MMSL 2014, 83(2):52-58 | DOI: 10.31482/mmsl.2014.009

K-OXIME (K-27): PHOSPHYLATION-INDUCED CHANGES IN LOGPOriginal article

Georg A Petroianu1*, Gagani Athauda1, Ferenc Darvas1,2, Huba Kalasz3, Dietrich E Lorke1
1 Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
2 ComInnex, Budapest, H-1031, Hungary
3 Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, H-1089, Hungary

Organophosphorus compounds (organophosphates and organophosphonates) exert their toxicity by phosphylating (i.e. either phosphorylating or phosphonylating) the serine hydroxyl group of the enzyme acetylcholinesterase (AChE) in its active center, thereby inhibiting this enzyme, which inactivates the neurotransmitter acetylcholine (ACh). This results in an accumulation of ACh and an "endogenous ACh poisoning".
Oximes, which can reactivate the inhibited enzyme by dephosphylation, are used in the therapy of organophosphorus compound poisoning. During the reactivation process, oximes become themselves phosphylated. Many of these phosphylated oximes are extremely potent AChE inhibitors, which may reduce their therapeutic efficacy.
K-27 is a very promising experimental oxime. In the present study, logP values of phosphylated K-27 are estimated after "in-silico exposure" to a number of organophosphorus esters [ethyl-paraoxon, methyl-paraoxon, diisopropyl-fluoro-phosphate, VX, soman, tabun, sarin, cyclosarin]. These logP values are compared with those of the native oxime and possible therapeutic relevance is discussed.
While our previously published data regarding obidoxime and pralidoxime show that phosphylation increases their lipophilicity, facilitating penetration into the brain where they can inhibit or re-inhibit enzymes, this conclusion does not hold with respect to K-27; phosphylation of K-27 does not generally increase lipophilicity. Possible consequences with regard to blood-brain-barrier passage, toxicity and therapeutic efficacy are discussed.

Keywords: cholinesterase; organophosphorus esters; oxime, K-27; phosphorylation; phosphonylation; logP

Received: January 21, 2014; Revised: March 16, 2014; Published: June 2, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Petroianu, G.A., Athauda, G., Darvas, F., Kalasz, H., & Lorke, D.E. (2014). K-OXIME (K-27): PHOSPHYLATION-INDUCED CHANGES IN LOGP. MMSL83(2), 52-58. doi: 10.31482/mmsl.2014.009
Download citation

