Research Article
BibTex RIS Cite

Emerging Technologies for Fluorescence-Based Optical Test Strip Readers

Year 2023, Issue: 49, 16 - 24, 31.03.2023
https://doi.org/10.31590/ejosat.1265098

Abstract

Fluorescence-based optical test strip readers are used to detect and quantify fluorescent signals from immunoassay test strips in medicine, especially for point-of-care applications. The design of optical systems including light sources and detection systems in these devices is not only indispensable but also the most critical part for specific detection applications. This study aims to provide detailed information about fluorescence-based optical test strip readers, existing and emerging technologies, and their contributions to the design of the device. The most commonly used technologies of light sources and detection systems have been discussed and compared for the ideal design. Arc and Xenon lamps may not be appropriate for portable and low-cost devices as they are larger and more costly when compared to LEDs and laser diodes. Photodiodes and CMOS detectors can be used for the design of low-cost, portable fluorescence-based optical test strip readers as they are cheaper and smaller in size when compared to CCDs and PMTs. Both light source and detector should be chosen according to the application priorities and spectral characteristics of the fluorescent molecule by integrating them with proper optical elements like filters, mirrors, etc. This study contributes to the people who are interested in the design of fluorescence-based optical test strip readers as it serves as a guideline for the optical test strip reader systems.

Thanks

This work has been supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) through the 1004 Center of Excellence Support Program (Project ID: 20AG011).

