Research Article
BibTex RIS Cite

Numerical Modelling of Full-Scale Lateral Load Test

Year 2020, Issue: 18, 454 - 464, 15.04.2020
https://doi.org/10.31590/ejosat.695194

Abstract

Ports are very important structures at the national and international sea transportation. These structures are also in a critical position on economy and commerce capacity by providing shipping and distribution services. It is very important to design a port structure, considering its stability and resistance along its service time. In the design of this type of structure, the lateral loads caused by during ship berthing, wind and wave loads etc. can be more important compared with vertical loads. The design and the performance of a port structure foundation should be investigated by full scale field tests considering the service loads. The aim of this study is to investigate the performance of the steel pipe pile under lateral load by full scale in-situ loading tests at Mersin International Port Construction area in the Mediterranean Sea. Full scale pile lateral loading test (PLLT) on a single offshore pile has been conducted at the project site and the test pile has been loaded up to 2 times the service load with 4 loading-unloading cycles. In addition, a numerical analysis has been performed to simulate the real lateral load-deflection behavior by using Plaxis 3D finite element software. It has been observed that, the analysis results obtained from the numerical model has been reflected the test pile lateral load-displacement behavior with good convergence.

Thanks

Mersin Port Development Construction of New Container Berth and Civil Infrastructure Project presented in this paper was carried out with the support of Bektaşoglu Kulak Construction. We gratefully thank the site manager Mehmet Fatih YALDIZ and construction manager Şenol KARAKAYALI for their contributions.

References

  • ASTM D 3966-07. (2007). Standard test methods for deep foundations under lateral load. ASTM Committee D18 on Soil and Rock and are the direct responsibility of Subcommittee D18.11 on Deep Foundations 2007.
  • Brinch-Hansen, J. (1961). The ultimate resistance of rigid piles against transversal forces. Geoteknisk Institute (The Danish Geotechnical Institute), 12, 5-9.
  • Broms, B.B. (1964). Lateral resistance of piles in cohesionless soils. Journal of the Soil Mechanics and Foundations Division, 90 (3), 123-156.
  • Brown D. A., Morrison C. and Reese L. C. (1988). Lateral Load Behavior of Pile Group in Sand. Journal of Geotechnical Engineering. Vol. 114, Issue 11.
  • Das, B. M. (2007). Principles of foundation engineering, adapted ınternational student edition. Thomson Canada Limited.
  • Uncuoglu E. and Laman, M. (2012). Numerical modelling of short pile behavior subjected to lateral load. European Journal of Environmental and Civil Engineering. Volume 16, 2012 - Issue 2. Pages 204-235.
  • Gowthaman S. and Nasvi M.C.M. (2017). 2D and 3D numerical simulation of load-settlement behaviour of axially loaded pile foundations. American Journal of Civil Engineering and Architecture, Vol. 5, No. 5, 187-195. DOI:10.12691/ajcea-5-5-2
  • Lozovyi S. and Zahoruiko E. (2012). Plaxis simulation of static pile tests and determination of reaction piles ınfluence. Scientific and Technical Journal: New Technologies in Construction, 23-24(1-2):68-73.
  • Misir G. and Laman M. (2019). Numerical Analysis of Laterally Loaded Battered Rigid Piles. Technical journal of Turkish Chamber of Civil Engineers. 30 (5). pages 9507-9531
  • Plaxis 3D. (2013). Reference Manual. Delft University of Technology & Plaxis b.v. The Netherlands.
  • Poulos, H. G. and Davis, E. H. (1980). Pile foundation analysis and design. Wiley, New York.
  • Reese, L. C., Cox, W. R. and Koop, F. D. (1974). Analysis of laterally loaded piles in sand. Paper No, OTC 2080, Proceedings, Fifth Annual Offshore Technology Conference, Houston, Texas.
  • Rollins K. M., Lane J. D. and Gerber T. M. (2005). Measured and Computed Lateral Response of a Pile Group in Sand. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 131, Issue 1
  • Ruesta P. F. and Townsend F. C. (1997). Evaluation of Laterally Loaded Pile Group at Roosevelt Bridge. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 123, Issue 12.
  • Said I., Gennaro, V. De and Frank, R. (2009). Axisymmetric finite element analysis of pile loading tests. Computers and Geotechnics, 36, 6–19.
  • TS 1900-1. 2006. Methods of Testing Soils for Civil Engineering Purposes in the Laboratory: Part 1: Determination of physical properties. Turkish Standard.
  • TS 1900-2. 2006. Methods of Testing Soils for Civil Engineering Purposes in the Laboratory: Part 2: Determination of mechanical properties. Turkish Standard.
  • TS 5744. 2013. Determination of bearing capacity of soils in-situ by plate loading test. Turkish Standard.
  • Yi, L. (2004). Finite element study on static pile load testing. MSc. Thesis, University of Singapore.

