Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2013

A Structured Review and Classification of Demolding Issues and Proven Solutions

  • K. D. Delaney , G. Bissacco and D. Kennedy

Abstract

The demolding of replicated parts can result in damage to both the replication tooling and finished parts and is a particular problem for the replication of smaller parts which can be quite fragile. Various techniques have been proposed in the literature to solve such problems by reducing the overall demolding force. This paper presents the challenge of demolding replicated parts and reviews the proven solutions from the literature which have been developed. A summary chart of these solutions is presented which may be used to implement plans to solve demolding problems with replicated parts. Such a rationalization of existing knowledge will enable replication tool developers to systematically select and apply proven solutions to solve, and ultimately prevent, demolding problems.


Mail address: Kevin D. Delaney, Department of Mechanical Engieering, Dublin Institute of Technology, Bolton St., Dublin, Ireland. E-mail:

References

Allen, P., “How Tool Design Changes with the ICE Process”, Mold Making Technology, (2006)http://www.moldmakingtechnology.com/articles/how-tool-design-changes-with-the-ice-processSearch in Google Scholar

Aronson, R. B., “Micromanufacturing: The New Frontier”, Manufacturing Engineering, 138, 89100(2007)Search in Google Scholar

Auger, M. A., et al., “Molding and Replication of Ceramic Surfaces with Nanoscale Resolution”, Small Mol., 1, 300309(2005), PMid: 17193446; DOI: http://dx.doi.org/10.1002/smll.200400073Search in Google Scholar

Bataineh, O. M., Klamecki, B. E., “Prediction of Local Part-mold and Ejection Force in Injection Molding”, ASME Journal of Manufacturing Science and Engineering, 127, 598604(2005), DOI: http://dx.doi.org/10.1115/1.1951785Search in Google Scholar

Becker, H., Gärtner, C., “Polymer Microfabrication Technologies for Microfluidic Systems”, Anal. Bioanal. Chem., 390, 89111(2008), PMid: 17989961; DOI: http://dx.doi.org/10.1007/s00216-007-1692-2Search in Google Scholar

Blau, P. J., “The Significance and Use of the Friction Coefficient”, Tribol. Int., 34, 585591(2001), DOI: http://dx.doi.org/10.1016/S0301-679X(01)00050-0Search in Google Scholar

Bowden, F. P., Tabor, D.: The Friction and Lubrication of Solids, 2nd Edition, Oxford University Press, USA(1986)Search in Google Scholar

Briscoe, B. J., “Friction of Organic Polymers. Fundamentals of Friction: Macroscopic and Microscopic Processes”. Singer, I. L., Pollock, H. M. (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 167182(1992)10.1007/978-94-011-2811-7Search in Google Scholar

Burke, C., Malloy, R., “An Experimental Study of the Ejection Forces Encountered During Injection Molding”. SPE ANTEC Tech. Papers,17811787(1991)Search in Google Scholar

Charmeau, J.-Y., et al., “Influence of Mold Surface Coatings in Injection Molding. Application to the Ejection Stage”. International Journal of Metal Forming, Suppl., 1, 699702(2008), DOI: http://dx.doi.org/10.1007/s12289-008-0311-xSearch in Google Scholar

Colton, J. S., et al., “Failure of Rapid Prototype Molds during Injection Molding”, CIRP Ann., 50, 129132(2001), DOI: http://dx.doi.org/10.1016/S0007-8506(07)62087-3Search in Google Scholar

Critchlow, G. W., et al., “A Review and Comparative Study of Release Coatings for Optimised Abhesion in Resin Transfer Molding Applications”. Int. J. Adhes. Adhes., 26, 577599(2006), DOI: http://dx.doi.org/10.1016/j.ijadhadh.2005.09.003Search in Google Scholar

DeGrave, A., et al., “Demoldability of Microstructures in Polymer Processing”, 3rd International Conference on Multi-Material Micro Manufacturing, 225228(2007)Search in Google Scholar

Delaney, K. D., et al., “A Study of Demolding Force Prediction Applied to Periodic Mold Surface Profiles”, SPE ANTEC Tech. Papers, 21492154(2010)Search in Google Scholar

Derdouri, A., et al., “Microinjection Molding of Microstructures – Experimental and Numerical Simulationhttp://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=shwart&index=an&req=15973271&lang=en#shrSearch in Google Scholar

