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Appendix A: Proof for Theorem 4.1

For our purpose, it is sufficient to derive the asymptotics of Pn(θ0) and Sn(θ0), since the evaluation
of other terms is the same as what we derived in the scalar case. The random vectors in the
underscript will not be written in boldface, and it will not be confused with random variables.

Lemma A.1. Suppose {X(t)}∞t=0 satisfies (4.1) with (4.2). Then

In,X(ω) = Ψ(ω)In,Z(ω)Ψ(ω)∗ +Rn(ω).

If ϕ(ω) is a d× d matrix-valued continuous function on [−π, π ], then

xn

∫ π

−π

tr[Rn(ω)ϕ(ω) ]dω
P−→ 0.

Proof. We follow the proof of the univariate case in Mikosch et al. (1995).

dn,X(ω) = n−1/α
n∑

t=1

X(t) exp(iωt) = n−1/α
n∑

t=1

exp(iωt)(
∞∑
j=0

Ψ(j)Z(t− j))

= Ψ(ω)dn,Z(ω) + n−1/α
∞∑
j=0

Ψ(j) exp(ijω)Yn,j(ω),

= Jn,Z(ω) + n−1/αYn(ω) (say),
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where

Yn,j(ω) =

n−j∑
t=1−j

Z(t) exp(iωt)−
n∑

t=1

Z(t) exp(iωt).

Then we have

Rn(ω) = n−1/αYn(ω)Jn,Z(ω)
∗ + n−1/αJn,Z(ω)Yn(ω)

∗ + n−2/αYn(ω)Yn(ω)
∗.∑∞

j=0 Ψ(j) exp(ijω) ≤
∑∞

j=0∥Ψ(j)∥ < ∞, so that ∥Ψ(ω)∥ is bounded. Since every element of Z(t)
is in the domain of attraction of a stable law with a parameter α, Jn,Z(ω) is also stochastically
bounded. As results in the proof of lemma 6.2 in Mikosch et al. (1995), we know that for each
l ∈ {1, 2, . . . , d},

∞∑
j=0

Ψ(j)kl exp(ijω)Yn,j(ω)l = Op(1)

and ∫ π

−π

n−2/α|
∞∑
j=0

Ψ(j)kl exp(ijω)Yn,j(ω)l|2dω = op(x
−2
n ).

Combining these two results, it is easy to see that Yn(ω) = Op(1), and by the boundedness of ϕ(ω),

xn

∣∣∣∫ π

−π

tr[Rn(ω)ϕ(ω)] dω
∣∣∣ ≤ xn

∫ π

−π

|tr[Rn(ω)ϕ(ω) ]| dω

≤ xn

∫ π

−π

∥Rn(ω)∥E∥ϕ(ω)∥E dω

≤ c1xn

∫ π

−π

∥n−1/αYn(ω)Jn,Z(ω)
∗∥E + ∥n−1/αJn,Z(ω)Yn(ω)

∗∥E

+∥n−2/αYn,Z(ω)Yn,Z(ω)
∗)∥E dω

≤ c2xn

{(∫ π

−π

∥Jn,Z(ω)∥2E dω

)1/2(∫ π

−π

n−2/α∥Yn(ω)∥2E dω

)1/2

+

∫ π

−π

n−2/α∥Yn(ω)∥2E dω
}
.

P−→ 0.

Before looking into the asymptotics of Pn(θ0), we have to show the existence of the limit matrix
of the autocovariance matrix in distribution. If the case is the same as what we suppose in section
4, i.e., the components of the vector Z are mutually independent, then we have the lemma due to
Davis et al. (1986) by applying continuous mapping theorem.

Suppose yn = (n log n)1/α. It is obvious that Z(1)k’s satisfy followings:

P (|Z(1)i| > x) = x−αL(x), i = 1, 2, . . . , d (A.1)

with α > 0 and L(x) a slowly varying function at ∞ and

P (Z(1)i > x)

P (|Z(1)i| > x)
→ p,

P (Z(1)i < −x)

P (|Z(1)i| > x)
→ q (A.2)
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as x → ∞, 0 ≤ p ≤ 1 and q = 1− p.

Lemma A.2. Let {Z(t)} be a sequence of i.i.d. random vectors satisfying (6.19) and (6.20) with
0 < α < 2 and E|Z(1)i|α = ∞ for all i = 1, 2, . . . , d. Then(

n−2/α
n∑

t=1

Z(t)Z(t)′, y−1
n

n∑
t=1

Z(t)Z(t+ 1)′, . . . , y−1
n

n∑
t=1

Z(t)Z(t+ h)′

)
L−→ (S(0), S(1), . . . , S(h)),

where S(0), S(1), . . . , S(h) are independent stable random matrices; the components of S(0) are all
positive with index α/2, and S(1), . . . , S(h) are identically distributed with index α.

The self-normalized parameter, denoted by ∥Z∥n, is defined as follows:

∥Z∥n ≡

√√√√ n∑
t=1

d∑
i=1

Z(t)2i .