References

  • Jin, B., Li, Z., Zhao, G., Ji, J., Chen, J., Yang, Y., & Xu, R. (2022). Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Analytica Chimica Acta, 1192, 339-388. https://doi.org/10.1016/j.aca.2021.339388
  • Zhang, Y., Liao, T., Wang, G., Xu, J., Wang, M., Ren, F., & Zhang, H. (2022). An ultrasensitive NIR-IIa’ fluorescence-based multiplex immunochromatographic strip test platform for antibiotic residues detection in milk samples. Journal of Advanced Research, 103328. https://doi.org/10.1016/j.jare.2022.10.008
  • Gu, Y. B., Chiang, K. L., Chen, H. C., Liao, S. H., Liu, H. J., & Huang, J. H. (2019). Fluorescence lateral flow immunoassay based point-of-care nanodiagnostics for orthopedic implant-associated infection. Sensors and Actuators B: Chemical, 280, 24-33. https://doi.org/10.1016/j.snb.2018.10.034
  • Wang, J., Jiang, C., Jin, J., Huang, L., Yu, W., Su, B., & Hu, J. (2021). Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angewandte Chemie International Edition, 60(23), 12971-12978. https://doi.org/10.1002/ange.202103458
  • Tavakoli, H., Zhou, W., Ma, L., Guo, Q., & Li, X. (2019). Paper and paper hybrid microfluidic devices for point-of-care detection of infectious diseases. In X. Jiang, C. Bai, & M. Liu (Eds.), Nanotechnology and Microfluidics (pp. 153-181). John Wiley & Sons. https://doi.org/10.1002/9783527818341.ch6
  • Gu, Y., Yang, Y., Zhang, J., Ge, S., Tang, Z., & Qiu, X. (2014). Point-of-care test for C-reactive protein by a fluorescence-based lateral flow immunoassay. Instrumentation Science and Technology, 42(6), 635-645. https://doi.org/10.1080/10739149.2014.930877
  • Mulberry, G., White, K. A., Vaidya, M., Sugaya, K., & Kim, B. N. (2017). 3D printing and milling a real-time PCR device for infectious disease diagnostics. PLoS ONE, 12(6), e0179133. https://doi.org/10.1371/journal.pone.0179133
  • Karthik, S., Shah, M. I., Natarajan, S., Shetty, M. J., & Joseph, J. (2019). A motion free image based TRF reader for quantitative immunoassay. In 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) (pp. 163-166). IEEE. https://doi.org/10.1109/HI-POCT45284.2019.896
  • Katzmeier, F., Aufinger, L., Dupin, A., Quintero, J., Lenz, M., Bauer, L., Klumpe, S., Sherpa, D., Dürr, B., Honemann, M., Styazhkin, I., Simmel, F. C., & Heymann, M. (2019). A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. PLOS ONE, 14(12), e0220091. https://doi.org/10.1371/journal.pone.0220091
  • Shah, K. G., Kumar, S., Singh, V., Hansen, L., Heiniger, E., Bishop, J. D., Lutz, B., & Yager, P. (2020). Two-Fluorophore Mobile Phone Imaging of Biplexed Real-Time NAATs Overcomes Optical Artifacts in Highly Scattering Porous Media. Analytical Chemistry, 92(19), 13066-13072. https://doi.org/10.1021/acs.analchem.0c02000
  • Wu, Y., Sun, J., Huang, X., Lai, W., & Xiong, Y. (2021). Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology, 118(A), 658-678. https://doi.org/10.1016/j.tifs.2021.10.025 [12] Xu, G., Fan, X., Chen, X., Liu, Z., Chen, G., Wei, X., Li, X., Leng, Y., Xiong, Y., & Huang, X. (2023). Ultrasensitive Lateral Flow Immunoassay for Fumonisin B1 Detection Using Highly Luminescent Aggregation-Induced Emission Microbeads. Toxins, 15(1), 79. https://doi.org/10.3390/toxins15010079
  • Gu, Y., Yang, Y., Zhang, J., Ge, S., Tang, Z., & Qiu, X. (2014). Point-of-care test for C-reactive protein by a fluorescence-based lateral flow immunoassay. Instrumentation Science & Technology, 42(3), 289-300. https://doi.org/10.1080/10739149.2014.93087
  • Ireta-Muñoz, L. A., & Morales-Narváez, E. (2020). Smartphone and paper-based fluorescence reader: a do it yourself approach. Biosensors, 10(6), 60. https://doi.org/10.3390/bios10060060
  • Bergua, J. F., Álvarez-Diduk, R., Idili, A., Parolo, C., Maymó, M., Hu, L., & Merkoçi, A. (2022). Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem., 94(2), 1271-1285. https://doi.org/10.1021/acs.analchem.1c04491
  • Fang, X., Zheng, Y., Duan, Y., Liu, Y., & Zhong, W. (2018). Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal. Chem., 91(1), 482-504. https://doi.org/10.1021/acs.analchem
  • Sharma, M., Graham, J. Y., Walczak, P. A., Nguyen, R. M., Lee, L. K., Carson, M. D., Nelson, L. Y., Patel, S. N., Xu, Z., & Seibel, E. J. (2019). Optical pH measurement system using a single fluorescent dye for assessing susceptibility to dental caries. Journal of Biomedical Optics, 24(1), 017001. https://doi.org/10.1117/1.JBO.24.1.017001
