ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Ecology
Macrophyte species composition in streams of Latvia under different flow and substrate conditions; pp. 194–208
PDF | doi: 10.3176/eco.2011.3.03

Author
Laura Grīnberga
Abstract

The macrophyte species composition was studied in relation to different flow and substrate conditions in middle-sized streams of Latvia. The frequency of macrophyte species along 131 surveyed sites was determined. Each survey was supplemented by a description of environmental factors (substrate type, flow velocity, shading, stream width, and water depth). On the basis of field observations, five groups of stream stretches with different stream velocity and substrates were distinguished: (1) fast-flowing streams on gravelly substrate, (2) slow-flowing streams on gravelly substrate, (3) fast-flowing streams on sandy substrate, (4) slow-flowing streams on sandy substrate, and (5) slow-flowing streams with soft, silty substrate. The botanical differences between the identified stream types were described. A total of 58 macrophyte taxa were found in the streams. The most common macrophyte species were Nuphar lutea, found in 60% of all sites, followed by Sparganium emersum, Serectum s.l., Phalaris arundinacea, Alisma plantago-aquatica, and Lemna minor. The number of species varied between 1 and 22 per site, the highest species richness (22) was found in slow-flowing streams with gravelly substrate. Species-poor macrophyte communities were characteristic of fast-flowing streams on sandy substrate. CCA analysis revealed that the development of macrophyte species in the investigated streams was most strongly dependent on the catchment area, altitude, and current velocity gradient. Analyses showed correlations between the number of taxa and stream width and catchment area, as well as the number of taxa and macrophyte cover with shading and altitude (negative correlation). Both the number of taxa and macrophyte cover correlated with substrate.

References

Āboliņa, A. 2001. List of Latvian bryophyte species. Vegetation of Latvia, 3, 47–87 (in Latvian).

Abou-Hamdan, H., Haury, J., Hebrard, J.-P., Dandelot, S. & Cazaubon, A. 2005. Macrophytic communities inhabiting the Huveaune (South-East France), a river subject to natural and anthropic disturbances. Hydrobiologia, 551, 161–170.
http://dx.doi.org/10.1007/s10750-005-4458-x

Baatrup-Pedersen, A. & Riis, T. 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biol., 42, 375–385.
http://dx.doi.org/10.1046/j.1365-2427.1999.444487.x

Baatrup-Pedersen, A., Larsen, S. E. & Riis, T. 2003. Composition and richness of macrophyte communities in small Danish streams – influence of environmental factors and weed cutting. Hydrobiologia, 495, 171–179.
http://dx.doi.org/10.1023/A:1025442017837

Baatrup-Pedersen, A., Springe, G., Riis, T., Larsen, S. E., Sand-Jensen, K. & Kjellerup Larsen, L. M. 2008. The search for reference conditions for stream vegetation in northern Europe. Freshwater Biol., 53, 1890–1901.

Barendregt, A. & Bio A. M. F. 2003. Relevant variables to predict macrophyte communities in running waters. Ecol. Model., 160, 205–217.
http://dx.doi.org/10.1016/S0304-3800(02)00254-5

Barko, J. W., Adams, M. S. & Clesceri, N. L. 1986. Environmental factors and their consideration in the management of submerged aquatic vegetation: a review. J. Aquat. Plant Manage., 24, 1–10.

Best, E. P. H. 1995. The impact of mechanical harvesting regimes on the aquatic and shore vegetation in water courses of agricultural areas of the Netherlands. Vegetatio, 112, 57–71.
http://dx.doi.org/10.1007/BF00045100

Bornette, G., Henry, C., Barrat, M. H. & Amoros, C. 1994. Theoretical habitat templet, species traits and species richness: aquatic macrophytes in the Upper Rhône River and its floodplain. Freshwater Biol., 31, 487–505.
http://dx.doi.org/10.1111/j.1365-2427.1994.tb01753.x

Canfield, D. E. J. & Hoyer, M. V. 1988. Influence of nutrient enrichment and light availability on the abundance of aquatic macrophytes in Florida streams. Can. J. Fish. Aquat. Sci., 45, 1467–1472.
http://dx.doi.org/10.1139/f88-171

Chambers, P. A., Prepas, E. E., Hamilton, H. R. & Bothwell, M. L. 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl., 1, 249–257.
http://dx.doi.org/10.2307/1941754

Clarke, S. J. 2002. Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Prog. Phys. Geogr., 26(2), 159–172.
http://dx.doi.org/10.1191/0309133302pp324ra

Daniel, H., Bernez, I. & Haury, J. 2006. Relationships between macrophytic vegetation and physical features of river habitats: the need for a morphological approach. Hydrobiologia, 570, 11–17.
http://dx.doi.org/10.1007/978-1-4020-5390-0_2

Dawson, F. H. 2002. Guidance for the field assessment of macrophytes of rivers within the STAR Project. http://www.eu-star.at/frameset.htm (visited 09-10-2010).