It is well known that Z(t)2i is in the domain of attraction of a stable limit with α/2, and the
linear transformation of stable distribution with nonrandom scale is also stable with the same
characteristic exponent. Thus the sum

∑d
i=1 Z(t)2i is also in the domain of attraction of a stable

limit with α/2. The normalized form of vectors is written as

Z̃(t)i =
Z(t)i
∥Z∥n

, i = 1, . . . , d.

Lemma A.3. Let (X(t))t∈Z be a linear process defined as (4.1) with coefficient matrices (Ψ(j))j∈Z
satisfying (4.2) with α ∈ (0, 2). Also, let ϕk(ω), k = 1, . . . , d, be d × d matrix-valued 2π-periodic
continuous function with ϕk(ω) = ϕk(ω)

∗ such that the Fourier coefficients of Ψ(·)ϕk(·)Ψ(·)∗ satisfy

∞∑
t=1

∥∥∥∥∥
∫ π

−π

Ψ(ω)∗ϕk(ω)Ψ(ω) exp(itω)dω

∥∥∥∥∥
µ

E

< ∞

for some µ ∈ (0, α) and all k = 1, · · · , d. Then

(n−2/α∥Z∥2n, xn

∫ π

−π

tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω)

L−→ (Sα/2,

d∑
i,j=1

∞∑
h=1

S(h)ij

∫ π

−π

(A(ω) +A(ω))ij dω ),

where
A(ω) = Ψ(ω)∗ϕk(ω)Ψ(ω) exp(ihω),

and S(h)ij is the (i, j)-component of the limit stable random matrix S(h), where

xn Γ̂n,Z(h) ⇒ S(h) for h = 1, 2, . . . .
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Proof. From Lemma A.2, we can see that(
n−2/αΓ̂n,Z(0), y

−1
n Γ̂n,Z(k), k = 1 . . . , h

)
⇒ (S(0), S(1), . . . , S(h)).

Note that tr Γ̂n,Z(0) = ∥Z∥2n, according to the continuous mapping theorem, the statement holds
true if we show

xn

∫ π

−π

tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω

L−→
d∑

i,j=1

∞∑
h=1

S(h)ij

∫ π

−π

(A(ω) +A(ω))ij dω.

As a result of Lemma 6.1 in Klüppelberg and Mikosch (1996), under Assumption 4.3,

xn

 d∑
i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)

]
ij

[exp(−ihω)Ψ(−ω)∗ϕk(−ω)Ψ(−ω)]ij

+
d∑

i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)

]
ij

[ exp(ihω)Ψ(ω)∗ϕk(ω)Ψ(ω) ]ij


L−→

d∑
i,j=1

∞∑
h=1

S(h)ij

∫ π

−π

(A(ω) +A(ω))ij dω

holds. From Lemma A.1,

xn

∫ π

−π

tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω

= xn

∫ π

−π

tr
[
{Ψ(ω)In,Z(ω)Ψ(ω)∗ −Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗ +R(ω)}ϕk(ω)

]
dω

= xn

∫ π

−π

tr
[
{Ψ(ω)(In,Z(ω)− Γ̂n,Z(0))Ψ(ω)∗}ϕk(ω)

]
dω + xn

∫ π

−π

tr [R(ω)ϕk(ω) ] dω

= xn

∫ π

−π

tr

[(
n−1∑
h=1

Γ̂n,Z(h) exp(−ihω)

)
Ψ(ω)∗ϕk(ω)Ψ(ω)

]
dω

+ xn

∫ π

−π

tr

[(
n−1∑
h=1

Γ̂n,Z(h)
′ exp(ihω)

)
Ψ(ω)∗ϕk(ω)Ψ(ω)

]
dω + op(1)

= xn

∫ π

−π

d∑
i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)

]
ij

[exp(−ihω)Ψ(−ω)∗ϕk(−ω)Ψ(−ω)]ij dω

+

∫ π

−π

d∑
i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)
′

]
ij

[ exp(ihω)Ψ(ω)∗ϕk(ω)Ψ(ω) ]ij dω

+ op(1)

L−→
d∑

i,j=1

∞∑
h=1

S(h)ij

∫ π

−π

(A(ω) +A(ω))ij dω.
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Remark A.1. The assumption on the components of Z(t) is for simplicity and for simulation.
The condition of regular variation on the vector case is crucial for the convergence of Z(t) with
some other technical conditions. For detail, we recommend to refer to Bartkiewicz et al. (2011).

Similar to the univariate case, we have

n∑
t=1

d∑
i=1

Z̃(t)2i = 1 almost surely,

which shows the second moment of Z̃(t) is finite. By the properties that the components of vectors
are mutually independent and they are symmetry around 0, we assume generally

E
[
Z̃(t)iZ̃(s)i

]
= ΣZ̃ =

{
σii

n , if t = s,

0 if t ̸= s.
(A.3)

Lemma A.4. Assume the covariance matrix of self-normalized process {Z̃(t); t ∈ Z} is given by
ΣZ̃ . If α ∈ [1, 2), then

(n−2/α∥Z∥2n)−2Sn(θ0)
P−→ W ,

where the (a, b)-component of W satisfies

Wab =
1

2π

∫ π

−π

(
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g̃(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]

+tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω,

where g̃(ω) is defined as
g̃(ω) = Ψ(ω)ΣZ̃Ψ(ω)∗.

