Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 1, 2014

Effect of Screw Rotation Speed on the Properties of Polycarbonate/Vapor-Grown Carbon Fiber Composites Prepared by Melt Compounding

  • S. Tanoue , J. Nithikaranjanatharn , H. Okuzono , H. Ueda , H. Uematsu and Y. Iemoto

Abstract

The effect of screw rotation speed on the mechanical property and thermal conductivity of polycarbonate (PC)/vapor-grown carbon fiber (VGCF) composites prepared by a twin screw extruder was discussed in this paper. Two types of VGCF (VGCF-H, the aspect ratio of 40, and VGCF-S, the aspect ratio of 100) were used. In the tensile test, the breaking pattern of PC composite changed to brittle failures by adding VGCF-H irrespective of screw rotation speed. Young's modulus of PC/VGCF-H slightly increased with the screw rotation speed. On the other hands, the breaking strain of PC/VGCF drastically decreased above 150 min−1. Young's modulus of PC/VGCF-S slightly increased with screw rotation speed until 150 min−1, however, it decreased at 175 min−1. The thermal conductivity of PC/VGCF-H was independent of the screw rotation speed. In contrast, the thermal conductivity of PC/VGCF-S gradually increased with screw rotation speed until 150 min−1 and it also decreased at 175 min−1. From the SEM observation and rheological behavior, the dispersion state of VGCF-H in PC/VGCF-H was independent of the screw rotation speed. On the other hands, the network structures of VGCF-S were observed in PC/VGCF-S and the state of these network structures depended on the screw rotation speed. It was clarified that the mechanical property and thermal conductivity of PC/VGCF were attributable to the dispersion state of VGCF.


* Mail address: Shuichi Tanoue, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan E-mail:

References

Abbasi, S., Carreau, P. J. and Derdouri, A., “Flow Induced Orientation of Multiwalled Carbon Nanotubes in Polycarbonate Nanocomposites: Rheology, Conductivity and Mechanical Properties”, Polymer, 51, 922935 (2010) DOI: http://dx.doi.org/10.1016/j.polymer.2009.12.041Search in Google Scholar

Choi, Y. K., Sugimoto, K. I., Song, S. M. and Endo, M., “Mechanical and Thermal Properties of Vapor-Grown Carbon Nanofiber and Polycarbonate Composite Sheets”, Mater. Lett., 59, 35143520 (2005) DOI: http://dx.doi.org/10.1016/j.matlet.2005.05.082Search in Google Scholar

Choi, Y.-K., Sugimoto, K.-I., Song, S.-M. and Endo, M., “Production and Characterization of Polycarbonate Composite Sheets Reinforced with Vapor Grown Carbon Fiber”, Composites Part A, 37, 19441951 (2006) DOI: http://dx.doi.org/10.1016/j.compositesa.2005.12.026Search in Google Scholar

Chung, D. D. L., “Comparison of Submicron-Diameter Carbon Filaments and Conventional Carbon Fibers as Fillers in Composite Materials”, Carbon, 39, 11191125 (2001) DOI: http://dx.doi.org/10.1016/S0008-6223(00)00314-6Search in Google Scholar

De Gennes, P.G.: Scaling Concepts in Polymer Physics, Cornell University Press, New York (1979)Search in Google Scholar

Endo, M., Kim, Y. A., Hayashi, T., Nishimura, K., Matusita, T., Miyashita, K. and Dresselhaus, M. S., “Vapor-Grown Carbon Fibers (VGCFS) Basic Properties and Their Battery Applications”, Carbon, 39, 12871297 (2001) DOI: http://dx.doi.org/10.1016/S0008-6223(00)00295-5Search in Google Scholar

Futaba, D. N., Hata, K., Yamada, T., Mizuno, K., Yumura, M. and Iijima, S., “Kinetics of Water-Assisted Single-Walled Carbon Nanotube Synthesis Revealed by a Time-Evolution Analysis”, Phys. Rev. Lett., 95, 056104-1056104-4 (2005)10.1103/PhysRevLett.95.056104Search in Google Scholar

Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M. and Iijima, S., “Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes”, Science, 306, 13621364 (2004) PMid:15550668; DOI: http://dx.doi.org/10.1126/science.1104962Search in Google Scholar

Higgins, B., Brittain, W. J., “Polycarbonate Carbon Nanofiber Composites”, European Polym. J., 41, 889893 (2005) DOI: http://dx.doi.org/10.1016/j.eurpolymj.2004.11.040Search in Google Scholar

Hong, J., Lee, J., Jung, D. and Shim, S., “Thermal and Electrical Conduction Behavior of Alumina and Multiwalled Carbon Nanotube Incorporated Poly(dimethyl siloxane)”, Thermochimica Acta, 512, 3439 (2010) DOI: http://dx.doi.org/10.1016/j.tca.2010.08.019Search in Google Scholar

Kinloch, I. A., Roberts, S. A. and Windle, A. H., “A Rheological Study of Concentrated Aqueous Nanotube Dispersions”, Polymer, 43, 74837491 (2002) DOI: http://dx.doi.org/10.1016/S0032-3861(02)00664-XSearch in Google Scholar

Koyama, T., Tanoue, S. and Iemoto, Y., “Preparation and Properties of Polypropylene/Vapor Grown Carbon Fiber Composite Monofilaments by Melt Compounding”, J. Text. Eng., 55, 7383 (2009) DOI: http://dx.doi.org/10.4188/jte.55.73Search in Google Scholar