Ebnesajjad, S., “Surface Treatment of Materials for Adhesion Bonding”, William Andrew Publishing, New York(2007) Kuz Develops Ultrasonic Ejection, European-Plastics (2010), DOI: http://www.europeanplasticsnews.com/subscriber/newscat2.html?cat=1&channel=200&id=1265881624Search in Google Scholar

Fearing, R. S., “Survey of Sticking Effects for Micro Parts Handling”, Proceeding International Conference on Intelligent Robots and Systems, 212217(1995)Search in Google Scholar

Ferreira, E. C., et al., “Friction Properties of Thermoplastics in Injection Molding”, SPE ANTEC Tech. Papers, 15461550(2001)Search in Google Scholar

Fleischer, J., Dieckmann, A. M., “Automation of the Powder Injection Molding Process”, Microsyst. Technol., 12, 702706(2006), DOI: http://dx.doi.org/10.1007/s00542-006-0100-8Search in Google Scholar

Fu, G., et al., “Analysis of Demolding in Micro Metal Injection Molding”, Microsyst. Technol., 12, 554564(2006), DOI: http://dx.doi.org/10.1007/s00542-005-0071-1Search in Google Scholar

Fu, G., et al., “The Demolding of Powder Injection Molded Micro-Structures: Analysis, Simulation and Experiment”, J. Micromech. Microeng., 18, 075024(2008), DOI: 10.1088/0960-1317/18/7/075024Search in Google Scholar

Garbassi, F., et al., “Polymer Surfaces: From Physics to Technology”, John Wiley & Sons, Chichester, UK(1998)Search in Google Scholar

Glanvill, A. B., Denton, E. N., Injection-Mold Design Fundamentals, Machinery Publishing, London(1963)Search in Google Scholar

Gonçalves, M. W., et al., “Study of Tribological Properties of Molds Obtained by Stereolithography”. Virtual and Physical Prototyping, 2, 2936(2007), DOI: http://dx.doi.org/10.1080/17452750701295765Search in Google Scholar

Griffiths, C. A., et al., “Investigation of Surface Treatment Effects in Micro-injection-Molding”, Int. J. Adv. Manuf. Technol., 47, (Numbers 1–4), 99110(2010)10.1007/s00170-009-2000-4Search in Google Scholar

Griffiths, C. A., et al., “Micro Injection Molding: Surface Treatment Effects on Part Demolding”, Proceeding 4M2008 – International Conference on Multi-Material Micro Manufacture, 245248(2008)Search in Google Scholar

Griffiths, C. A., et al., “The Effects of Tool Surface Quality in Micro-injection Molding”, J. Mater. Process. Technol., 189, 418427(2007), DOI: http://dx.doi.org/10.1016/j.jmatprotec.2007.02.022Search in Google Scholar

Guo, Y., et al., “Study of the Demolding Process – Implications for Thermal Stress, Adhesion and Friction Control”, J. Micromech. Microeng., 15, 919(2007a), DOI: http://dx.doi.org/10.1088/0960-1317/17/1/002Search in Google Scholar

Guo, Y., et al., “Analysis of the Demolding Forces During Hot Embossing”, Microsyst. Technol.13, 411415(2007b), DOI: http://dx.doi.org/10.1007/s00542-006-0225-9Search in Google Scholar

Heckle, M., Schomburg, W. K., “Review on Micro Molding of Thermoplastic Polymers”, J. Micromech. Microeng., 14, R1R14(2004), DOI: http://dx.doi.org/10.1088/0960-1317/14/3/R01Search in Google Scholar

Hesselbach, J., et al., “Micro Handling Devices Supported by Electrostatic Forces”, CIRP Annals., 56, 4548(2007)10.1016/j.cirp.2007.05.013Search in Google Scholar

Hopkinson, N., Dickens, P. M., “Predicting Stereolithography Injection Mold Tool Behaviour Using Models to Predict Ejection Force and Tool Strength”, Int. J. Prod. Res., 38, 37373757(2000a), DOI: http://dx.doi.org/10.1080/00207540050175987Search in Google Scholar

Hopkinson, N., Dickens, P. M., “Using Stereolithography Tools for Injection Molding: Research into Tensile Tool Failure and Unexpected Benefits of the Process”, Proceedings of the Institution of Mechanical Engineers, Part B, 891–899 (2000b)10.1243/0954405001517973Search in Google Scholar