  • Fan, R., Zhang, W., Jin, Y., Zhao, R., Yang, C., Chen, Q., He, L., & Chen, Y. (2020). Lateral flow immunoassay for 5-hydroxyflunixin based on near-infrared fluorescence molecule as an alternative label to gold nanoparticles. Microchimica Acta, 187, 368. https://doi.org/10.1007/s00604-020-04522-2
  • Flores, R., Afshari, S., & Christen, J. B. (2019). Colorimetric point-of-care human papillomavirus diagnostic reader. In 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) (pp. 80-82). IEEE. https://doi.org/10.1109/HI-POCT45284.2019.8962666
  • Barthels, F., Hammerschmidt, S. J., Fischer, T. R., Zimmer, C., Kallert, E., Helm, M., Kersten, C., & Schirmeister, T. (2022). A low-cost 3D-printable differential scanning fluorometer for protein and RNA melting experiments. HardwareX, 11, e00256. https://doi.org/10.1016/j.ohx.2021.e00256
  • Tang, E. N., Nair, A., Baker, D. W., Hu, W., & Zhou, J. (2014). In vivo imaging of infection using a bacteria-targeting optical nanoprobe. Journal of Biomedical Nanotechnology, 10(5), 856-863. https://doi.org/10.1166/jbn.2014.1852
  • Obahiagbona, U., Smith, J. T., Zhu, M., Katchman, B. A., Arafa, H., Anderson, K. S., & Christen, J. M. B. (2018). A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications. Biosensors and Bioelectronics, 117, 153-160. https://doi.org/10.1016/j.bios.2018.04.002
  • Garg, S. (2019). A multiplexed, point-of-care detection system for dengue (Master's thesis). University of Toronto.
  • Fu, X., Cheng, Z., Yu, J., Choo, P., Chen, L., & Choo, J. (2016). A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosensors and Bioelectronics, 78, 530-537. https://doi.org/10.1016/j.bios.2015.11.099
  • Yamamoto, T., Hashimoto, M., Nagatomi, K., Nogami, T., Sofue, Y., Hayashi, T., Ido, Y., Yatsushiro, S., Abe, K., Kajimoto, K., Tamari, N., Awuor, B., Sonye, G., Kongere, J., Munga, S., Ohashi, J., Oka, H., Minakawa, N., Kataoka, M., & Mita, T. (2020). Development of a quantitative, portable, and automated fluorescent blue-ray device-based malaria diagnostic equipment with an on-disc SiO2 nanofiber filter. Scientific Reports, 10(1), 6585. https://doi.org/10.1038/s41598-020-63500-2
  • Mahzabeen, F., Vermesh, O., Levi, J., Tan, M., Alam, I. S., Chan, C. T., Gambhir, S. S., & Harris, J. S. (2021). Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay. Biosensors and Bioelectronics, 180, 112823. https://doi.org/10.1016/j.bios.2020.112823
  • Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J. G., & Lin, Y. (2010). Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Analytical Chemistry, 82(16), 7008-7014. https://doi.org/10.1021/ac101405a
  • Yang, Q., Gong, X., Song, T., Yang, J., Zhu, S., Li, Y., Cui, Y., Li, Y., Zhang, B., & Chang, J. (2011). Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosensors and Bioelectronics, 30(1), 145-150. https://doi.org/10.1016/j.bios.2011.09.002
  • Soh, J. H., Chan, H. M., & Ying, J. Y. (2020). Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today, 30, 100831. https://doi.org/10.1016/j.nantod.2019.100831
  • Xing, G., Sun, X., Li, N., Li, X., Wu, T., & Wang, F. (2022). New Advances in Lateral Flow Immunoassay (LFI) Technology for Food Safety Detection. Molecules, 27(19), 6596. https://doi.org/10.3390/molecules27196596
  • Bahadır, E. B., & Sezgintürk, M. K. (2016). Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, 82, 286-306. doi: 10.1016/j.trac.2016.06.006
  • Wu, Y., Sun, J., Huang, X., Lai, W., & Xiong, Y. (2021). Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology, 118(Part A), 658-678. doi: 10.1016/j.tifs.2021.10.025
  • Becheva, Z., Gabrovska, K., & Ivanov, Y. (2017). Enhancement of immunoassay fluorescence and detection sensitivity to neutrophils by using antibodies multiple labelled with dye/DNA conjugate. Technical and Natural Sciences-Annual of Assen Zlatarov University, Burgas, XLVI(1), 31-36.
  • Zeng, H., Zhai, X., Xie, M., & Liu, Q. (2018). Fluorescein isothiocyanate labeling antigen-based immunoassay strip for rapid detection of Acidovorax citrulli. Plant Disease, 102(3), 527-532. https://doi.org/10.1094/PDIS-06-17-0793-RE
  • Zhou, Y., Huang, X., Xiong, S., Li, X., Zhan, S., Zeng, L., & Xiong, Y. (2018). Dual-mode fluorescent and colorimetric immunoassay for the ultrasensitive detection of alpha-fetoprotein in serum samples. Analytica Chimica Acta, 1038, 112-119. https://doi.org/10.1016/j.aca.2018.07.007
  • Cao, J., Chen, X.-Y., & Zhao, W.-R. (2019). Determination of Morphine in Human Urine by the Novel Competitive Fluorescence Immunoassay. Journal of Analytical Methods in Chemistry, 2019, article ID 7826090. https://doi.org/10.1155/2019/7826090