Koyama, T., Tanoue, S. and Iemoto, Y., “Effect of Processing Conditions on the Dispersion of Vapor Grown Carbon Fiber in a Polyamide 6 and the Crystalline Structure of their Composites by Melt Compounding”, Int. Polym. Process., 25, 181187 (2010) DOI: http://dx.doi.org/10.3139/217.2307Search in Google Scholar

Mason, S. G., “The Motion of Fibres in Flowing Fluids”, Pulp and Paper Magazine Canada, 51, 93100 (1950)Search in Google Scholar

Potschke, P., Fornes, T. D. and Paul, D. R., “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites”, Polymer, 43, 32473255 (2002) DOI: http://dx.doi.org/10.1016/S0032-3861(02)00151-9Search in Google Scholar

Sánchez-Soto, M., Schiraldi, D. A. and Illescas, S., “Study of the Morphology and Properties of Melt-Mixed Polycarbonate–POSS Nanocomposites”, Eur. Polym. J., 45, 341352 (2009) DOI: http://dx.doi.org/10.1016/j.eurpolymj.2008.10.026Search in Google Scholar

Sato, E., Takahashi, T., Natsume, T. and Koyama, K., “Development of Dispersion and Length-Evaluation Methods of Vapor-Grown Carbon Fiber”, TANSO, 209, 159164 (2003) (in Japanese) DOI: http://dx.doi.org/10.7209/tanso.2003.159Search in Google Scholar

Sato, E., Takahashi, T. and Koyama, K., “Comparison of the Length of Vapor-Grown Carbon Fiber before and after Mixing Process”, Kobunshi Ronbunshu, 61, 144148 (2004) (in Japanese) DOI: http://dx.doi.org/10.1295/koron.61.144Search in Google Scholar

Shibuya, M., Sakurai, M. and Takahashi, T., “Preparation and Characteristics of a Vapor-Grown Carbon Fiber/Ceramic Composite Using a Methylsilicone Precursor”, Compos. Sci. Technol., 67, 33383344 (2007) DOI: http://dx.doi.org/10.1016/j.compscitech.2007.03.023Search in Google Scholar

Shofner, M. L., Rodríguez-Macías, F. J., Vaidyanathan, R. and Barrera, E. F., “Single Wall Nanotube and Vapor Grown Carbon Fiber Reinforced Polymers Processed by Extrusion Freeform Fabrication”, Composites Part A, 34, 12071217 (2003) DOI: http://dx.doi.org/10.1016/j.compositesa.2003.07.002Search in Google Scholar

Son, S. Y., Lee, D. H., Kim, S. D., Sung, S. W., Park, Y. S. and Han, J. H., “Synthesis of Multi-Walled Carbon Nanotube in a Gas-Solid Fluidized Bed”, Korean J. Chem. Eng., 23, 838841 (2006) DOI: http://dx.doi.org/10.1007/BF02705937Search in Google Scholar

Takahashi, T., Yonetake, K., Koyama, K. and Kikuchi, T., “Polycarbonate Crystallization by Vapor-Grown Carbon Fiber with and without Magnetic Field”, Macromol. Rapid Commun., 24, 763767 (2003) DOI: http://dx.doi.org/10.1002/marc.200350021Search in Google Scholar

Tanoue, S., Nithikarnjanatharn, J., Suzuki, T., Uematsu, H. and Iemoto, Y., “Effect of Electric Irradiation on the Mechanical Properties of Polypropylene/Vapor Grown Carbon Fiber Composites Prepared by Melt Compounding”, J. Text. Eng., 58, 17 (2012) DOI: http://dx.doi.org/10.4188/jte.58.1Search in Google Scholar

Tatsumi, D., Ishioka, S. and Matsumoto, T., “Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions”, Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn.), 30, 2732 (2002)10.1678/rheology.30.27Search in Google Scholar

Tatsumi, D., “Rheology of Cellulose Fiber Disperse Systems and Cellulose Solutions”, Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn.), 35, 251256 (2007) (In Japanese)10.1678/rheology.35.251Search in Google Scholar

Wang, Z., Wu, Q., Zhang, F.-Y. and Cui, Y.-Y., “Synthesis of Multi-Walled Carbon Nanotube Bundles with Uniform Diameter”, Mater. Lett., 61, 19551958 (2007) DOI: http://dx.doi.org/10.1016/j.matlet.2006.07.111Search in Google Scholar

Wu, G., Asai, S. and Sumita, M., “A Self-Assembled Electric Conductive Network in Short Carbon Fiber Filled Poly(methyl methacrylate) Composites with Selective Adsorption of Polyethylene”, Macromolecules, 32, 35343536 (1999) DOI: http://dx.doi.org/10.1021/ma981806aSearch in Google Scholar

Yang, S., Taha-Tijerina, J., Serrato-Diaz, V., Hernandez, K. and Lozano, K., “Dynamic Mechanical and Thermal Analysis of Aligned Vapor Grown Carbon Nanofiber Reinforced Polyethylene”, Composites Part B, 38, 228235 (2007) DOI: http://dx.doi.org/10.1016/j.compositesb.2006.04.003Search in Google Scholar

Zhang, B., Fu, R., Zhang, M., Dong, X., Zhao, B., Wang, L. and PittmanJr., C. U., “Studies of the Vapor-Induced Sensitivity of Hybrid Composites Fabricated by Filling Polystyrene with Carbon Black and Carbon Nanofibers”, Composites Part A, 37, 18841889 (2006) DOI: http://dx.doi.org/10.1016/j.compositesa.2005.12.024Search in Google Scholar

Received: 2013-04-11
Accepted: 2013-09-09
Published Online: 2014-03-01
Published in Print: 2014-03-28

© 2014, Carl Hanser Verlag, Munich

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.2799/html
Scroll to top button