Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 25, 2019

Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method

  • Nobuaki Kitazawa and Masami Aono

Abstract

Rutile TiO2 nanowire arrays have been synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate by a hydrothermal method. The effect of synthetic parameters on the morphology and initial growth mechanism have been investigated by X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy and selected area electron diffraction. Titanium n-butoxide concentration in the precursor solutions and growth temperatures are important parameters for synthesizing TiO2 nanowires. Although the FTO glass substrate showed the preferred orientation in (110), (101) and (200) faces of rutile SnO2, [001]-oriented TiO2 nanowire arrays were grown. Lattice matching between FTO and TiO2 is important for the initial nucleation and subsequent growth process. The anisotropic growth of TiO2 nanowire arrays along the [001] direction can be understood from the viewpoints of surface energy and growth rate of rutile TiO2.


Correspondence address, Professor Nobuaki Kitazawa, Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan, Tel.: +81-46-841-3810 (ext. 3667), Fax.: +81-46-844-5910, E-mail:

References

[1] A.Fujishima, K.Honda: Bull. Chem. Soc. Jpn.44 (1971) 1148. 10.1246/bcsj.44.1148Search in Google Scholar

[2] J.Schneider, M.Matsuoka, M.Takeuchi, J.Zhang, Y.Horiuchi, M.Anpo, D.W.Bahnemann: Chem. Rev.114 (2014) 9919. PMid:25234429; 10.1021/cr5001892Search in Google Scholar

[3] S.M.Gupta, M.Tripathi: Chinese Sci. Bull.56 (2011) 1639. 10.1007/s11434-011-4476-1Search in Google Scholar

[4] H.B.Wu, H.H.Hng, X.W.Lou: Adv. Mater.24 (2012) 2567. 10.1002/adma.201200564Search in Google Scholar

[5] W.Li, Z.Wu, J.Wang, A.A.Elzatahry, D.Zhao: Chem. Mater.26 (2014) 287. 10.1021/cm4014859Search in Google Scholar

[6] S.K.Pradhan, P.J.Reucroft, F.Yang, A.Dozier: J. Cryst. Growth256 (2003) 83. 10.1016/S0022-0248(03)01339-3Search in Google Scholar

[7] J-M.Wu, H.C.Shih, W-T.Wu, Y-KTseng, I-C.Chen: J. Cryst. Growth, 281 (2005) 384. 10.1016/j.jcrysgro.2005.04.018Search in Google Scholar

[8] S.Murugesan, P.Kuppusami, N.Parvathavarthini, E.Mohandas: Surf. Coating Technol.201 (2007) 7713. 10.1016/j.surfcoat.2007.03.004Search in Google Scholar

[9] D.P.Macwan, P.N.Dave, S.Chaturvedi: J. Mater. Sci.46 (2011) 3669. 10.1007/s10853-011-5378-ySearch in Google Scholar

[10] M.Andersson, L.Österlund, S.Ljungström, A.Palmqvist: J. Phys. Chem. B106 (2002) 10674. 10.1021/jp025715ySearch in Google Scholar

[11] C.Natarajan, G.Nogami: J. Electrochem. Soc., 143 (1996) 1547. 10.1149/1.183667Search in Google Scholar

[12] Y.C.Huang, F.S.Tsai, S.J.Wang: Jpn. J. Appl. Phys., 53 (2014) 06JG02. 10.7567/JJAP.53.06JG02Search in Google Scholar

[13] P.Jones, J.A.Hockey: Trans. Faraday Soc.67 (1971) 2669. 10.1039/tf9716702669Search in Google Scholar

[14] P.Jones, J.A.Hockey: Trans. Faraday Soc.67 (1971) 2679. 10.1039/ft9969202791Search in Google Scholar

[15] Z.Wei, Y.Yao, T.Huang, A.Yu: Int. J. Electrochem. Sci.6 (2011) 1871.Search in Google Scholar

[16] B.Liu, E.S.Aydil, J. Am. Chem. Soc.131 (2009) 3985. PMid:19245201; 10.1021/ja8078972Search in Google Scholar

[17] U.Balachandran, N.G.Eror: J. Solid State Chem.42 (1982) 276. 10.1016/0022-4596(82)90006-8Search in Google Scholar

[18] T.Luttrell, S.Halpegamage, J.Tao, A.Kramer, E.Sutter, M.Batzill, Scientific Reports, 4 (2014) 40431. PMid:24509651; 10.1038/srep04043Search in Google Scholar PubMed PubMed Central

[19] D.O.Scanlon, C.W.Dunnill, J.Buckeridge, S.A.Shevlin, A.J.Logsdail, S.M.Woodley, C.Richard, A.Catlow, M.J.Powell, R.G.Palgrave, I.P.Parkin, G.W.Watson, T.W.Keal, P.Sherwood, A.Walsh, A.A.Sokol: Nature Materials12 (2013) 798. PMid:23832124; 10.1038/nmat3697Search in Google Scholar PubMed

[20] S.Hoang, S.P.Berglund, N.T.Hahn, A.J.Bard, C.B.Mullins, J. Am. Chem. Soc.134 (2012) 3659. PMid:22316385; 10.1021/ja211369sSearch in Google Scholar PubMed

[21] O.V.Makarova, T.Rajh, M.C.Thurnauer, A.Martin, P.A.Kemme, D.Cropek: Environ. Sci. Technol.34 (2000) 4797. 10.1021/es001109Search in Google Scholar

[22] G.Wang, H.Wang, Y.Ling, Y.Tang, X.Yang, R.C.Fitzmorris, C.Wang, J.Z.Zhang, Y.Li: Nano Lett.11 (2011) 302. PMid:22026712; 10.1021/nl201766hSearch in Google Scholar PubMed

[23] H.Cheng, J.Ma, Z.Zhao, L.Qi, Chem. Mater.7 (1995) 663. 10.1021/cm00052a010Search in Google Scholar

[24] R.Fu, S.Gao, H.Xu, Q.Wang, Z.Wang, B.Huang, Y.Daib: RSC Adv.4 (2014) 37061. 10.1039/C4RA06152GSearch in Google Scholar

[25] H.Perron, C.Domain, J.Roque, R.Drot, E.Simoni, H.Catalette: Theoretical Chemistry Accounts117 (2007) 565. 10.1007/s00214-006-0189-ySearch in Google Scholar

[26] A.Beltrán, J.Andrés, J.R.Sambrano, E.Longo: J. Phys. Chem. A.112 (2008) 8943. 10.1021/jp801604nSearch in Google Scholar PubMed

Received: 2018-04-18
Accepted: 2018-09-11
Published Online: 2019-02-25
Published in Print: 2019-03-13

© 2019, Carl Hanser Verlag, München

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.111734/html
Scroll to top button