  • Wang, J.-H., Bartlett, J. D., Dunn, A. C., Small, S., Willis, S. L., Driver, M. J., & Lewis, A. L. (2005). The use of rhodamine 6G and fluorescence microscopy in the evaluation of phospholipid-based polymeric biomaterials. Journal of Microscopy, 217, 216-224. https://doi.org/10.1111/j.1365-2818.2005.01453.x
  • Grimm, J. B., Tkachuk, A. N., Xie, L., Leonard, J. D., Saurabh, S., Los, G. V., & Lavis, L. D. (2020). A general method to optimize and functionalize red-shifted rhodamine dyes. Nature Methods, 17(9), 815-821. https://doi.org/10.1038/s41592-020-0909-6
  • Cell Biolabs. (n.d.). Rhodamine Competitive ELISA Kit AKR-5142. Retrieved March 1, 2023, from https://www.cellbiolabs.com/sites/default/files/AKR-5142-rhodamine-competitive-elisa-kit.pdf
  • Zhou, M., Zhang, X., Bai, M., Shen, D., Xu, B., Kao, J., Ge, X., & Achilefu, S. (2013). Click reaction-mediated functionalization of near-infrared pyrrolopyrrole cyanine dyes for biological imaging applications. RSC Advances, 3(19), 6927-6930. https://doi.org/10.1039/C3RA40861K
  • Schwechheimer, C., Rönicke, F., Schepers, U., & Wagenknecht, H. (2018). A new structure-activity relationship for cyanine dyes to improve photostability and fluorescence properties for live cell imaging. Chemical Science, 9(30), 6557-6563. https://doi.org/10.1039/C8SC01574K
  • Ma, X., Shi, L., Zhang, B., Wang, Y., & Chen, X. (2022). Recent advances in bioprobes and biolabels based on cyanine dyes. Analytical and Bioanalytical Chemistry, 414(16), 4551-4573. https://doi.org/10.1007/s00216-022-03995-8
  • Hixson, J. L., & Ward, A. S. (2022). Hardware selection and performance of low-cost fluorometers. Sensors, 22(6), 2319. https://doi.org/10.3390/s22062319
  • Cao, X. E., Yhombi, S. O., Wang, R., & Ren, Y. (2022). A diagnostic platform for rapid, simultaneous quantification of procalcitonin and C-reactive protein in human serum. EBioMedicine, 76(1), 103867. doi:10.1016/j.ebiom.2022.103867
  • Zheng, H., Wu, H., Jiang, H., & Yang, J. (2020). Development of a smartphone-based fluorescent immunochromatographic assay strip reader. Sensors, 20(16), article 4521. doi:10.3390/s20164521
  • Borse, V., Patil, A. S., & Srivastava, R. (2017). Development and testing of portable fluorescence reader (PorFloR™). 2017 9th International Conference on Communication Systems and Networks (COMSNETS), 498-501. doi:10.1109/COMSNETS.2017.7945442
  • Drummen, G. P. C. (2012). Fluorescent probes and fluorescence (microscopy) techniques - Illuminating biological and biomedical research. Molecules, 17(12), 14067-14090. doi:10.3390/molecules171214067
  • Cios, J., Janus, M., & Lachowicz, M. (2021). Effect of different wavelengths of laser irradiation on the skin cells. In IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 1-5). doi:10.3390/ijms22052437
  • Cai, S., Sze, J. Y. Y., Ivanov, A. P., & Edel, J. B. (2019). Small molecule electro-optical binding assay using nanopores. Nature Communications, 10(1), 1797.
  • Mair, F., & Tyznik, A. J. (2019). High-dimensional immunophenotyping with fluorescence-based cytometry: A practical guidebook. Methods in Molecular Biology (Clifton, N.J.), 2032, 213–234. doi:10.1007/978-1-4939-9648-3_13
  • Sawayama, J., & Takeuchi, S. (2021). Long-Term Continuous Glucose Monitoring Using a Fluorescence-Based Biocompatible Hydrogel Glucose Sensor. IEEE Access, 9, 11805-11813. https://doi.org/10.1109/ACCESS.2021.3050675.
  • Alam, M. W., Wahid, K. A., Goel, R. K., & Lukong, K. E. (2019). Development of a low-cost and portable smart fluorometer for detecting breast cancer cells. Biomed. Opt. Express, 10(2), 399-410. https://doi.org/10.1364/BOE.10.000399.
  • Yang, Y., Gu, Y., Ge, S., & Tang, Z. (2015). Development of a quantifiable optical reader for lateral flow immunoassay. In 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI) (pp. 487-491). IEEE. https://doi.org/10.1109/BMEI.2015.7401527.
  • Gui, C., Wang, K., Li, C., Dai, X., & Cui, D. (2014). A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA. Nanoscale Research Letters, 9(1), 57. https://doi.org/10.1186/1556-276X-9-57.
  • Albani, J. (2007). Principles and applications of fluorescence spectroscopy. Blackwell Sci. https://doi.org/10.1002/9780470027318.
  • Huang, H., Lu, Y. N., Shan, Y., Liu, F., & Wang, S. (2022). Handheld fluorescence test strip reader for rapid on-site biochemical detection. In Optics in Health Care and Biomedical Optics XII (p. 123201N). doi: 10.1117/12.2638645.