Dawson, F. H. & Szoszkiewicz, K. 1999. Relationships of some ecological factors with the associations of vegetation in British rivers. Hydrobiologia, 415, 117–122.
http://dx.doi.org/10.1023/A:1003872325274

Demars, B. O. L. & Harper, D. M. 2005. Distribution of aquatic vascular plants in lowland rivers: separating the effects of local environmental conditions, longitudinal connectivity and river basin isolation. Freswater Biol., 50, 418–437.
http://dx.doi.org/10.1111/j.1365-2427.2004.01329.x

European Commission. 2000. Directive 2000/60/EC. Establishing a Framework for Community Action in the Field of Water Policy. European Commission PE-CONS 3639/1/100 Rev. 1. Luxembourg.

Franklin, P., Dunbar, M. & Whitehead, P. 2008. Flow controls on lowland river macrophytes: a review. Sci. Total Environ., 400(1–3), 369–378.

Furse, M., Hering, D., Moog, O., Verdonschot, P., Johnson, R., Brabec, K., Gritzalis, K., Buffagni, A., Pinto, P., Friberg, N., Murray-Bligh, J., Kokes, J., Alber, R., Usseglio-Polatera, P., Haase, P., Sweeting, R., Bis, B., Szoszkiewicz, K., Soszka, H., Springe, G., Sporka, F. & Krno, I. 2006. The STAR project: context, objectives and approaches. Hydrobiologia, 566, 3–29.
http://dx.doi.org/10.1007/s10750-006-0067-6

Gavrilova, G. & Šulcs, V. 1999. Flora of Latvian Vascular Plants. List of Taxa. Institute of Biology of University of Latvia, Laboratory of Botany, Riga.

Grinberga, L. 2010. Environmental factors influencing the species diversity of macrophytes in middle-sized streams in Latvia. Hydrobiologia, 656, 233–241.
http://dx.doi.org/10.1007/s10750-010-0432-3

Haslam, S. M. 2006. River Plants. The Macrophytic Vegetation of Watercourses. 2nd revised edn. Forrest Text, Cardigan.

Holmes, N. T. H. 1983. Typing British Rivers According to Their Flora. Focus on Nature Conservation, 4. Nature Conservancy Council, Peterborough.

Holmes, N. T. H., Newman, J. R., Chadd, S., Rouen, K. J., Saint, L. & Dawson, F. H. 1999. Mean Trophic Rank: A User’s Manual. R&D Technical Report E38. Environment Agency of England & Wales, Bristol, UK.

Klavins, M., Rodinov, V., Kokorite, I. & Klavina, I. 1999. Chemical composition of surface waters of Latvia and runoff of dissolved substances from the territory of Latvia. Vatten, 55,
97–108.

Lepš, J. & Šmilauer, P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge, Cambridge University Press.

Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W. & Westlake, D. F. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71–84.
http://dx.doi.org/10.1023/A:1017520800568

Nilsson, C. 1987. Distribution of stream-edge vegetation along a gradient of current velocity. J. Ecol., 5, 513–522.
http://dx.doi.org/10.2307/2260430

Paal, J., Trei, T. & Viik, M. 2007. Vegetation of Estonian watercourses, III. Drainage basins of the Moonsund Sea, the Gulf of Riga and Saaremaa Island. Ann. Bot. Fenn., 44, 321–344.

Preston, C. D. & Croft, J. M. 2001. Aquatic Plants in Britain and Ireland. Harley Books, Martins, Great Horkesley, Colchester, England.

Riis, T. & Biggs, B. J. F. 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnol. Oceanogr., 48, 1488–1497.
http://dx.doi.org/10.4319/lo.2003.48.4.1488

Riis, T., Sand-Jensen, K. & Vestergaard, O. 2000. Plant communities in lowland Danish streams: species composition and environmental factors. Aquat. Bot., 66, 255–272.
http://dx.doi.org/10.1016/S0304-3770(99)00079-0

Sand-Jensen, K., Jeppesen, E., Nielsen, K., van der Bijl, L., Hjermind, L., Nielsen, L. W. & Iversen, T. M. 1989. Growth of macrophytes and ecosystem consequences in a lowland Danish stream. Freshwater Biol., 22, 15–32.
http://dx.doi.org/10.1111/j.1365-2427.1989.tb01080.x

Schaumburg, J., Schranz, C., Foerster, J., Gutowski, A., Hofmann, G., Meilinger, P., Schneider, S. & Schmedtje, U. 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica, 34, 283–301.
http://dx.doi.org/10.1016/S0075-9511(04)80002-1

SPSS Inc. 2000. Systat for Windows, Version 10. SPSS Inc., Chicago, IL, USA.

Trei, T. & Paal, P. 2004. Macroflora in the watercourses of Saaremaa Island (Estonia). Boreal Environ. Res., 9, 25–35.

Westlake, D. F. 1967. Some effects of low-velocity currents on the metabolism of aquatic macro­phytes. J. Exp. Bot., 18, 187–205.
http://dx.doi.org/10.1093/jxb/18.2.187

Willby, N. J., Abernethy, V. J. & Demars, B. O. L. 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biol., 43, 43–74.
http://dx.doi.org/10.1046/j.1365-2427.2000.00523.x

Zviedre, E. 2007. Genus Chara L. in Latvia – freshwater species and their identification. Acta Biologica Universitatis Daugavpiliensis, 7(2), 139–147.

Back to Issue

Back issues