Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2013

Effect of Sn on the Characteristic Solidification Temperatures of AlSi6Cu4 Alloy

Auswirkung von Sn auf die charakteristischen Erstarrungstemperaturen einer AlSi6Cu4-Legierung
  • M. Djurdjevic , D. Muche , B. Stauder and K. Eigenfeld
From the journal Practical Metallography

Abstract

The solidification path of AlSi6Cu4 alloy with various content of Sn has been investigated using cooling curve techniques. The content of Sn has been varied from 0 to 500 ppm. The hardness of as cast alloys with different content of Sn has been measured. The results show that Sn in synthetically designed AlSi6Cu4 alloy (very low level of other elements) precipitate isolated. The increased content of Sn decreases significantly the solidus temperature of this alloy, prolonging its solidification temperature interval for approximately 9K. The hardness of this alloy has been reduced for about 20% by presence of Sn up to 500 ppm.

Kurzfassung

Mittels Abkühlkurven wurde der Erstarrungsweg einer AlSi6Cu4-Legierung mit unterschiedlichem Gehalt an Sn untersucht. Der Sn-Gehalt wurde von 0 bis 500 ppm verändert. Untersucht wurde auch die Härte von Legierungen im Gusszustand bei unterschiedlichem Gehalt an Sn. Die Ergebnisse zeigen, dass Sn in synthetisch hergestellter AlSi6Cu4-Legierung (arm an anderen Elementen) sich isoliert abscheidet. Der erhöhte Sn-Gehalt senkt die Solidustemperatur dieser Legierung erheblich und erweitert ihr Erstarrungstemperaturintervall um etwa 9K. Die Härte dieser Legierung reduzierte sich bei Vorhandensein von Sn bis zu 500 ppm um ca. 20%.


Übersetzung: E. Engert

Mile Djurdjevic is an Alloy Technical Specialist and Knowledge Manager with Nemak, Europe R&D Department, in Linz, Austria. His main research interests are related to physical chemistry of aluminum and magnesium alloys. Application of the thermal analysis in the aluminum casting plants as a quality control tool is also one of the area of his interest.


References / Literatur

[1] Cibula, A.: The Mechanism of Grain Refinement of Sand Castings in Aluminum Alloys, J. Ins. Metals vol. 76, 312(1949/50).Search in Google Scholar

[2] Crossley, P.B.; Mondolfo, L.F.: The Modification of Aluminum Silicon Alloys, Modern Casting vol. 49, 53/64, (1966).Search in Google Scholar

[3] Bäckerud, L; Chai, G; TamminenJ.: Solidification Characteristics of Aluminum Alloys Volume 2, AFS/SKANALUMINIUM, Oslo (1986).Search in Google Scholar

[4] Caceres, C.H.; Djurdjevic, M.B.; Stockwell, T.J.; Sokolowski, J. H.: The Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys, Scripta Materialia, Vol. 40, 631637 (1999).Search in Google Scholar

[5] Kohler, F.; Campanella, T.; Nakanishi, S; Rapaz, M.: Application of Single Pan Thermal Analysis to Cu-Sn Peritectic Alloys Acta Materialia, 56 (2008), 15191528.Search in Google Scholar

[6] Emadi, D.; Whiting, L.; Schmid-Fetzer, R.: Influence of Sn on Solidification Characteristics and Properties of AISiCuMg Cast Alloys: Experimental and Thermodynamic Approaches, ICCA 11, Aachen, Germany2008, 328335.Search in Google Scholar

[7] PANDAT Software Package, Computherm LLC, Madison, Wl 53719, USA, http://www.computherm.com/Search in Google Scholar

[8] http://www.crct.polymtl.ca/FACT/documentation/SGTE/SGTEFigs.htmSearch in Google Scholar

[9] MohamedA.M.; SamuelF.H.; SamuelA.M.; Doty, F.W.: Effects of Individual and Combined Additions of Pb, Bi and Sn on the Microstructural and Mechanical Properties of AI-10.8Si-2.25Cu-0.3MgAlloy Met Trans2009 Jan, Vol 40A, 240254.10.1007/s11661-008-9692-1Search in Google Scholar

[10] Ringer, S.P.; Hono, K.; Sakurai, T: The Effect of Trace Additions of Sn on Precipitation in Al-Cu Alloys; An Atom Probe Field Ion Microscopy Study, Metallurgical and Materials Transactions, 26A (1995), 22072217.10.1007/BF02671236Search in Google Scholar

[11] Murali, S.; Kashyap, K.T.; Ramen, K.S; Murthy, K.S.S.: Inhibition of delayed aging by trace additions in AI7Si0.3Mg cast alloy, Scripta. Metall. Mater., 1993, vol. 29, 14211426.10.1016/0956-716X(93)90330-USearch in Google Scholar

[12] Mohamed, A.M.A.; Samuel, F.H.; Samuel, A.M.; Doty, H.W; Valtierra, S.: Precipitation of Tin in Cast 319 and 356 Aluminium Alloys, Paper 07-010 (02) AFS2007-06-21, 1–15.Search in Google Scholar

[13] Inkin, S.V.; Klyanina, E.V.; Kurdyumov, A.V.; Cholkov, V.S.: Effect of Lead and Tin Impurities on the Technological Properties of Aluminum Alloys, Tsvetn. Met.1989,8081.Search in Google Scholar

[14] Grebenkin, V.S.; Sil'chenko, T.V.; Gorshkov, A.A.; Dzukovich, I.Y.: Effect of Magnesium on the Distribution of Tin and Lead in Al-Si Alloys, Met-allovedenie: Termicheskaya Obrabotka Metallov, 3 March 1972, 5054.10.1007/BF00690773Search in Google Scholar

[15] BorovitskayaG.P., SeleznevLP.: Control of Tin, Lead and Iron Impurities in Aluminum Piston Alloys, Tsvetn. Met.1986, pp. 8488.Search in Google Scholar

[16] KliaugaA. M. and FerranteM.The effect of Sn additions on the semi-solid microstructure of an AI-7Si-0.3Mg alloy, Material Science and EngineeringA337, 2002, pp. 6772.10.1016/S0921-5093(02)00019-9Search in Google Scholar

[17] Backerud, L: Solidification Characteristics of Aluminium Alloys, Vol. 2, AFS, Skanaluminium, 1991, p. 175.Search in Google Scholar

[18] EmadiD., WhitingL.V., GertsmanV.Y., SahooM., MacKayR., and ByczynskiG.E.: Effect of Sn on the mechanical properties of aluminium 319 alloy, AFS Transactions 118, Schaumburg IL USA 2006, pp. 110Search in Google Scholar

Received: 2010-5-3
Accepted: 2012-1-30
Published Online: 2013-05-23
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.3139/147.110102/html
Scroll to top button