Emerging Technologies for Fluorescence-Based Optical Test Strip Readers

Year 2023, Issue: 49, 16 - 24, 31.03.2023
https://doi.org/10.31590/ejosat.1265098

Abstract

Fluorescence-based optical test strip readers are used to detect and quantify fluorescent signals from immunoassay test strips in medicine, especially for point-of-care applications. The design of optical systems including light sources and detection systems in these devices is not only indispensable but also the most critical part for specific detection applications. This study aims to provide detailed information about fluorescence-based optical test strip readers, existing and emerging technologies, and their contributions to the design of the device. The most commonly used technologies of light sources and detection systems have been discussed and compared for the ideal design. Arc and Xenon lamps may not be appropriate for portable and low-cost devices as they are larger and more costly when compared to LEDs and laser diodes. Photodiodes and CMOS detectors can be used for the design of low-cost, portable fluorescence-based optical test strip readers as they are cheaper and smaller in size when compared to CCDs and PMTs. Both light source and detector should be chosen according to the application priorities and spectral characteristics of the fluorescent molecule by integrating them with proper optical elements like filters, mirrors, etc. This study contributes to the people who are interested in the design of fluorescence-based optical test strip readers as it serves as a guideline for the optical test strip reader systems.

References

  • Jin, B., Li, Z., Zhao, G., Ji, J., Chen, J., Yang, Y., & Xu, R. (2022). Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Analytica Chimica Acta, 1192, 339-388. https://doi.org/10.1016/j.aca.2021.339388
  • Zhang, Y., Liao, T., Wang, G., Xu, J., Wang, M., Ren, F., & Zhang, H. (2022). An ultrasensitive NIR-IIa’ fluorescence-based multiplex immunochromatographic strip test platform for antibiotic residues detection in milk samples. Journal of Advanced Research, 103328. https://doi.org/10.1016/j.jare.2022.10.008
  • Gu, Y. B., Chiang, K. L., Chen, H. C., Liao, S. H., Liu, H. J., & Huang, J. H. (2019). Fluorescence lateral flow immunoassay based point-of-care nanodiagnostics for orthopedic implant-associated infection. Sensors and Actuators B: Chemical, 280, 24-33. https://doi.org/10.1016/j.snb.2018.10.034
  • Wang, J., Jiang, C., Jin, J., Huang, L., Yu, W., Su, B., & Hu, J. (2021). Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angewandte Chemie International Edition, 60(23), 12971-12978. https://doi.org/10.1002/ange.202103458
  • Tavakoli, H., Zhou, W., Ma, L., Guo, Q., & Li, X. (2019). Paper and paper hybrid microfluidic devices for point-of-care detection of infectious diseases. In X. Jiang, C. Bai, & M. Liu (Eds.), Nanotechnology and Microfluidics (pp. 153-181). John Wiley & Sons. https://doi.org/10.1002/9783527818341.ch6
  • Gu, Y., Yang, Y., Zhang, J., Ge, S., Tang, Z., & Qiu, X. (2014). Point-of-care test for C-reactive protein by a fluorescence-based lateral flow immunoassay. Instrumentation Science and Technology, 42(6), 635-645. https://doi.org/10.1080/10739149.2014.930877
  • Mulberry, G., White, K. A., Vaidya, M., Sugaya, K., & Kim, B. N. (2017). 3D printing and milling a real-time PCR device for infectious disease diagnostics. PLoS ONE, 12(6), e0179133. https://doi.org/10.1371/journal.pone.0179133
  • Karthik, S., Shah, M. I., Natarajan, S., Shetty, M. J., & Joseph, J. (2019). A motion free image based TRF reader for quantitative immunoassay. In 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) (pp. 163-166). IEEE. https://doi.org/10.1109/HI-POCT45284.2019.896
  • Katzmeier, F., Aufinger, L., Dupin, A., Quintero, J., Lenz, M., Bauer, L., Klumpe, S., Sherpa, D., Dürr, B., Honemann, M., Styazhkin, I., Simmel, F. C., & Heymann, M. (2019). A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. PLOS ONE, 14(12), e0220091. https://doi.org/10.1371/journal.pone.0220091
