluorescence-based proteasome activity profiling. Meth. Mol. Biol. 803, 183–204.
  22. Zatsepina O.G., Kechko O.I., Mitkevich V.A., Kozin S.A., Yurinskaya M.M., Vinokurov M.G., Serebryakova M.V., Rezvykh A.P., Evgen’ev M.B., Makarov A.A. (2018) Amyloid-β with isomerized Asp7 cytotoxicity is coupled to protein phosphorylation. Sci. Rep. 8, 3518.
  23. Meghlaoui G.K., Veuille M. (1997) Selection and methionine accumulation in the fat body protein 2 gene (FBP2), a duplicate of the Drosophila alcohol dehydrogenase (ADH) gene. J. Mol. Evol. 44, 23–32.
  24. Zatsepina O.G., Chuvakova L.N., Nikitina E.A., Rezvykh A.P., Zakluta A.S., Sarantseva S.V., Surina N.V., Ksenofontov A.L., Baratova L.A., Shilova V.Y., Evgen’ev M.B. (2022) Genes responsible for H2S production and metabolism are involved in learning and memory in Drosophila melanogaster. Biomolecules. 12, 751.
  25. Lee K.S., Iijima-Ando K., Iijima K., Lee W.J., Le J.H., Yu K., Lee D.S. (2009) JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. J. Biol. Chem. 284, 29454–29461.
  26. Azad P., Zhou D., Russo E., Haddad G.G. (2009) Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS One. 4, e5371.
  27. Raynes R., Pomatto L.C., Davies K.J. (2016) Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol. Aspects Med. 50, 41–55.
  28. Lefaki M., Papaevgeniou N., Chondrogianni N. (2017) Redox regulation of proteasome function. Redox Biol. 13, 452–458.
  29. Aiken C.T., Kaake R.M., Wang X., Huang L. (2011) Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteomics. 10, R110.006924.
  30. Морозов А.В., Буров А.В., Астахова Т.М., Спасская Д.С., Маргулис Б.А., Карпов В.Л. (2019) Динамика функциональной активности и экспрессии субъединиц протеасом в условиях адаптации клетки к тепловому шоку. Молекуляр. биология. 53, 638–647.
  31. Jung T., Höhn A., Grune T. (2014) The proteasome and the degradation of oxidized proteins: Part II – protein oxidation and proteasomal degradation. Redox Biol. 2, 99–104.
  32. Höhn T.J., Grune T. (2014) The proteasome and the degradation of oxidized proteins: part III – redox regulation of the proteasomal system. Redox Biol. 2, 388–394.
  33. Cohen-Kaplan V., Livneh I., Avni N., Fabre B., Ziv T., Kwon Y.T., Ciechanover A. (2016) p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl. Acad. Sci. USA. 113, E7490–E7499.
  34. Hoeller D., Dikic I. (2016) How the proteasome is degraded. Proc. Natl. Acad. Sci. USA. 113, 13266–13268.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (90KB)
5.

Download (1MB)
6.

Download (199KB)
7.

Download (218KB)
8.

Download (392KB)

Copyright (c) 2023 А.Ш. Заклута, В.Ю. Шилова, О.Г. Зацепина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies