Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 27, 2018

Development of a Segmented Temperature Control for Targeted Solidification in Injection Molding

  • Ch. Hopmann , M. Schmitz and H. Dornebusch

Abstract

One of the largest challenges in production using melt-based processes is the manufacturing of precise parts. Especially due to high differences in temperature of the produced parts while processing, shrinkage cannot be avoided, since the processing material is typically heated up, molded and cooled down. In injection molding, the molten plastic is loaded by high variations in temperature and pressure while being processed. The gradients can lead to a significant change of the local specific volume, shrinkage potential and inner stresses, which can result in part warpage. In order to increase the precision of the manufactured parts, the shrinkage potential has to be homogenised to achieve an even shrinkage and therefore minimise part warpage. In this work, the approach for homogenisation of the shrinkage potential is a homogenisation of the specific volume and density respectively. Pursuing the goal of a homogeneous distribution of the specific volume leads to manipulation of the influencing factors namely temperature and pressure. The impact of temperature and pressure changes on the specific volume can further be quantitatively described by the material specific pvT-data. Based on geometric restrictions, a manipulation of the local pressure inside the cavity in most cases is impossible. However, on the other hand, a local control of the temperature is possible using highly dynamic tempering techniques. Based on this line of arguments, the paper describes the development of a highly segmented dynamic temperature control in injection molding to locally influence the mold and part temperature. Thereby, the specific volume of the part will be locally adjusted to reduce warpage as well as to compensate process variations occurring by changing material properties or varying ambient conditions. Due to the nature of thermal processes a special control strategy has to be developed to enable accurate temperature control, which is able to compensate slow thermal reaction in a highly dynamic process.


*Correspondence address, Mail address: Mauritius Schmitz, Institute of Plastics Processing, RWTH Aachen University, Seffenter Weg 201, D-52074 Aachen, Germany, E-mail:

References

Alig, I., Lellinger, D. and Wassum, K.: “Temperaturschwankungen in der Verfahrenseinheit“, Kunststoffe, 93, 6265 (2003)Search in Google Scholar

Berghoff, M., “Perspektiven bei der Temperierung von Problemzonen im Werkzeug“, Technical Report (2010), www.isk-iserlohn.de/fileadmin/medien/Dokumente/co2_temperierung_fachbeitrag.pdfSearch in Google Scholar

Bürkle, E., Burr, A., “In drei Sekunden von 100 auf 140 Grad“, Kunststoffe, 97, 210214 (2007)Search in Google Scholar

Giessauf, J., Pillwein, G. and Steinbichler, G., “Die variotherme Temperierung wird Produktionstauglich“, Kunststoffe, 98, 8792 (2008)Search in Google Scholar

Hopmann, Ch., Fischer, T., Heinisch, J. and Petzinka, F., “Process Development for the Production of Plastics Parts with Micro Features”, The 4M/ICOMM2015 Conference, Milano, Italy (2015) 10.3850/978-981-09-4609-8_001Search in Google Scholar

Hopmann, Ch., Heinisch, J. and Reßmann, A., “Influence on Product Quality by pvT-Optimised Processing in Injection Compression Molding”, Int. Polym. Proc., 31, 156165 (2016) 10.3139/217.3058Search in Google Scholar

Hopmann, Ch., Reßmann, A., Zöllner, D., Reiter, M. and Abel, D., “Strategy for Robust System Identification for Model Predictive Control of Cavity Pressure in an Injection Moulding Process”, International Symposium on Measurement Technology and Intelligent Instruments, Aachen, Germany (2013)Search in Google Scholar

Hopmann, Ch., Weber, M., Schöngart, M., Schäfer, C., Bobzin, K., Bagcivan, N., Brögelmann, T., Theiß, S., Münstermann, T. and Steger, M., “Injection Moulding of Optical Functional Micro Structures Using Laser Structured, PVD-Coated Mould Inserts”, AIP Conference, 1664, 110003 (2015) 10.1063/1.4918478Search in Google Scholar

Johannaber, F., Michaeli, W.: Handbuch Spritzgießen. Hanser Publishers, Munich, Germany (2004) 10.3139/9783446440982 Search in Google Scholar

Koch, M., “Konzepte für die Werkzeugtemperierung“, Kunststoffe, 92, 2836 (2002)Search in Google Scholar

Menges, G., Michaeli, W. and Mohren, P.: Spritzgießwerkzeuge. Auslegung, Bau, Anwendung, Hanser Publishers, Munich, Germany (2007) 10.3139/9783446446823Search in Google Scholar

Michaeli, W., Lauterbach, M., “Die pmT-Optimierung – Konsequenzen aus dem pvT-Konzept zur Nachdruckführung”, Kunststoffe, 79, 852855 (1989)Search in Google Scholar

Michaeli, W., Schreiber, A. and Lettowsky, C., “Optimised Process Control for the Injection Moulding of Thermoplastics Based on Process Variables“, J. Plast. Technol., 4, 117 (2008)Search in Google Scholar

Michaeli, W., Schreiber, A. and Reßmann, A., “Implementierung eines echtzeitfähigen Regelungssystems für das Spritzgießen von Kunststoffen durch Nutzung von Labview Real-Time eingesetzte Soft- und Hardware”, Begleitband zum 15. Technologie- und Anwenderkongress “Virtuelle Instrumente in der Praxis” – VIP 2010, 4557 (2010)Search in Google Scholar

Michaeli, W., Schreiber, A., “Online Cavity Pressure Control in Injection Moulding”, J. Polym. Eng., 27, 429445 (2007) 10.1515/POLYENG.2007.27.6-7.429Search in Google Scholar

N. N.: “Infrarot-Werkzeuginnenthermometer“, Datasheet, FOS Messtechnik GmbH, Schacht-Audorf, Germany, 2008Search in Google Scholar

N. N.: “IR Mold Temperature Sensor”, Operating instructions, FOS Messtechnik GmbH, Schacht-Audorf, Germany (2005)Search in Google Scholar

Nau, M., “Elektrische Temperaturmessung: mit Thermoelemente und Widerstandsthermometern“, Jumo GmbH & Co. KG, Fulda, Germany (2004), ISBN: 978-3-935742-06-1Search in Google Scholar

Osswald, T., Baur, E., Brinkmann, S., Oberbach, K. and Schmachtenberg, E.: International Plastics Handbook, Hanser Publishers, Munich, Germany (2006) 10.3139/9783446407923Search in Google Scholar

Praher, B., Straka, K. and Steinbichler, G., “Schmelzetemperatur mit Ultraschall Messen”, Kunststoffe, 103, 4549 (2013)Search in Google Scholar

Ridder, H., Schniers, J., Heim, H.-P. and Jarka, S., “Möglichkeiten und Grenzen variabler Temperierung”, Kunststoffe, 99, 2229 (2009)Search in Google Scholar

Schóngart, M., “Dynamische Beheizung von Spritzgießwerkzeugen mittels Laserstrahlung“, PhD Thesis, RWTH Aachen University, Mainz Verlag, Aachen, Germany (2014), ISBN: 978-3-95886-018-6Search in Google Scholar

Schreiber, A., “Regelung des Spritzgießprozesses auf Basis von Prozessgrößen und im Werkzeug ermittelter Materialdaten“, PhD Thesis, RWTH Aachen University, Mainz Verlag, Aachen, Germany (2011), ISBN: 978-3-86130-717-4Search in Google Scholar

Received: 2017-03-03
Accepted: 2017-07-30
Published Online: 2018-04-27
Published in Print: 2018-05-27

© 2018, Carl Hanser Verlag, Munich

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.3452/html
Scroll to top button