Proof. Write
Ĩn,X(ω) ≡ (n−2/α∥Z∥2n)−1In,X(ω) (A.4)

Recalling the decomposition in Lemma A.1 again and using self-normalized form, we can see that

Ĩn,X(ω) = Ψ(ω)In,Z̃(ω)Ψ(ω)∗ + (n−2/α∥Z∥2n)−1Rn(ω), (A.5)

where the last term (n−2/α∥Z∥2n)−1Rn(ω) is asymptotically negligible. Taking the expectation of
the product of periodogram of Z̃, we obtain

E(In,Z̃(ω1)pqIn,Z̃(ω2)rs)

= E

 ∑
m,l,k,j

Z̃p(m)Z̃q(l)Z̃r(k)Z̃s(j) exp{ i((j − k)ω1 − (l −m)ω2)t}


=

{
σpqσrs + σprσqs + op(1) if ω1 = ω2,

σpqσrs + σpsσqr + op(1) if ω1 = −ω2.
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Therefore, if we write g(ω)ab = (
∑n

j=0 Ψ(j) exp(−ijω))ab, then

lim
n→∞

E(Ĩn,X(ω)pq Ĩn,X(ω)rs) =
∑

k,l,m,n

g(ω)pkg(ω)ql g(ω)rmg(ω)sn(σpqσrs + σprσqs)

= g̃(ω)pqg̃(ω)rs + g̃(ω)prg̃(ω)qs.

If α ∈ [1, 2), we have

E[(n−2/α∥Z∥2n)−2Sn(θ0)ab ]

→ 1

2π

{∫ π

−π

d∑
β1,β2,β3,β4=1

g̃(ω)β1β2 g̃(ω)β3β4

∂f(ω;θ)β2β1

∂θa

∣∣∣∣
θ=θ0

∂f(ω;θ)β4β3

∂θb

∣∣∣∣
θ=θ0

dω

+

∫ π

−π

d∑
β1,β2,β3,β4=1

g̃(ω)β1β3 g̃(ω)β2β4

∂f(ω;θ)β2β1

∂θa

∣∣∣∣
θ=θ0

∂f(ω;θ)β4β3

∂θb

∣∣∣∣
θ=θ0

dω
}
. (A.6)

= Wab

The convergence of (n−2/α∥Z∥2N )−2Sn(θ0) in probability is guaranteed by the result that∑
k ̸=l

Cov(In,Z̃(λk)
2
pq, In,Z̃(λl)

2
rs) = O(n).

Corollary A.1. If all the elements of Z(t) are i.i.d symmetric α stable random variables, then

(n−2/α∥Z∥2n)−2Sn(θ0)
P−→ W ,

where the (i, j)-component of W is

Wab =
1

2πd2

∫ π

−π

(
tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]

+tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω. (A.7)

Proof of Theorem 4.1. Apply Lemma A.3 to xnPn(θ0), we can see that

xnPn(θ0) =
xn

2π

∫ π

−π

∂

∂θ
tr
[
f(ω;θ)−1In,X(ω)

]
dω
∣∣∣
θ=θ0

=
xn

2π

∫ π

−π

∂

∂θ
tr
[
f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}

]
dω
∣∣∣
θ=θ0

=
xn

2π



∫ π

−π
tr
[

∂
∂θ1

f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}
]
dω
∣∣∣
θ=θ0∫ π

−π
tr
[

∂
∂θ2

f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}
]
dω
∣∣∣
θ=θ0

...∫ π

−π
tr
[

∂
∂θq

f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}
]
dω
∣∣∣
θ=θ0
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L−→ 1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij


∫ π

−π
(B1(ω) +B1(ω))ijdω∫ π

−π
(B2(ω) +B2(ω))ijdω

...∫ π

−π
(Bq(ω) +Bq(ω))ijdω.


where

Bk(ω) = Ψ(ω)∗
∂

∂θk
f(ω;θ)−1

∣∣∣∣
θ=θ0

Ψ(ω) k = 1, . . . , q.

Remember that
n−2/α∥Z∥2n

L−→ Sα/2,

xnPn(θ0)

n−2/α∥Z∥2n
L−→ 1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij
Sα/2


∫ π

−π
(B1(ω) +B1(ω))ijdω∫ π

−π
(B2(ω) +B2(ω))ijdω

. . .∫ π

−π
(Bq(ω) +Bq(ω))ijdω

 .

Thus the limit of −2(x2
n/n) logR(θ0) is

−2
x2
n

n
logR(θ0)

L−→ V ′W−1V ,

where V and W are defined in Theorem 4.1.
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