  • Shah, K. G., Kumar, S., Singh, V., Hansen, L., Heiniger, E., Bishop, J. D., Lutz, B., & Yager, P. (2020). Two-Fluorophore Mobile Phone Imaging of Biplexed Real-Time NAATs Overcomes Optical Artifacts in Highly Scattering Porous Media. Analytical Chemistry, 92(19), 13066-13072. https://doi.org/10.1021/acs.analchem.0c02000
  • Wu, Y., Sun, J., Huang, X., Lai, W., & Xiong, Y. (2021). Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology, 118(A), 658-678. https://doi.org/10.1016/j.tifs.2021.10.025 [12] Xu, G., Fan, X., Chen, X., Liu, Z., Chen, G., Wei, X., Li, X., Leng, Y., Xiong, Y., & Huang, X. (2023). Ultrasensitive Lateral Flow Immunoassay for Fumonisin B1 Detection Using Highly Luminescent Aggregation-Induced Emission Microbeads. Toxins, 15(1), 79. https://doi.org/10.3390/toxins15010079
  • Gu, Y., Yang, Y., Zhang, J., Ge, S., Tang, Z., & Qiu, X. (2014). Point-of-care test for C-reactive protein by a fluorescence-based lateral flow immunoassay. Instrumentation Science & Technology, 42(3), 289-300. https://doi.org/10.1080/10739149.2014.93087
  • Ireta-Muñoz, L. A., & Morales-Narváez, E. (2020). Smartphone and paper-based fluorescence reader: a do it yourself approach. Biosensors, 10(6), 60. https://doi.org/10.3390/bios10060060
  • Bergua, J. F., Álvarez-Diduk, R., Idili, A., Parolo, C., Maymó, M., Hu, L., & Merkoçi, A. (2022). Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem., 94(2), 1271-1285. https://doi.org/10.1021/acs.analchem.1c04491
  • Fang, X., Zheng, Y., Duan, Y., Liu, Y., & Zhong, W. (2018). Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal. Chem., 91(1), 482-504. https://doi.org/10.1021/acs.analchem
  • Sharma, M., Graham, J. Y., Walczak, P. A., Nguyen, R. M., Lee, L. K., Carson, M. D., Nelson, L. Y., Patel, S. N., Xu, Z., & Seibel, E. J. (2019). Optical pH measurement system using a single fluorescent dye for assessing susceptibility to dental caries. Journal of Biomedical Optics, 24(1), 017001. https://doi.org/10.1117/1.JBO.24.1.017001
  • Fan, R., Zhang, W., Jin, Y., Zhao, R., Yang, C., Chen, Q., He, L., & Chen, Y. (2020). Lateral flow immunoassay for 5-hydroxyflunixin based on near-infrared fluorescence molecule as an alternative label to gold nanoparticles. Microchimica Acta, 187, 368. https://doi.org/10.1007/s00604-020-04522-2
  • Flores, R., Afshari, S., & Christen, J. B. (2019). Colorimetric point-of-care human papillomavirus diagnostic reader. In 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) (pp. 80-82). IEEE. https://doi.org/10.1109/HI-POCT45284.2019.8962666
  • Barthels, F., Hammerschmidt, S. J., Fischer, T. R., Zimmer, C., Kallert, E., Helm, M., Kersten, C., & Schirmeister, T. (2022). A low-cost 3D-printable differential scanning fluorometer for protein and RNA melting experiments. HardwareX, 11, e00256. https://doi.org/10.1016/j.ohx.2021.e00256
  • Tang, E. N., Nair, A., Baker, D. W., Hu, W., & Zhou, J. (2014). In vivo imaging of infection using a bacteria-targeting optical nanoprobe. Journal of Biomedical Nanotechnology, 10(5), 856-863. https://doi.org/10.1166/jbn.2014.1852
  • Obahiagbona, U., Smith, J. T., Zhu, M., Katchman, B. A., Arafa, H., Anderson, K. S., & Christen, J. M. B. (2018). A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications. Biosensors and Bioelectronics, 117, 153-160. https://doi.org/10.1016/j.bios.2018.04.002
  • Garg, S. (2019). A multiplexed, point-of-care detection system for dengue (Master's thesis). University of Toronto.
  • Fu, X., Cheng, Z., Yu, J., Choo, P., Chen, L., & Choo, J. (2016). A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosensors and Bioelectronics, 78, 530-537. https://doi.org/10.1016/j.bios.2015.11.099