Tam Ölçekli Yanal Yükleme Testinin Sayısal Modellemesi

Year 2020, Issue: 18, 454 - 464, 15.04.2020
https://doi.org/10.31590/ejosat.695194

Abstract

Limanlar, ulusal ve uluslararası deniz taşımacılığında çok önemli yapılardır. Aynı zamanda bu yapılar, nakliye ve dağıtım hizmetleri sağlayarak, ülke ekonomisi ve ticaret kapasitesi üzerinde de kritik bir konumdadır. Liman yapısı tasarımında, yapının hizmet ömrü boyunca stabilitesini ve dayanımını mufaza etmesi oldukça önemlidir. Bu tip yapıların tasarımında, rüzgar ve dalga yükleri ile gemi yanaşması ve bağlanması sırasında ortaya çıkan etkilerin neden olduğu yanal yükler, dikey yüklere kıyasla çok daha önemli olabilmektedir. Liman yapısı temel sisteminin tasarımı ve performansı, hizmet yükleri dikkate alınarak tam ölçekli saha testleri ile araştırılmalıdır. Bu çalışmanın amacı da, Akdeniz'de Mersin Uluslararası Liman İnşaatı bölgesinde tam ölçekli saha yükleme testleri ile çelik boru kazıklarının yanal yük altındaki performansının incelenmesidir. Tekil bir test kazığı, tam ölçekli yanal yükleme düzeneği ile 4 yükleme-boşaltma çevrimi altında, proje yükünün 2 katına kadar yüklenmiştir. Ayrıca gerçek yanal yük-deplasman davranışını simüle etmek için Plaxis 3D sonlu elemanlar yazılımı kullanılmıştır. Sayısal modelden elde edilen analiz sonuçlarının, yükleme testinden elde edilen kazık yanal yük-deplasman davranışını başarılı bir şekilde yansıttığı gözlemlenmiştir

References

  • ASTM D 3966-07. (2007). Standard test methods for deep foundations under lateral load. ASTM Committee D18 on Soil and Rock and are the direct responsibility of Subcommittee D18.11 on Deep Foundations 2007.
  • Brinch-Hansen, J. (1961). The ultimate resistance of rigid piles against transversal forces. Geoteknisk Institute (The Danish Geotechnical Institute), 12, 5-9.
  • Broms, B.B. (1964). Lateral resistance of piles in cohesionless soils. Journal of the Soil Mechanics and Foundations Division, 90 (3), 123-156.
  • Brown D. A., Morrison C. and Reese L. C. (1988). Lateral Load Behavior of Pile Group in Sand. Journal of Geotechnical Engineering. Vol. 114, Issue 11.
  • Das, B. M. (2007). Principles of foundation engineering, adapted ınternational student edition. Thomson Canada Limited.
  • Uncuoglu E. and Laman, M. (2012). Numerical modelling of short pile behavior subjected to lateral load. European Journal of Environmental and Civil Engineering. Volume 16, 2012 - Issue 2. Pages 204-235.
  • Gowthaman S. and Nasvi M.C.M. (2017). 2D and 3D numerical simulation of load-settlement behaviour of axially loaded pile foundations. American Journal of Civil Engineering and Architecture, Vol. 5, No. 5, 187-195. DOI:10.12691/ajcea-5-5-2
  • Lozovyi S. and Zahoruiko E. (2012). Plaxis simulation of static pile tests and determination of reaction piles ınfluence. Scientific and Technical Journal: New Technologies in Construction, 23-24(1-2):68-73.
  • Misir G. and Laman M. (2019). Numerical Analysis of Laterally Loaded Battered Rigid Piles. Technical journal of Turkish Chamber of Civil Engineers. 30 (5). pages 9507-9531
  • Plaxis 3D. (2013). Reference Manual. Delft University of Technology & Plaxis b.v. The Netherlands.
  • Poulos, H. G. and Davis, E. H. (1980). Pile foundation analysis and design. Wiley, New York.
  • Reese, L. C., Cox, W. R. and Koop, F. D. (1974). Analysis of laterally loaded piles in sand. Paper No, OTC 2080, Proceedings, Fifth Annual Offshore Technology Conference, Houston, Texas.
  • Rollins K. M., Lane J. D. and Gerber T. M. (2005). Measured and Computed Lateral Response of a Pile Group in Sand. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 131, Issue 1
  • Ruesta P. F. and Townsend F. C. (1997). Evaluation of Laterally Loaded Pile Group at Roosevelt Bridge. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 123, Issue 12.
  • Said I., Gennaro, V. De and Frank, R. (2009). Axisymmetric finite element analysis of pile loading tests. Computers and Geotechnics, 36, 6–19.
  • TS 1900-1. 2006. Methods of Testing Soils for Civil Engineering Purposes in the Laboratory: Part 1: Determination of physical properties. Turkish Standard.
  • TS 1900-2. 2006. Methods of Testing Soils for Civil Engineering Purposes in the Laboratory: Part 2: Determination of mechanical properties. Turkish Standard.
  • TS 5744. 2013. Determination of bearing capacity of soils in-situ by plate loading test. Turkish Standard.
  • Yi, L. (2004). Finite element study on static pile load testing. MSc. Thesis, University of Singapore.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gizem Mısır 0000-0002-2649-0381

Mustafa Laman This is me 0000-0003-2914-7738

Publication Date April 15, 2020
Published in Issue Year 2020 Issue: 18

Cite

APA Mısır, G., & Laman, M. (2020). Numerical Modelling of Full-Scale Lateral Load Test. Avrupa Bilim Ve Teknoloji Dergisi(18), 454-464. https://doi.org/10.31590/ejosat.695194