References

  1. Buckley, N.A.; Eddleston, M.; Li, Y.; Bevan, M.; Robertson, J. Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst Rev. 2011, CD005085. Go to original source...
  2. Gunnell, D.; Eddleston, M.; Phillips, M.R.; Konradsen, F. The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health. 2007, 7, 357. Go to original source... Go to PubMed...
  3. Lorke, D.E.; Petroianu, G.A. Minireview: does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure? J Appl Toxicol. 2009, 29, 459-69. Go to original source... Go to PubMed...
  4. Petroianu, G.A. Organophosphate poisoning: the lesser-known face of a toxidrome. Eur J Emerg Med. 2005, 12, 102-3. Go to original source... Go to PubMed...
  5. Petroianu, G.A. The history of cholinesterase inhibitors: who was Moschnin(e)? Pharmazie. 2008, 63, 325-7. Go to PubMed...
  6. Petroianu, G.A. Toxicity of phosphor esters: Willy Lange (1900-1976) and Gerda von Krueger (1907-after 1970). Pharmazie. 2010, 65, 776-80. Go to PubMed...
  7. Petroianu, G.A. History of organophosphate synthesis: the very early days. Pharmazie. 2010, 65, 306-11. Go to PubMed...
  8. Petroianu, G.A. The history of cholinesterase reactivation: hydroxylamine and pyridinium aldoximes. Pharmazie. 2012, 67, 874-9. Go to PubMed...
  9. Petroianu, G.A. The history of pyridinium oximes as nerve gas antidotes: the British contribution. Pharmazie. 2013, 68, 916-8. Go to PubMed...
  10. Ashani, Y.; Silman, I. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester 2009, p 622-651.
  11. Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc Chem Res. 2012, 45, 756-66. Go to original source... Go to PubMed...
  12. Bajgar, J. Optimal choice of acetylcholinesterase reactivators for antidotal treatment of nerve agent intoxication. Acta Medica (Hradec Kralove). 2010, 53, 207-11. Go to original source... Go to PubMed...
  13. Becker, C.; Worek, F.; John, H. Chromatographic analysis of toxic phosphylated oximes (POX): a brief overview. Drug Test Anal. 2010, 2, 460-8. Go to original source... Go to PubMed...
  14. Petroianu, G.A.; Lorke, D.E.; Athauda, G.; Kalasz, H. Pralidoxime and Obidoxime: Phosphylationinduced Changes in logP (partition coefficient). J Environ Immunol Toxicol. 2013, 1, 35-40. Go to original source...
  15. Ashani, Y.; Bhattacharjee, A.K.; Leader, H.; Saxena, A.; Doctor, B.P. Inhibition of cholinesterases with cationic phosphonyl oximes highlights distinctive properties of the charged pyridine groups of quaternary oxime reactivators. Biochem Pharmacol. 2003, 66, 191-202. Go to original source... Go to PubMed...
  16. Buchwald, P.; Bodor, N. Octanol-water partition: searching for predictive models. Curr Med Chem. 1998, 5, 353-80. Go to original source...
  17. Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Journal of the American Chemical Society. 1964, 86, 1616-1626. Go to original source...
  18. Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chemical Reviews. 1971, 71, 525-616. Go to original source...
  19. Petroianu, G.A.; Lorke, D.E. Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): predictive value of in-vitro testing for in-vivo efficacy. Mini Rev Med Chem. 2008, 8, 1328-42. Go to original source... Go to PubMed...
  20. Kuča, K.; Cabal, J.; Kassa, J. A comparison of the potency of newly developed oximes (K005, K027, K033, K048) and currently used oximes (pralidoxime, obidoxime, HI-6) to reactivate sarin-inhibited rat brain acetylcholinesterase by in vitro methods. J Toxicol Environ Health A. 2005, 68, 677-86. Go to original source... Go to PubMed...
  21. Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Shafiullah, M.; Kuca, K.; Petroianu, G.A. Pretreatment for acute exposure to diisopropylfluorophosphate: in vivo efficacy of various acetylcholinesterase inhibitors. J Appl Toxicol. 2011, 31, 515-23. Go to original source... Go to PubMed...
  22. Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Shafiullah, M.; Kuca, K.; Petroianu, G.A. Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: assessment using methyl-paraoxon. CNS Neurol Disord Drug Targets. 2012, 11, 1052-60.
  23. Lorke, D.E.; Nurulain, S.M.; Hasan, M.Y.; Kuca, K.; Musilek, K.; Petroianu, G.A. Eight new bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime: in vivo efficacy to protect from diisopropylfluorophosphate toxicity. J Appl Toxicol. 2008, 28, 920-8. Go to original source... Go to PubMed...
  24. Lorke, D.E.; Nurulain, S.M.; Hasan, M.Y.; Kuca, K.; Petroianu, G.A. Prophylactic administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using terbufos sulfone. J Appl Toxicol. 2013. Go to original source...
  25. Lorke, D.E.; Nurulain, S.M.; Hasan, M.Y.; Kuca, K.; Petroianu, G.A. Five Experimental Bispyridinium Oximes in Comparison with the Conventional Oximes Pralidoxime and Obidoxime: In Vivo Efficacy to Protect from Azinphos-methyl-induced Toxicity. J Environ Immunol Toxicol. 2013, 1, 44-50.
  26. Nurulain, S.M.; Lorke, D.E.; Hasan, M.Y.; Shafiullah, M.; Kuca, K.; Musilek, K.; Petroianu, G.A. Efficacy of eight experimental bispyridinium oximes against paraoxon-induced mortality: comparison with the conventional oximes pralidoxime and obidoxime. Neurotox Res. 2009, 16, 60-7. Go to original source... Go to PubMed...
  27. Petroianu, G.A.; Nurulain, S.M.; Shafiullah, M.; Hasan, M.Y.; Kuca, K.; Lorke, D.E. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using paraoxon. J Appl Toxicol. 2013, 33, 894-900. Go to original source... Go to PubMed...
  28. Molnar, L.; Keseru, G.M.; Papp, A.; Gulyas, Z.; Darvas, F. A neural network based prediction of octanol-water partition coefficients using atomic5 fragmental descriptors. Bioorg Med Chem Lett. 2004, 14, 851-3. Go to original source... Go to PubMed...
  29. Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus Compounds as Chemical Warfare Agents: a Review. Journal of the Brazilian Chemical Society. 2009, 20, 407-428. Go to original source...
  30. Lorke, D.E.; Kalasz, H.; Petroianu, G.A.; Tekes, K. Entry of oximes into the brain: a review. Curr Med Chem. 2008, 15, 743-53. Go to original source... Go to PubMed...
  31. Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Sheen, R.; Kuca, K.; Petroianu, G.A. Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: comparison with obidoxime. J Appl Toxicol. 2007, 27, 482-90. Go to original source... Go to PubMed...
  32. Petroianu, G.A.; Lorke, D.E.; Hasan, M.Y.; Adem, A.; Sheen, R.; Nurulain, S.M.; Kalasz, H. Paraoxon has only a minimal effect on pralidoxime brain concentration in rats. J Appl Toxicol. 2007, 27, 350-7. Go to original source... Go to PubMed...
  33. Bodor, N.; Shek, E.; Higuchi, T. Improved delivery through biological membranes. 1. Synthesis and properties of 1-methyl-1,6-dihydropyridine-2-carbaldoxime, a pro-drug of N-methylpyridinium-2-carbaldoxime chloride. J Med Chem. 1976, 19, 102-7. Go to original source... Go to PubMed...
  34. Boskovic, B.; Tadic, V.; Kusic, R. Reactivating and protective effects of Pro-2PAM in mice poisoned with paraoxon. Toxicol Appl Pharmacol. 1980, 55, 32-6. Go to original source... Go to PubMed...
  35. Voicu, V.A.; Bajgar, J.; Medvedovici, A.; Radulescu, F.S.; Miron, D.S. Pharmacokinetics and pharmacodynamics of some oximes and associated therapeutic consequences: a critical review. J Appl Toxicol. 2010, 30, 719-29. Go to original source... Go to PubMed...