  • Yamamoto, T., Hashimoto, M., Nagatomi, K., Nogami, T., Sofue, Y., Hayashi, T., Ido, Y., Yatsushiro, S., Abe, K., Kajimoto, K., Tamari, N., Awuor, B., Sonye, G., Kongere, J., Munga, S., Ohashi, J., Oka, H., Minakawa, N., Kataoka, M., & Mita, T. (2020). Development of a quantitative, portable, and automated fluorescent blue-ray device-based malaria diagnostic equipment with an on-disc SiO2 nanofiber filter. Scientific Reports, 10(1), 6585. https://doi.org/10.1038/s41598-020-63500-2
  • Mahzabeen, F., Vermesh, O., Levi, J., Tan, M., Alam, I. S., Chan, C. T., Gambhir, S. S., & Harris, J. S. (2021). Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay. Biosensors and Bioelectronics, 180, 112823. https://doi.org/10.1016/j.bios.2020.112823
  • Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J. G., & Lin, Y. (2010). Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Analytical Chemistry, 82(16), 7008-7014. https://doi.org/10.1021/ac101405a
  • Yang, Q., Gong, X., Song, T., Yang, J., Zhu, S., Li, Y., Cui, Y., Li, Y., Zhang, B., & Chang, J. (2011). Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosensors and Bioelectronics, 30(1), 145-150. https://doi.org/10.1016/j.bios.2011.09.002
  • Soh, J. H., Chan, H. M., & Ying, J. Y. (2020). Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today, 30, 100831. https://doi.org/10.1016/j.nantod.2019.100831
  • Xing, G., Sun, X., Li, N., Li, X., Wu, T., & Wang, F. (2022). New Advances in Lateral Flow Immunoassay (LFI) Technology for Food Safety Detection. Molecules, 27(19), 6596. https://doi.org/10.3390/molecules27196596
  • Bahadır, E. B., & Sezgintürk, M. K. (2016). Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, 82, 286-306. doi: 10.1016/j.trac.2016.06.006
  • Wu, Y., Sun, J., Huang, X., Lai, W., & Xiong, Y. (2021). Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology, 118(Part A), 658-678. doi: 10.1016/j.tifs.2021.10.025
  • Becheva, Z., Gabrovska, K., & Ivanov, Y. (2017). Enhancement of immunoassay fluorescence and detection sensitivity to neutrophils by using antibodies multiple labelled with dye/DNA conjugate. Technical and Natural Sciences-Annual of Assen Zlatarov University, Burgas, XLVI(1), 31-36.
  • Zeng, H., Zhai, X., Xie, M., & Liu, Q. (2018). Fluorescein isothiocyanate labeling antigen-based immunoassay strip for rapid detection of Acidovorax citrulli. Plant Disease, 102(3), 527-532. https://doi.org/10.1094/PDIS-06-17-0793-RE
  • Zhou, Y., Huang, X., Xiong, S., Li, X., Zhan, S., Zeng, L., & Xiong, Y. (2018). Dual-mode fluorescent and colorimetric immunoassay for the ultrasensitive detection of alpha-fetoprotein in serum samples. Analytica Chimica Acta, 1038, 112-119. https://doi.org/10.1016/j.aca.2018.07.007
  • Cao, J., Chen, X.-Y., & Zhao, W.-R. (2019). Determination of Morphine in Human Urine by the Novel Competitive Fluorescence Immunoassay. Journal of Analytical Methods in Chemistry, 2019, article ID 7826090. https://doi.org/10.1155/2019/7826090
  • Wang, J.-H., Bartlett, J. D., Dunn, A. C., Small, S., Willis, S. L., Driver, M. J., & Lewis, A. L. (2005). The use of rhodamine 6G and fluorescence microscopy in the evaluation of phospholipid-based polymeric biomaterials. Journal of Microscopy, 217, 216-224. https://doi.org/10.1111/j.1365-2818.2005.01453.x
  • Grimm, J. B., Tkachuk, A. N., Xie, L., Leonard, J. D., Saurabh, S., Los, G. V., & Lavis, L. D. (2020). A general method to optimize and functionalize red-shifted rhodamine dyes. Nature Methods, 17(9), 815-821. https://doi.org/10.1038/s41592-020-0909-6
  • Cell Biolabs. (n.d.). Rhodamine Competitive ELISA Kit AKR-5142. Retrieved March 1, 2023, from https://www.cellbiolabs.com/sites/default/files/AKR-5142-rhodamine-competitive-elisa-kit.pdf
  • Zhou, M., Zhang, X., Bai, M., Shen, D., Xu, B., Kao, J., Ge, X., & Achilefu, S. (2013). Click reaction-mediated functionalization of near-infrared pyrrolopyrrole cyanine dyes for biological imaging applications. RSC Advances, 3(19), 6927-6930. https://doi.org/10.1039/C3RA40861K