Horsch, C., et al., “Deburring and Surface Conditioning of Micro Milled Structures”, Microsyst. Technol., 12, 691696(2006), DOI: http://dx.doi.org/10.1007/s00542-006-0087-1Search in Google Scholar

Jansen, K. M. B., Titomanlio, G., “Effect of Pressure Histroy on Shrinkage and Residual Stresses-injection Molding with Constrained Shrinkage”, Polym. Eng. Sci., 36, 20292040(1996), DOI: http://dx.doi.org/10.1002/pen.10598Search in Google Scholar

Jeong, Y. H., et al., “Deburring Microfeatures Using Micro-EDM”, J. Mater. Process. Technol., 209, 53995406(2009), DOI: http://dx.doi.org/10.1016/j.jmatprotec.2009.04.021Search in Google Scholar

Keijbets, L., et al., “Surface Energy Investigation of Chocolate Adhesion to Solid Mold Materials”, J. Food Eng., 92, 217225(2009), DOI: http://dx.doi.org/10.1016/j.jfoodeng.2008.11.008Search in Google Scholar

Kinsella, M. E., et al., “Experimental Determination of Friction Coefficients Between Thermoplastics and Rapid Tooled Injection Mold Materials”. Rapid Prototyping Journal, 11, 167173(2005), DOI: http://dx.doi.org/10.1108/13552540510601291Search in Google Scholar

Ko, S. L., Dornfeld, D. A., “A Study on Burr Formation Mechanism”, J. Eng. Mater. Technol., 113, 7587(1991), DOI: http://dx.doi.org/10.1115/1.2903385Search in Google Scholar

Kobayashi, Y., et al., “Relationship between Core Surface Roughness and Ejection Force for Injection Molding”. Journal of the Japan Society for Precision Engineering, 67, 510514(2001)10.2493/jjspe.67.510Search in Google Scholar

Kurt, M., et al., “Experimental Investigation of Plastic Injection Molding: Assessment of the Effects of Cavity Pressure and Mold Temperature on the Quality of the Final Products”, Materials and Design, 30, 32173224(2009), DOI: http://dx.doi.org/10.1016/j.matdes.2009.01.004Search in Google Scholar

Majewski, C., Hopkinson, N., “Effect of Tool Finishing on Ejection Forces for Injection Molded Parts Made Using Direct Metal Laser Sintered Tools”, Int. J. Prod. Res., 41, 581592(2003), DOI: http://dx.doi.org/10.1080/0020754021000033841Search in Google Scholar

Menges, G., Mohren, P.: How to Make Injection Molds, Hanser Publishers, Munich(1993)Search in Google Scholar

Michaeli, W., Gärtner, R., “New Demolding Concepts for the Injection Molding of Microstructures”, J. Polym. Eng., 26, 161178(2006), DOI: http://dx.doi.org/10.1515/POLYENG.2006.26.2-4.161Search in Google Scholar

Navabpour, P., et al., “Evaluation of Non-stick Properties of Magnetron-sputtered Coatings for Molds Used for the Processing of Polymers”, Surf. Coat. Technol., 201, 38023809(2006), DOI: http://dx.doi.org/10.1016/j.surfcoat.2006.06.042Search in Google Scholar

Neto, V. F., et al., “CVD Diamond-coated Steel Inserts for Thermoplastic Mold Tools – Characterization and Preliminary Performance Evaluation”, J. Mater. Process. Technol., 209, 10851091(2009), DOI: http://dx.doi.org/10.1016/j.jmatprotec.2008.03.012Search in Google Scholar

Packham, D. E., Mold Sticking, Fouling and Cleaning, iSmithers Rapra Publishing, Shawbury, UK(2002)Search in Google Scholar

Peng, Z., et al., “The Properties of Demolding of Ni and Ni-PTFE Molding Inserts”. Sens. Actuators, A, 118, 338341(2005), DOI: http://dx.doi.org/10.1016/j.sna.2004.01.042Search in Google Scholar

Pham, G. T., Colton, J. S., “Ejection Force Modeling for Stereolithography Injection Molding Tools”, Polym. Eng. Sci., 42, 681693(2002), DOI: http://dx.doi.org/10.1002/pen.10981Search in Google Scholar

Pollock, H. M., Surface Forces and Adhesion. Fundamentals of Friction: Macroscopic and Microscopic Processes, Singer, I. L., Pollock, H. M., (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 7794(1992)10.1007/978-94-011-2811-7Search in Google Scholar

Pontes, A. J., et al., “Effect of Melt Viscosity on the Ejection Force in Injection Molds”, Advance Materials Forum, II, 755758(2004), DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.455-456.755Search in Google Scholar

Pontes, A. J., et al., “Ejection Force of Tubular Injection Moldings. Part II: A Prediction Model”, Polym. Eng. Sci., 45, 325332(2005), DOI: http://dx.doi.org/10.1002/pen.20275Search in Google Scholar

Pouzada, A. S., et al., “Friction Properties of Molding Thermoplastics”, Polym. Test., 25, 10171023(2006), DOI: http://dx.doi.org/10.1016/j.polymertesting.2006.06.009Search in Google Scholar

Pye, R. G. W.: Injection Mold Design, Longman Scientific & Technical (Wiley), New York(1989)Search in Google Scholar

Sabino-Netto, A. C., et al., “Mechanical Properties of Epoxy Composites Filled with Short Steel Fibres for Hybrid Injection Molds”, Materials Science Forum, 587–588, 222226(2008), DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.587-588.222Search in Google Scholar

Sambale, H.: Ejecting Miniature Parts via Ultrasonics, Technology Report Kunststoffe International(2005), http://www.kunststoffe-international.com/ku/o_news.asp?task=2&news_id=267412229-89&nav_id=267171418-73&kl=02&c_id=Search in Google Scholar

Sasaki, T., et al., “An Experimental Study on Ejection Forces of Injection Molding”, Precis. Eng., 24, 270273(2000), DOI: http://dx.doi.org/10.1016/S0141-6359(99)00039-2Search in Google Scholar

Schaller, T., et al., “Microfabrication of a Mold Insert Made of Hardened Steel and First Molding Results”, ASPE 14th Annual Meeting Proceedings, 224227(1999)Search in Google Scholar

Schneider, J., et al., “Mechanical Structuring, Surface Treatment and Tribological Characterization of Steel Mold Inserts for Micro Powder Injection Molding”, Microsyst. Technol., 14, 17971803(2008), DOI: http://dx.doi.org/10.1007/s00542-008-0620-5Search in Google Scholar

Song, Z., et al., “Study on Demolding Temperature in Thermal Imprint Lithography via Finite Element Analysis”, Microsyst. Technol., 14, 15931597(2008), DOI: http://dx.doi.org/10.1007/s00542-008-0563-xSearch in Google Scholar

Tian, Y., et al., “The Lifetime Comparison of Ni and Ni-PTFE Molding Inserts with High Aspect-ratio Structure”, Microsyst. Technol., 11, 261264(2005), DOI: http://dx.doi.org/10.1007/s00542-004-0404-5Search in Google Scholar

Wang, H., et al., “Numerical and Experimental Studies on the Ejection of Injection-molded Plastic Products”, J. Polym. Eng. Sci., 40, 826840(2000), DOI: http://dx.doi.org/10.1002/pen.11212Search in Google Scholar

Worgull, M., et al., “Large-scale Hot Embossing”, Microsyst. Technol., 12, 110115(2005), DOI: http://dx.doi.org/10.1007/s00542-005-0012-zSearch in Google Scholar

Worgull, M., et al., “Characterization of Friction during the Demolding of Microstructures Molded by Hot Embossing”, Microsystem Technologies, 14, 767773(2006)10.1007/s00542-007-0492-0Search in Google Scholar

Worgull, M., et al., “Hot Embossing of Microstructures: Characterization of Friction During Demolding”, Microsyst. Technol., 14, 767773(2008a), DOI: http://dx.doi.org/10.1007/s00542-007-0492-0Search in Google Scholar

Worgull, M., et al., “Modeling of Large Area Hot Embossing”, Microsyst. Technol., 14, 10611066(2008b), DOI: http://dx.doi.org/10.1007/s00542-007-0493-zSearch in Google Scholar

Wu, S.: Polymer Interface and Adhesion, Marcel Dekker, New York(1982)Search in Google Scholar

Yamamoto, H., et al., “Application of a Chemically Adsorbed Fluorocarbon Film to Improve Demolding”, Precis. Eng., 33, 229234(2009), DOI: http://dx.doi.org/10.1016/j.precisioneng.2008.07.006Search in Google Scholar

Received: 2011-04-20
Accepted: 2011-08-18
Published Online: 2013-04-06
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, Munich

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.3139/217.2514/html
Scroll to top button