  • Schwechheimer, C., Rönicke, F., Schepers, U., & Wagenknecht, H. (2018). A new structure-activity relationship for cyanine dyes to improve photostability and fluorescence properties for live cell imaging. Chemical Science, 9(30), 6557-6563. https://doi.org/10.1039/C8SC01574K
  • Ma, X., Shi, L., Zhang, B., Wang, Y., & Chen, X. (2022). Recent advances in bioprobes and biolabels based on cyanine dyes. Analytical and Bioanalytical Chemistry, 414(16), 4551-4573. https://doi.org/10.1007/s00216-022-03995-8
  • Hixson, J. L., & Ward, A. S. (2022). Hardware selection and performance of low-cost fluorometers. Sensors, 22(6), 2319. https://doi.org/10.3390/s22062319
  • Cao, X. E., Yhombi, S. O., Wang, R., & Ren, Y. (2022). A diagnostic platform for rapid, simultaneous quantification of procalcitonin and C-reactive protein in human serum. EBioMedicine, 76(1), 103867. doi:10.1016/j.ebiom.2022.103867
  • Zheng, H., Wu, H., Jiang, H., & Yang, J. (2020). Development of a smartphone-based fluorescent immunochromatographic assay strip reader. Sensors, 20(16), article 4521. doi:10.3390/s20164521
  • Borse, V., Patil, A. S., & Srivastava, R. (2017). Development and testing of portable fluorescence reader (PorFloR™). 2017 9th International Conference on Communication Systems and Networks (COMSNETS), 498-501. doi:10.1109/COMSNETS.2017.7945442
  • Drummen, G. P. C. (2012). Fluorescent probes and fluorescence (microscopy) techniques - Illuminating biological and biomedical research. Molecules, 17(12), 14067-14090. doi:10.3390/molecules171214067
  • Cios, J., Janus, M., & Lachowicz, M. (2021). Effect of different wavelengths of laser irradiation on the skin cells. In IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 1-5). doi:10.3390/ijms22052437
  • Cai, S., Sze, J. Y. Y., Ivanov, A. P., & Edel, J. B. (2019). Small molecule electro-optical binding assay using nanopores. Nature Communications, 10(1), 1797.
  • Mair, F., & Tyznik, A. J. (2019). High-dimensional immunophenotyping with fluorescence-based cytometry: A practical guidebook. Methods in Molecular Biology (Clifton, N.J.), 2032, 213–234. doi:10.1007/978-1-4939-9648-3_13
  • Sawayama, J., & Takeuchi, S. (2021). Long-Term Continuous Glucose Monitoring Using a Fluorescence-Based Biocompatible Hydrogel Glucose Sensor. IEEE Access, 9, 11805-11813. https://doi.org/10.1109/ACCESS.2021.3050675.
  • Alam, M. W., Wahid, K. A., Goel, R. K., & Lukong, K. E. (2019). Development of a low-cost and portable smart fluorometer for detecting breast cancer cells. Biomed. Opt. Express, 10(2), 399-410. https://doi.org/10.1364/BOE.10.000399.
  • Yang, Y., Gu, Y., Ge, S., & Tang, Z. (2015). Development of a quantifiable optical reader for lateral flow immunoassay. In 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI) (pp. 487-491). IEEE. https://doi.org/10.1109/BMEI.2015.7401527.
  • Gui, C., Wang, K., Li, C., Dai, X., & Cui, D. (2014). A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA. Nanoscale Research Letters, 9(1), 57. https://doi.org/10.1186/1556-276X-9-57.
  • Albani, J. (2007). Principles and applications of fluorescence spectroscopy. Blackwell Sci. https://doi.org/10.1002/9780470027318.
  • Huang, H., Lu, Y. N., Shan, Y., Liu, F., & Wang, S. (2022). Handheld fluorescence test strip reader for rapid on-site biochemical detection. In Optics in Health Care and Biomedical Optics XII (p. 123201N). doi: 10.1117/12.2638645.
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seda Aksoy 0000-0002-3512-1932

Ayşe Dulda 0000-0002-1134-1543

Gökhan Ertaş 0000-0002-3331-9152

Early Pub Date March 25, 2023
Publication Date March 31, 2023
Published in Issue Year 2023 Issue: 49

Cite

APA Aksoy, S., Dulda, A., & Ertaş, G. (2023). Emerging Technologies for Fluorescence-Based Optical Test Strip Readers. Avrupa Bilim Ve Teknoloji Dergisi(49), 16-24. https://doi.org/10.31590/ejosat.1265098